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In order to solve the Boltzmann equation for low external electric and magnetic Gelds, taking into account
details of band structure and scattering as in p-Ge, the influence of crystal symmetry on scattering is
discussed. The general symmetry properties of the scattering are considered and it is shown how this may
facilitate the evaluation of the transport coeScients, especially those describing deviations from isotropy of
the system. The method is applied to low-6eld magnetoconductivity and warm-carrier effects in cubic
crystals like p-Ge.

I. INTRODUCTION
' 'HE electrical transport theory of semiconductors

with a band structure similar to that of p-type
germanium has now reached a stage where the details of
scattering mechanisms shouM be considered' for a
satisfactory comparison of theory and experiment. The
complexity of the band structure' ' and its inAuence on
the transition rates'5 render an analytical treatment
impossible, and numerical techniques must then be
applied. ' ' In this case it has been found' very useful, if
not imperative, to use the maximum amount of informa-
tion which can be gained from the symmetry of the
crystal. The present paper is concerned with these sym-
metry principles and their application to the solution of
the Soltzmann transport equation in some cases of
interest.

We shall consider a system of independent charged
particles in an indnite, homogeneous crystal. The one-
particle dispersion law E=E(k) for the energy as a
function of wave vector is assumed nondegenerate, but
the results are easily extended to more complex band
structures. The distribution function f(k) is defined so
that f(k)dk denotes the number of carriers per unit
(direct) volume in the (reciprocal) volume element dk at
k. For the purpose of simplicity we assume a nonde-
generate distribution. Then the rate of change in f(k)
due to scattering is

c
Bf

dk'LP(k~ k') f(k') —P(k'+—k) f(k)7, (2.1)
~~ so

where P(k'+—k) is the rate of transitions from k to
dk' due to all scattering mechanisms (intercarrier
scattering excepted, however).

P(Rk'& Rk)=P(k—'~k). (2.2)

Making use of this property, we 6nd from Eq. (2.1)

—f(Rk)

dk'LP(Rk &—k') f(k') —P(k' ~Rk) f(Rk)7

dk'LP(Rk+ —Rk') f(Rk') —P(Rk'&—Rk) f(Rk)7

A. Symmetry Proyerties of Transition Rates

We now assume that only the carriers are affected by
external fields so that the scattering mechanisms are in
thermal equilibrium with the crystal. Any phenomenon
pertaining to the crystal in thermal equilibrium must
have a symmetry compatible with that of the crystal.
In the Brillouin zone this means the point group of
symmetry operations of the crystal plus the time-
reversal operation the eGect of which is equivalent to an
inversion. in k space. (For the present purpose we may
disregard spin without loss of generality. ) If the inver-
sion is already present in the point group, no additional
symmetry results from time reversal. In the following,
this augmented point group is denoted by (R. The
symmetry of the scattering rates I' is expressed as I"
being invariant under any operation E in 8, in the sense
that

I E. G. S. Paige, Progress in Semicondlctors (Heywood and Co.,
Ltd. , London, 1964), Vol. 8, p. 1.' G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
(1965).

3 E. O. Kane, J. Phys. Chem. Solids I, 82 (1956).
4 G. L. Sir and G. E. Pikus, Fiz. Tverd. Tela 2, 2287 (1960)

LEnglish transl. : Soviet Phys. —Solid State 2, 2039 (1961)j.' G. L. Sir, E. Normantas, and G. E. Pikus, Fiz. Tverd. Tela 4,
1180 (1962} LEnglish transl. : Soviet Phys. —Solid State 4, 867
(1962)j.

s M. Tiersten, J. Phys. Chem. Solids 2$, 1151 (1964).
'P. Lawaetz, thesis, The Technical University of Denmark,

Lyngby, Denmark (unpublished).

dk'LP(k+- k') f(Rk') —P(k' ~ k)f(Rk)7. (2.3)

This result is equivalent to the statement that the
scattering operator S,~ defined by

(8f/Bt)„= s.,f(k) (2 4)

commutes with all operations 8 in 8,, i.e., 5„transforms
according to the invariant irreducible representation 1;
of (R.
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Owing to the completeness and orthogonality of the
irreducible representations, we may write

f(k) =Z f~'(k), (2 5)
jv

where f;„(k) belongs to the row v in the irreducible
representation I", of (R. The summation is to be carried
out over all possible j and v.

Since S,~ F,, we observe that the scattering does
not mix f,,(k) with different indices. This result has a
number of important consequences for the solution of
transport problems. We shall concentrate on the low-

field steady-state solution of the Soltzmann equation.

B. Distribution Function for Low External Fields

The steady-state transport equation governing the
distribution function with electric Geld F and magnetic
field 8 is, as usual,

PF F,p+B B,pjf(k)= (af/at). .. (2.6)
where

F,p
—=(0/fl) V2, (2.7)

B.,=——(q/b)V(k) X&|, (2.8)

(q being the charge of one particle), and

V(k) = (1/&) ~2~(k) . (2 9)

In order to evaluate the low-Geld transport properties
we expand the distribution function in a power series in
the external Gelds Ii and 8,

f(k) =Z ~,.(k), (2.10)

~oo= f'(&),
' FopgrP —Sop) r,+l, p p Y~ 0

B 'Bop/1, s=Sopstsl, s+1, s+~0

(2.11)

(2.12a)

(2.12b)

where pop
——f (E) is the thermal-equilibrium distribu-

tion function, and, in general, Q„rr-F"Bs. Insertion of
expression (2.10) in the transport equation (2.6) and
separation of different powers in the fields give the
following equations:

j= dkVf(k) . (2.14)

We now introduce the symmetry property of the
scattering operator S,„derived above. Since S,~ does not
mix different irreducible representations (and rows
therein) in P expressed in a form like (2.5), the sym-
metry properties of the @„,are easily determined from
the symmetry of F,p and 8„.Thus, for the purpose of
symmetry S,~ F; may be taken equal to unity.

By inspection of (2.7) we find that F,p transforms
according to the vector representation, while from (2.8)
B,p belongs to the pseudovector representation. These
two representations are distinct since the group (R

always contains the inversion as a consequence of time-
reversal symmetry.

Because of the orthogonality properties of the
irreducible representations and their rows and because
S,p I';, an equation of type (2.12) or (2.13), containing
on the right-hand side a p„of mixed symmetry (belong-
ing to more than one irreducible representation), may
be split up into equations with a p„, of pure symmetry in
each. Thus the various symmetry parts of p„are
independent.

The advantage of the above method is that we may
follow the different symmetry parts of P„ through the
successive steps in the solution of the Eqs. (2.11)—(2.13).
A primary consequence is that the solution procedure
mal es the choice of particular Geld configurations un-
necessary, and secondly, in many low-Geld problems,
only a limited number of representations will be
generated by the Geld operators. Examples of this type
are given in Sec. III. As shown in Sec. II C, this feature
economizes the treatment of the scattering term in
actual calculations.

Having found the possible symmetry properties of
the distribution function (2.10), we can establish the
connection between microscopic and macroscopic sym-
metry, the latter being expressed in the shape of the
various conductivity tensors. The current density j is
obtained from an integral of the type

and for r, s~&0

F ' Fopslsry 1,s+2 Sopor+2, s+2 (+) r

B ' BoPP rsr2, ssrl = SoPsISr+2, s+2 (B) ~

(2.13b)

(2.13c)

Note that the magnetic Geld does not inQuence the
thermal-equilibrium distribution function which de-
pends on energy only.

We observe from Eqs. (2.11)—(2.13) that the p„may
be determined, at least in principle, by a successive
solution of these equations. A similar idea was developed
by Schottky. 8

W. Schottky, Festktfr per Pr oblnne g/ieweg, Braunschw eig,
1962), Vol. 1, p. 316.

Since V as expressed in (2.9) belongs to the vector repre-
sentation, only an f;„(k) of that representation con-
tributes to the current as a consequence of the orthogo-
nality of irreducible representations. On this basis, it is
easy to construct the distinct transport coef5cients
corresponding to any function P„, of the expansion
(2.10). We shall return to this in Sec. III in connection
with cubic crystals.

C. Further Consequences of the Symmetry

In order to complete the picture of the effects of sym-
metry on the scattering, we shall return to the con-
sideration of the transition rates. If these quantities are
to be treated numerically as a consequence of their
complexity, it is necessary to introduce a, discretization



in the continuous variables k and k'. Regarding the
angular dependence, this purpose is conveniently
achieved by expansion in a suitably chosen orthogonal
system of harmonics. In order to make use of the sym-
metry properties described by the group (R, we classify
these harmonics according to the irreducible representa-
tions and rows therein. Let V;„(n,k) be such a harmonic
with k denoting the unit vector in the direction of k, j
the irreducible representation, ~ the row, and e some
order of harmonics within the same representation and
row. The orthogonality and normalization are then
expressed by

dkI;. (n,f)V;.„.(n', k)*=4 S.„.S;;.S„, (2.15)

where the integration is performed over the unit sphere.
The asterisk denotes complex conjugation. If D;(R) is
a unitary, irreducible representation of R, the classi6ca-
tion of the harmonics as basis functions is given by

of the representation I';. We then 6nd from (2.19)

with
&jv,j'v'= ~j ~jj'~vv' p

~~=4 'Z C~',;.
P

(2.21)

(2.21')

The relation (2.21) is a necessary condition for the
invariance (2.2) to hold. That it is also sufficient may be
seen by insertion of (2.21) in (2.19). This gives the
COIKlltlon

Q D;„,(R)D;„„(R)*=5„„ (2.22)

which just expresses the unitarity of the representation.
Thus (2.21) is sufficient.

The relation (2.21) is readily interpreted: Different
representations and rows are not mixed in the expansion
(2.17), and coefficients corresponding to different rows
within the same representation are equal. Thus

P(k+—k') = P C;(n,n') Y;„(n,k) Y,„(n',k')'. (2.23)

I;„(n,Rk)=gD, „„(R) I,„(n, k) (2.16)

%e now apply this harmonics expansion to the tran-
sition rates E, and so we write

The

coefficients

C

may

depe. on (k( and
~

k'(. We then
show that the symmetry property (2.2) limits the
number of distinct coefficients C in (2.17) considerably.
In this treatment we neglect the suKxes e and e' since
the order has no connection with the symmetry. From
the transformation properties (2.16) we find

P (Rk ~Rk')= g Cjp,pp Djpy(R)
vv pp'

XDg, , (R)*Fp(k)&g, (k')*. (2.18)

The left-hand sides of (2.17) and (2.18) are equal s,s s,

consequence of the invariance (2.2) of P, and because of
the orthogonality of the harmonics we can identify the
coeKcients on the right-hand sides. Thus it follows from
the symmetry that C must satisfy

C;.,;.=Q C;„,; „.D;„„(E)D;„.„(R) . (2.19)

By summing this equation over all R, we can make use
of the great orthogonality theorem of group theory;

Q D;„„(R)D;.„.„.(R)*=hl; '8;; b„„b„„, (2.20)
B

P(k ~ k') = g Cp, p„.(n,n')
nn, 'jj'VV'

y I';„(n,k)I;„.(n', k')*. (2.17)

A comparison with the general expansion (2.17) then
sho~s that a considerable reduction has taken place as
a consequence of the symmetry requirements. However,
for a complicated form of the transition rates the evalua-
tion of the expansion coeKcients C; may still be a
formidable task, A further simpli6cation is introduced

by the fact that in many low-field problems we require
knowledge of the C s belonging to only a limited
number of representations F;. This is shown below.

As we saw in Sec. II B, it is advantageous to split the
Boltzmann equation of type (2.12) or (2.13) into
equations with a $„,of pure symmetry appearing on the
right-hand side. I.et such a function be denoted by
f;.(k) in order to conform with the expansion (2.5). By
use of the orthogonality of irreducible representations,
a consideration of the scattering term (2.1) combined
with the expansion (2.23) then shows that:

(1) The C coefficients contributing to the "out"-
scattering term J'dk'P(k'~k) f;„(k) belong to the
invariant representation I';.

(2) In the "in"-scattering term Jdk'P(k ~'k') f;„(k'),
the contributing C should belong to the same represen-
tation as f,„(k').

%e conclude that in the solution of the equation for

f;.(k) only the C's belonging to the I'; and I'; representa-
tions are needed. In a particular low-6eld problem it
will usually be so that only a limited number of repre-
sentations I'; are excited by the ffeld operators (as dis-
cussed in Sec. IIB). Specific examples are given in

Sec. III. %e then require knowledge only about the C
coeKcients belonging to these representations plus the
invariant representation.

If fol soIne special type of scattel lng additional
symmetry occurs in the form of

where h is the order of the group and l; the dimension P(Rk+k') =P (k+- k-'), (2.24)
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TABLE I. Irreducible representations of the full cubic group F.

Repre-
sentation~

F1
1'2
j. 12

I 16

1 26'

r, '
F2'
+12

&26

Rowb

ss
az

y

ss

y
s

y
s

Function'

pI
v(s)
'Y(as)
5'(x)
~'(y)
~'(s)
e(x)
e(y)
~(s)

P
y'(ss)
p'(as)
S(x)
~(y)
S(s)
e'(x)
e'(y)
e'(s)

Cubic harmonic~

1
x'(y' —s')+c.p.
s' ——,

' (x'+y')
x'—y'
ys (y2 S2)
sx(s' —x2)
xy(x' —y')
ys

xy
xysLx4(y2 —s')+c.p.j
xys
xyst s2——,

' (x'+y') j
xys(x' —y')
x

s
x(y' —s')
y{s'—x')
s(x' —y')

a Notation from Ref. 9.
bss a: symmetric with respect to interchange

symmetric with respect to interchange of x and y.
e Notation adapted from Ref. 10.
d Reference 10.

of x and y; cs o: anti-

then group-theoretical arguments similar to those lead-
ing to Eq. (2.21) show that for C; belonging to F;, either

or
C, =O.

(2.25a)

(2.25b)

It follows that t"; is zero for all representations which
are not invariant with respect to E. For all these repre-
sentations, the "in"-scattering term vanishes and only
the I'; part of the C coeKcients is of interest. Usually,
the operation E in question is the inversion, and the
symmetry property (2.24) is called momentum ran-
domization. In this case all C coeS.cients belonging to
odd representations vanish.

Fp F15,.

Likewise for the magnetic-field operator (2.8),

(3.1)

(3.2)

9 L, P. Bouckaert, R. Snmluchowski, and E. P. Wigner, Phys.
Rev. 50, 58 (1936)."F. C. von der Lage and H. Bethe, Phys. Rev. 71, 612 (1947).

III. APPLICATION TO CUBIC CRYSTALS

In the case of cubic crystals, the group (R is the full
cubic group I'. In the following, the 10 irreducible
representations of I' are denoted according to Bouckaert
et OI. ,

9 whereas functions belonging to particular irre-
ducible representations follow the more compact nota-
tion of von der Lage and Bethe. ' The correspondence is
shown in Table I which also explains the notation
employed for rows.

Since the electric-field operator F,p in (2.7) transforms
according to the vector representation, it follows that

Below, we shall use the principles developed in.

Sec. II B to study the sylnmetry properties of the dis-
tribution function in two important cases, the low-Geld

magnetoconductivity and the warm-carrier problem.

A. Low-Field Magnetoconductivity

In cubic crystals the current density j may be ex-
pressed in the following way to Grst order in the electric
field and to second order in the magnetic Geld:

j=~o[F+ue(FXB)+PZFB'
+ygB(F.B)+&14TFg, (33)

where T is diagonal tensor with the elements B,', B„',
and 8,'. This was shown in Ref. 11 by Seitz. We are
going to show that the form (3.3) follows from the
symmetry of the distribution function.

The effect of the field operators (3.1) and (3.2) on any
distribution function of particular symmetry is given in
the Appendix. From Eq. (2.12a) we find to first order in

the electric field

where formally
Pio ——F,boi (x)+c.P. ,

&oi(x) ~ F"*f'(&),

(3.4)

(3.5)

and c.p. stands for cyclic permutations of x, y, and 2'.

Here it has been used that jo has ri symmetry.
According to Eq. (2.12b), we now apply successive

orders of the magnetic-field operator to &10 and obtain
in 6rst order

$11 BgFg[4211 + Y12 (45x)j+BgPp[ t213(z)+514—(z)g
+B*F*[~ (y)+ '(y)7+c.p, (36)

where
4211 +Y12 (45x) ~ Bop ~01(x) )

8»(x)+514'(x) ~B.p'8oi(y) .

(3.7)

(3.8)

821(x) ~ Bop 4211

~22(x) ~ Bop Y12 (~x) &

825(x) &-+ B.,*b»(y),

b24(x) 4-+ B.pg514'(y) .

(3.10)

(3.11)

(3.12)

(3.13)

Thus we Gnd for the x component of the current
density, using (2.14) together with Eqs. (3.4), (3.6),

"F.Seitz, Phys. Rev. 79, 372 (1950).

In second order of magnetic Geld we only retain the I'»
part, i.e., 5 functions, because only these contribute to
the current density and because we are not proceeding
to higher orders.

412(r15) Bg Fgp21(x)+22(x)]
+(B,'+B.')F.[ ~. (*)+~ (*)3
+ (B.B„F„+B.B.F.)L~»(x) 2&-(x)—

+42(x)+ h24(x)]+c.p. , (3.9)
where
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o.p= dk V.bpt(x), (3.15)

and (3.9),

j,=o p(F,+nettF„B, F—,B„]+PeF,[B 2+B„2+B2]

+ye(tF,B,2+F„B,B„+F.B,B,j+bsF,B,2), (3.14)

with

B. Warm-Carrier Conductivity

In the warm-carrier problem we consider the lowest-
order nonvanishing deviation from Ohm's law. The
macroscopic symmetry of this phenomenon was in-
vestigated by Schmidt-Tiedemann" and is easily de-
rived from the magnetoconductivity relation (3.3) by
replacement of 8 by F,

j=o p[1+ (Pr —ys)F2+yg T]F, (3.20)

ne ITQ dkVgb13(x) I

p, =o;1 dl V,L-b„(x)+b„(x)7,

(3.16)

(3.17)

where Pr and yr are the usual warm-carrier coeK-
cients, " and T is a diagonal tensor with the elements

We now follow the procedure outlined in Sec. II and
apply the electric-field operator (3.1). As in Eq. (3.4)
we have the term of first order in the electric Geld

P~= 0'p dk V.Lb21(x) ——,
' bs, (x) 4'lp F bll(x)+c.p. (3.21)

8g =C.p
—1

+b23(x)+b24(x)], (3.18)

dk V.L2 b22(x) —2b24(x) j. (3.19)

where
br 1(x)~F"'j'(&) . (3.22)

According to Eq. (2.12a) and the Appendix, the dis-
tribution function of second order in the electric fieM is

We observe that Eq. (3.14) is of the same form as the
well-known expression (3.3). However, this result is
rather trivial in itself. The important point is the rela-
tions (3.15)—(3.19) between the macroscopic conduc-
tivity parameters and the various synnnetry compo-
nents of the distribution function. This renders the
consideration of particular Geld configurations un-
necessary in actual calculations. In particular, the small
longitudinal magnetoconductivity coefficients may be
determined with improved accuracy as is evident from
the following argument. These coeKcients always in-
volve pe and ye in the combination pe+ps, and we
observe that such a combination does not contain a
contribution from 823. This function may be expected to
be a predominant part of the distribution function of
second order in magnetic Geld since the transverse
effects are usually larger than the longitudinal. By the
present analysis it should be possible to calculate the
longitudinal and transverse codBcients with the same
relative accuracy.

Concerning the practical solution of the transport
equations involved in the magnetoconductivity calcula-
tion, the transition rates may be expanded in cubic
harmonics" in the way described in Sec. II C. Since the
distribution function for this problem only contains
symmetry parts corresponding to the odd representa-
tions F~', 7~2', I'~5, and F25, it follows from the discussion
in Sec. II C that the expansion coefficients C; need only
be calculated for these representations and the invariant
representation I'~. For the particular case of nonpolar
optical-phonon scattering, the usual theory'4 shows
that this type of scattering is momentum randomizing.
As shown in connection with Eq. (2.24), the harmonics
expansion of the transition rates will then contain no
odd representations, and so only the F& part is of interest
in magnetoconductivity calculations.

o.p —— dk V.b11(x), (3.31)

P r ——o p-' dk V,Lb31(x)+ b32(x)j, (3.32)

y2 ——o p
' dkV, L32832(x)—2b34(x)]. (3.33)

Again, the results of our method are in accordance
with the macroscopic behavior (3.20). This agreement

"K.J. Schmidt-Tiedeman11, Phys. Rev. 123, 1999 (1961).

Psp ——F, t sn+21y22(sx) J+2F„F,Q24(x)+c.p. , (3.23)

where

nsl+y22(SX) ~ Fop bll(X) q (3.24)

b23'(x)+224(x) ~ F»'btt(x) . (3.25)

The b' functions cancel out in Eq. (3.23). In third order
we find for the r13 part (the only contribution to the
current)

y,.(r„)=F2F.b„(x)+ (F.s--,'F„s--;F,s)F,b„(x)
+2(F„2+F,s)F,b34(x)+c.p. , (3.26)

where

b31(x) ~ Fop n21 p (3.27)

b32(x) ~F.,*722(sx), (3.28)

b 4(*)~ F»*e24(r) (3.29)

For the x component of the current density we find
using (2.14)

j,=o QL1+ (Ps y2)F2+ysF, 2jF—„(3.30)
with
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should only be regarded as a check. As in the discussion
of magnetoconductivity in Sec. III A we have obtained
a procedure of solution which does not rely on a specific
field configuration. If the anisotropies connected with
8» and 834 are small, the present method shows that
these may be isolated from the dominant b3~ part. It
follows that in a numerical treatment these anisotropies
may be determined with the same relative accuracy as
the "isotropic" part Pp. In addition, we observe that the
distribution function for this problem only contains
symmetry parts corresponding to the representations
I', , I'», I'»', and I'~5. According to the discussion of the
harmonics expansion of the transition rates in Sec. II C,
only expansion coefficients belonging to the above
representations are needed in the actual calculation of

p~ and yp.
For the purpose of illustration let us take a look at

a model which is commonly used as a simplified version
of p-Ge. This is a simple band structure with isotropic
acoustic- and optical-phonon scattering. As a conse-
quence of the isotropy, yp is zero, but this does not
necessarily imply that the functions 8» and 834 in

Eq. (3.33) vanish. In fact, a simple calculation shows
that this is not the case. Thus it may not be a good
approximation to neglect the 83~ term in (3.32) as is

usually done in the so-called diffusion approximation
where only zeroth- and Grst-order I egendre functions
are retained. With isotropic scattering, only equations
of I', type contain a nonzero "in"-scattering term (see
Sec. II C). For pure acoustic scattering energy absorp-
tion is very ineKcient so that the e8ect of S,~ on I'&

functions is small as compared to its e8ect on functions
of a different symmetry. In this case 83r (derived from
n2~ of the I'& representation) is the predominant part of
the distribution function in third order so that the
dift'usion approximation holds very weIl. Optical-phonon
scattering, on the other hand, is a very efficient energy-
absorption mechanism in p-Ge for carrier energies of
the same order as the optical-phonon energy, so that 8»
is no longer large compared to 832. Since this is the
situation actually encountered in p-Ge, we conclude
that the dift'usion approximation is not sufficiently
accurate for this material.

IV. CONCLUSION

where the complexity of the band structure and the
scattering mechanisms has hitherto prohibited a de-
tailed quantitative interpretation of hole-conduction
phenomena. The present study provides us with a tool
which makes possible a systematic approach to the
solution of the Boltzmann equation, at least in the case
of low fields.

In the numerical treatment of complex transport
problems, some discretization of the continuous vari-
ables is always necessary. For the angular dependence
we have seen in Sec. II C that an expression of the
transition rates in harmonics transforming as basis
functions of the irreducible representations of the point
group 6I, will have a particular simple form if the scatter-
ing mechanisms are in thermal equilibrium. Since in
most cases the scattering mechanisms are not directly
influenced by the Gelds, only through the nonequilib-
rium distribution of the carriers, it follows that the
above assumption is always fulfilled for suKciently low
external fields. If the coupling between the carriers and
the scattering mechanisms is not too strong it may still
be a good approximation to consider the latter in
thermal equilibrium even in stronger Gelds. In this case
the harmonics expansion in Sec. II C may be a profitable
approach to the solution of transport problems with
more general field strengths.

In a forthcoming publication we discuss actual cal-
culations and results for the low-field magnetoconduc-
tivity properties of p-type germanium. These calcula-
tions will proceed according to the principles developed
in the present work taking into account all relevant
details of the band structure' and the scattering. 4
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APPENDIX: SYMMETRY RULES FOR THE
EFFECTS OF THE FIELD OPERATORS

In Eq. (2.8) we deined the magnetic-6eld operator
S,~ with the symmetry (3.2),

Although the method described in the preceding dis-

cussion i.s of general validity, it is not always the
simplest path to follow in practice. The reason for this
is connected with the explicit solution of the Boltzmann
equation and may be illustrated by the case of the
many-valley band structure. Here the usual and most
'convenient approach' is a separate consideration of each

valley. In our method, the valleys cannot be treated
separately since this violates the cubic symmetry.

On the other hand, the present procedure is well

suited for band extrema at k= 0. An importarit example
Of thii type is the valence band edge in germanium

~op I 15@ ~

We shall consider the eBect of this operator when it
operates on distribution functions of various symmetries
corresponding to the irreducible representations (and
rows therein) of the full cubic group I'. We limit the
discussion to odd representations because only these
are of interest in connection with low-Geld magneto-
conductivity. The following rules may be derived from
group-theoretical considerations, but they may also be
found from the basis functions listed in Table I, using
the fact that
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g( p~(y

B.p'y'(ax) +-+

B.p"y'(ax) ~
B.;y'(ax) ~

B, *b(x)~
B.,&b(x) ~
B.p*b (x) +-+

B.p*e'(x) +-+

Bootee (x)

B.;e' (x) +-+

b(x);

b(x),
—2b(y)+e'(y),
—k~(s) —e'(s);

n'+y'(ax),

~(s)+e'(s),
-b(y)+" (y);

0+v'(»),
b(s) —e'(s),

b(y)+e'(y).

F2' and I'12,' are not used in the present work.

The relations not shown below may be obtained by
cyclic permutation of x, y, and s. Functions belonging
to the same representation are formally identical if they
have a common symmetry origin.

I 25

F,~*n ~ b(x);

F,e*y(sx) ~ b(x),

F.,'(-)-—:b(»+"(y),
F„'y(sx) ~ ——,'b (s)—e'(s);

F„*e(x)~P+y'(sx),
F.,&e(x) ~ b(s) —e'(s),

F.v"(x) ~ b(y)+e'(y),
F.y~b(x) ~ n+y(sx),
F,p&b(x) &-+ b'(s)+e(s),
F„*b(x)~ —b'(y)+e(y) .

In the same way we derive the rules for the eBects of
the electric-Geld operator (2.7). Thus from (3.1) and
Table I P p F15 X ~

For the representations used in the present work we 6nd
the subsequent relations.
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Contribution of Scattering of Polaritons by Phonons to Absorption
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Recent optical studies in II-VI compound single crystals have revealed discrepancies between actual
absorption lines and the resonance frequencies obtained from a classical treatment of absorption and dis-

persion in insulators. This treatment neglects explicit dependence of the dielectric constant on the wave
vector k. In this paper, we calculate this wave-vector dependence of both the real and imaginary parts of
the dielectric constant in a treatment which considers the scattering of the coupled exciton-photon (polari-
tion) waves by phonons. Transmission, reflection, and absorption coeflicients are then calculated for a
typical II-VI crystal (CdS). The theoretical results obtained are found to be consistent with results given
in the above optical studies. In particular, the intrinsic absorption lines are predicted to be wider and to
peak at higher frequencies than generally expected from the classical treatment.

L INTRODUCTlON

HE absorption bands near the band edge have
been extensively studied in the II-VI semi-

conductors. ' Some of these absorption bands are re-
ported to be intrinsic in nature, being attributed to the
formation of free excitons, which are mobile electron-
hole pairs bound together by their mutual energy of
attraction. Also, absorption bands in the same range
of wavelength have been reported which are attributed
to the formation of excitons loosely bound on defect or
foreign-ion complexes. These trapped or bound excitons
for which crystal momentum is not a good quantum
number are expected to behave like classical oscillators.

i An excellent review of this work is given by D. C. Reynolds,
C. W. Litton, and T. C. Collins, Phys. Status Solidi 9, 645 (1965);
12, 3 (1965).

Thus an accurate description of the absorption spectra
associated with these bound excitons should be derivable
froIn the classical treatment of absorption and disper-
sion in insulators. '

Noticeable discrepancies have been reported when
this classical treatment has been extended to account
for the absorption believed to be associated with the
formation of free or intrinsic excitons. Recently, Park
et a/. 4 noticed that a discrepancy of as much as 0.01 eV
existed between actual absorption lines in zinc oxide

~I'. Seitz, Modern Theory of Solids (McGraw-Hill Book Co.,
Inc. , New York, 1940), p. 633.' To our knowledge, the only paper in which the exciton absorp-
tion is calculated not using the classical method is that by A. A.
Demidenko and S. I. Pekar, Fiz. Tverd. Tela 6, 2771 (2964)
/English transl. : Soviet Phys. —Solid State 6, 2204 (2965)g.

4 Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds,
Phys. Rev. 143, 143 (1966).


