PHYSICAL REVIEW VOLUME

166,

NUMBER 3 15 FEBRUARY 1968

Magnetoresistance and Fermi Surface Topology of
Crystalline Mercury*

J. M. DisamMaNt AND J. A. RAYNE
Carnegie-Mellon University, Pitisburgh, Pennsylvania
(Received 14 August 1967)

The results of magnetoresistance experiments on a number of oriented single crystals of mercury are
reported. Three distinct types of minima are observed in plots of magnetoresistance versus field direction,
and these are attributed to open orbits normal to the planes {100}, {011}, and {110}. A unique model of the
Fermi surface, formulated in terms of the dimensions of the contact regions on the first zone, is derived to
explain these data. An eight-plane-wave pseudopotential calculation including spin-orbit coupling is used
to obtain a compensated Fermi surface in substantial agreement with this model and with the first-zone

de Haas-van Alphen extremal areas.

I. INTRODUCTION

NTIL recently little information concerning the

electronic structure of solid mercury has been
available, because of the difficulty of preparing oriented
single-crystal samples. This problem has been solved
over the past few years, and the Fermi surface of
mercury has been investigated extensively by means of
the de Haas—van Alphen (dHvA) effect.! The galvano-
magnetic experiments reported here were begun in
order to complement the dHvA measurements, and
preliminary results have been described elsewhere.??
General agreement is found between these data and
those of other workers.**

There is some difficulty in explaining the galvano-
magnetic results on the basis of the model Fermi sur-
faces thus far proposed for mercury. Both pseudopoten-
tial' and relativistic-augmented-plane-wave (RAPW)
band calculations® give agreement with the dHvA
areas but fail to predict correctly the angular extent of
the experimentally observed open orbits. This has
indicated a need for a more thorough investigation of
the topological features of possible models for the mer-
cury Fermi surface. Such a study has been carried out,
and it has been possible to find a simple four-parameter
model which uniquely explains the magnetoresistance
data.

In addition to the experimental and topological
studies presented, the results of an eight-plane-wave
pseudopotential calculation are also given. This cal-
culation includes the effects of compensation and spin-
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orbit coupling, and allows a connection to be made
between the four-parameter model and the dHvA
data. The results of these studies are considered in
detail after a brief review of the proposed models for
the Fermi surface of mercury.

II. THEORY
A. Fermi-Surface Models

It is helpful by way of introduction to consider several
models of the mercury Fermi surface. These models
have varying theoretical justification, and it is im-
portant to understand what features are essential and
what features may be varied in order to produce agree-
ment with both dHvA and magnetoresistance data.

1. Free-Eleciron Model

Mercury crystallizes normally in the rhombohedral
a phase”; the lattice constants and other pertinent
data for this phase are found in Table I. The Brillouin
zone for this lattice, which is shown in Fig. 1, has been
discussed in detail by several authors.®® It is sufficient
to recall that it resembles the zone for a fcc lattice,
except that it has been stretched along the trigonal
axis. This stretching produces three inequivalent types
of faces designated 4, B, and T, parallel to {100},
{110}, and {111}, respectively, as shown in the figure.
The {free-electron sphere, appropriate for mercury
atoms of valence two, has the same volume as the
Brillouin zone and intersects it on the 4 faces as shown
by the shaded circles. This intersection produces a
two-sheet Fermi surface containing equal volumes of
electrons and holes. The first-zone hole surface is open
and consists of the unfilled states lying between the
surface of the sphere and the zone faces. The second-
zone electron surface is comprised of lens-shaped disks
lying on the A4 faces of the zone.

7C. S. Barrett, Acta Cryst. 10, 58 (1957).

8 M. H. Cohen, Phys. Rev. 121, 387 (1961).

9 H. Jones, Theory of Brillowin Zones and Electronic States in
Crystals (Interscience Publishers, Inc., New York, 1960).
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2. Pseudopotential Models

The pseudopotential model® depends on the fact
that the effective single-particle wave function (the
pseudowave function) is free-electron-like, and can be
expressed as a sum of a small number of plane waves.
The effective lattice potential (the pseudopotential)
enters the calculation through a small number of
matrix elements of the form (k|W|k+g) (also known
as pseudopotential coefficients or form factors), where
| k—+¢) is a plane-wave state, W is the pseudopotential,
and g is a wave-number lattice vector. These matrix
elements may be calculated from first principles or they
may be used as adjustable parameters to fit the Fermi
surface to experimental data, such as the dHvA areas.

To obtain the dHvA model,* the latter procedure has
been followed using three-plane-wave sets. The change
in the first-zone surface is shown schematically in Fig. 2.
It can be seen that the main effect of the lattice poten-
tial is to introduce contact between the Fermi surface
and the B and T faces of the Brillouin zone, and to
enlarge the already existing regions of contact upon
the A faces. Where the surface contacts the zone,
breakthrough regions are created in the hole surface.
These openings create the possibility of orbits much
smaller than in the free-electron model; e.g., the 3 orbit
is an order of magnitude smaller. Both the 8 and 7 orbits
shown in Fig. 2 are strongly observed in dHvVA experi-
ments. In addition to these closed orbits, the hole
surface supports a number of open orbits, two of which
are shown in the figure. The existence of these orbits is
quite sensitive to the size and shape of the breakthrough
regions on the surface. For example, if the plane of an
orbit is tilted away from the positions indicated, the
trajectory will eventually intersect one of the break-
through regions. In such a case, the path of motion can
fold back upon itself and the previously open orbit
becomes closed; this property will be used to deduce
an empirical Fermi surface from the magnetoresistance
data.

Certain limitations to the dHvA model should be
noted. Firstly, divalent mercury is a compensated metal,
which implies that the volumes of the hole and electron
surfaces should be equal. In the dHvA model the

TasiE I. Crystallographic data for mercury.

Symbol  Value Remarks
a 2.9863 A Rhombohedral vector at 5°K
« 70°44.6' Rhombohedral angle at 5°K
£ 2.3002 A'  Magnitude of 100
B 104°21.7 Rhombohedral angle for reciprocal lattice
Q 23.021 A3 Volume of -unit cell
0o 41.946° Angle between [100] and [111]
0y 65.803° Angle between g100 and g111
kr 0.59582¢ Radius of free-electron sphere
Er  0.5240 Ry I'ree-electron Fermi energy

10'W. A. Harrison, Pseudopotentials in the Theory of Metals (W.
A. Benjamin, Inc., New York, 1966). C
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F16. 1. Brillouin zone of mercury showing intersection of free-
electron sphere with the A faces.

Fermi level was not adjusted to satisfy this requirement,
but was simply left at its free-electron value. Secondly,
spin-orbit effects were not considered. Since mercury
is a heavy element (atomic number 80), it might be
expected that spin-orbit coupling is important and
should be included explicitly in a pseudopotential
calculation.

In most first-principles calculations of the pseudo-
potential, information about the effect of the core states
is obtained from a Hartree-Fock (HF) calculation for
the free ion. Heine, Abarenkov, and Animalu (HAA)—4
have shown that this information can also be obtained
from spectroscopic data on the atomic energy levels
for a number of elements, including mercury. Animalu®®
has shown how to include the effect of spin-orbit
coupling for these elements. Since all the required
theoretical parameters are available in the form of
tables,? it is a straightforward matter to calculate the
energy bands for mercury using this procedure. Such a

F1G. 2. Schematic representation of the first-zone Fermi surface of
mercury showing the location of typical open and closed orbits.

11, Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965).

12V, Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).

1B A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
% A, O. E. Animalu, Phil. Mag. 11, 379 (1965).

1 A, O, E. Animalu, Phil, Mag. 13, 53 (1966).
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F16. 3. Relative sizes of the contact regions for four models of
the first-zone Fermi surface. Simple shapes are used to approxi-
mate the actual contact regions. The inset shows the relation of
the dHvA and MAG V contact regions on the 4 face.

calculation has been carried out using eight plane waves
of the form |k+8, o), |k+38, B), where §=0, $oo1, So11,
8111, and «, B are spin indices. In addition, the Fermi
level has been adjusted to give a surface which is
approximately compensated, using the technique of
Harrison.’® The resulting Fermi surface is topologically
equivalent to that of the dHvA model, but the break-
through regions on the B and T faces are much larger.
A comparison of the dimensions for the various models
considered is given in Table II and Fig. 3.

3. Relativistic-Augmented-Plane-W ave Model

The RAPW method,!®” which automatically includes
the expected large relativistic effects, produces a Fermi
surface topologically equivalent to the two previously
discussed.? As compared to the dHvA model, there is

TasLe II. Breakthrough dimensions of first-zone hole surface.»

Breakthrough dimension (units of go)

Model 74 rp aB bp
dHvA 0.390 0.141 0.079 0.130
RAPW 0.412 0.051 0.050 0.051
HAA 0.361 0.166 0.151 0.152
MAG V 0.374 0.086 0.091 0.113
8 PW 0.380 0.031 0.091 0.077

s Dimensions 74 and rr are radii of circular approximations to the
breakthrough regions on the 4 and T faces, respectively. Dimensions ag
and bp are semiminor and semimajor axes, respectively, of the elliptical
approximation to the breakthrough region on the B face.

16 T, L. Loucks, Phys. Rev. 139, 1333 (1965).
17 T, L. Loucks, Phys. Rev. 143, 506 (1966).
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improved agreement between the observed and cal-
culated extremal dHvVA areas, although the r orbit is
still about 159, smaller than the observed value. The
most striking topological feature of the model as com-
pared to the others is the very large breakthrough region
on the A faces of the zone. This breakthrough is so
large, in fact, that it overlaps the edge of the face to
form an indented region on the B faces (see Fig. 3).
The other contact regions, however, are smaller in
comparison with previous models. It should be noted
that the Fermi energy chosen to produce this surface
has been determined by requiring the calculated and
observed areas for the 8 orbit to be in exact agreement.
There may thus be a lack of compensation in this model,
since it is not certain that the electron and hole volumes
are equal.

By way of summary, it can be said that the three
theoretical models considered are topologically similar
in that they all give rise to closed orbits observed in the
dHvVA experiments, and to open orbits seen in magneto-
resistance measurements. All show contact between the
Fermi surface and each of the zone faces. The differences
in the three models concern the precise size and shape
of these contact regions; it is the determination of the
extent of these regions where the magnetoresistance is
expected to be useful.

B. Magnetoresistance Theory

As originally shown by Lifshitz, Azbel, and Kaganov,'®
the galvanomagnetic properties of a metal in the high-
field limit can be understood independently of the de-
tailed electronic scattering mechanisms and solely in
terms of the geometry of the Fermi surface. Pippard®®
and Fawcett?® have reviewed this subject in detail,
and only the results applicable to mercury will be
recalled here.

Simply stated, the magnetoresistance for a metal in
the high-field limit is expected either to rise quad-
ratically with field, or to saturate independently of
field, depending upon which of a set of conditions is
satisfied. These conditions for a compensated metal
such as mercury are given in Table III. Conditions
I and II imply that open orbits are distinguished
from closed orbits only if the current direction is
favorably oriented with respect to the crystal axes
of the sample. Thus the angle a between the open-
orbit direction in k space and the current direction
should be close to 90° so that the term quadratic
in the field is small and the magnetoresistance satu-
rates. This condition imposes important restrictions
upon sample preparation for these experiments.

18 T, M. Lifshitz, M. I. Azbel, and M. I. Kaganov, Zh. Eksperim.
i Teor. Fiz. 31, 63 (1965) [English transl.: Soviet Phys.—JETP
4, 41 (1957)].

9 A, B. Pippard, Les Houches Lectures on Low Temperature
Physics (Gordon and Breach Science Publishers, Inc., New York,

1965).
2 F, Fawcett, Advan. Phys. 13, 139 (1964).
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Saturation is also obtained if condition III is satisfied,
which will be the case, for a particular orientation
of the field, if different planes normal to the field
intersect the Fermi surface so as to produce open
trajectories having different directions. Such field direc-
tions might be present at points on the stereogram where
two one-dimensional regions of open orbits cross. Con-
dition IV, which also leads to saturation, is satisfied
for field directions where closed orbits of one character
(e.g., electrons) are excited on an open sheet of the
opposite character (e.g., a hole surface). In addition,
these closed orbits must not be enclosed by larger orbits
with the same character as the open sheet, nor may any
open orbits be excited. Such singular-field directions
are usually associated with an axis of higher than two-
fold symmetry, located at the center of a two-dimen-
sional region of the stereogram where a periodic open
orbits are excited. For compensated metals the equality
of holes and electrons is destroyed for these directions,
giving rise to geometric discompensation.®

III. EXPERIMENT
A. Sample Preparation and Experimental Equipment

A number of oriented single-crystal specimens have
been prepared for use in the magnetoresistance experi-
ments. To prevent damage during handling, these
samples are grown in epoxy molds suitably prepared to
allow the attachment of current and voltage leads. The
latter consist of 36-gauge copper wire, amalgamated
with mercury on one end, and soldered to the sample
on the surface of the supporting molds, where the mer-
cury is exposed during growth. Each sample has been
oriented to within ° by back-reflection Laue techniques.

A standard four-terminal method has been used for
measuring the magnetoresistance. With a constant
current of 600 mA applied to the two outer terminals
of the sample, the voltage across the two inner terminals
is monitored by an Astrodata Model 121Z nanovolt-
meter, the output of which is connected to the ¥ axis of
a Moseley 2D2 X-Y recorder. Rotation diagrams are
obtained at a fixed field magnitude as the magnet is
rotated about the sample, and the X axis is driven by a
voltage indicating the field direction. In these experi-
ments, the sample is mounted in a supporting probe,
which utilizes a worm gear to tilt the sample in a plane
normal to the plane of rotation of the magnet. This
tilting mechanism, which is similar to those described
by other workers,? is capable of rotating the sample
through an angle of 270°. By a combination of tilting
and magnet rotation, all inequivalent directions of the
mercury stereogram can be investigated for any sample.
Calibration of the tilting mechanism allows the sample
orientation to be set to an accuracy of 0.1°. All the
tilting experiments have been performed for fields up to
11 kG, and at a temperature of 1.2°K. This field is

A D. J. Sellmyer, Rev. Sci. Instr. 38, 434 (1967).
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H Tilt Axis

(b)

Fic. 4. (a) Definition of the Eulerian transformation locating
the position of H with respect to the crystal axes; (b) definition
of the tilt and rotation angles, ¢/ and 6, respectively, for the
geometry used in the tilting experiments.

found to be more than sufficient to achieve the high-
field limit, the minima being only slightly reduced from
those observed at 30 kG with the current axis fixed.

B. Results

Results for three representative samples are pre-
sented here; several general features are common to all.
As expected for a compensated metal, the magneto-
resistance is large for most field directions with a field
dependence of H™, where m=1.92. This slight devia-
tion from quadratic behavior has been observed for
other compensated metals.® A second feature is the
occurrence of minima in the rotation diagrams for the
various samples. When the field positions giving rise to
these features are plotted on a stereogram, it is found
that they all lie on one or another of great circles (one-
dimensional regions) representing planes of the mercury
lattice. Two kinds of dips in the magnetoresistance are
observed: (1) deep, narrow minima with field positions
in low-index planes, either {100}, {110}, or {110}; (2)

TasiLe III. Field dependence of magnetoresistance
for a compensated metal.

Condition Magnetoresistance
I. Closed orbits Ap/p~H?
IT. Open orbits in one direction Ap/p~H? cos’a+ HO sin’a
III. Two nonintersecting bands Ap/p~H"
" of open orbits
IV. Singular field direction Ap/p~H"
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I'16. 5. Plot of the depth of the minimum corresponding to H

along [011] versus the angle between gi00 and the current direc-
tion, for a number of transverse magnetoresistance samples.

less pronounced minima with field positions in higher
index planes, or planes incommensurable with the
crystal lattice.

To discuss the results and their interpretation, it is
convenient to set up a coordinate system within the
mercury lattice and to designate the field positions
where minima occur by means of an Eulerian trans-
formation with respect to this system. Figure 4(a)
shows the axes used: the bisectrix [211], the binary
[0117], and the trigonal [1117]. The normal to the plane
in which the minimum occurs is obtained by rotations
through angles ¢ and 6, respectively, and the field
position in this plane relative to the basal plane is

— @l
[217]
Fic. 6. Stereographic plot of the field positions fiving rise to

minima in the rotation diagrams for a sample with J specified by
$=89° 6= —24° and y=—86°. Open circles indicate positions
of narrow minima, solid circles indicate positions of broad minima.
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measured by ¢. The Eulerian convention used here is
that used by Goldstein,? and for convenience all angles
are defined in the range —90° to +90°. For example,
the minimum occurring when the field lies along [010],
which is in the (100) plane, is designated by ¢=90°,
6=65.80° ¥ =54.63°.

To describe the rotation diagrams, the notation
defined in Fig. 4(b) will be used. The nature of the
experimental geometry is such that one axis of the
crystal remains fixed in the plane of the magnet rota-
tion, while the current direction is tipped from the
vertical to the horizontal. The tilt angle about this
axis is denoted by ¢’ and the field position relative to
the tilt axis is denoted by 6. In order to indicate the
position of the tilt axis for a given sample with respect

(o17) (100)
Tin
Angle , ¥
o
o 4.
&
N °
N 8
<
o
e 12°
o
w
B
It
o °
® 18
[ =4
o
o
s
24°
28°
L 1 |
0 90° 180°

Rotation Angle, 8°

¥16. 7. Rotation diagrams for the sample with J given by
$=89° 0= —24° and y = —86° and with tilt angles ¢/ from 0 to
28°, The zero of each diagram has been shifted for convenience
of reproduction.

to crystal axes, the Eulerian transformation above can
be used, the tilt-axis direction being substituted for
the magnetic-field direction.

Transverse magnetoresistance measurements have
been made on a number of samples, all with current
axes lying in the mirror plane (011). The experimental
geometry for these studies has been arranged so that
the rotation diagram for each sample includes a field
position lying along [0117]. A deep minimum centered

22 Herbert Goldstein, Classical Mechanics (Addison-Wesley
Publishing Co., Inc., Reading, Mass., 1959), pp. 1094,
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about this field direction is observed for each sample,
the depth of the minimum varying with the angle a
between the current axis and the normal to (100) as
shown in Fig. 5. For o near 90° the depth of the mini-
mum is seen to change linearly with cos’x, as expected
if it is due to an open orbit normal to (100). It should
be noted here that the free-electron model predicts the
existence of another set of open orbits, normal to (011),
for this field direction. In this case the magnetoresist-
ance should saturate independently of the value of a
(Table III, condition III). The observed dependence,
shown in Fig. 5, is contradictory to this result and in-
dicates such orbits do not exist.

The results of several of the tilting experiments are
shown in Figs. 6-8. Each stereogram indicates the

(o1m (100)
Tt |
Angle, ¥
a2°
51°
<
~N
QU
< o
60
o
Q
s 64°
®
@
o
o
2
Q
[~
g 80°
=
90°
a 94°
1 L |
0° 90° 180°

Rotation Angle, 8’
Fic. 8. Rotation diagrams for the sample with J given by

6=289° 6= —24° and y=—86° and with tilt angles ¢’ between
42° and 94°.

field positions where minima have been observed, the
locations of representative rotation diagrams, and the
position of the current direction for a given crystal.
The other figures give examples of the rotation diagrams
obtained, with the zero-resistance position of each
diagram shifted for convenience of reproduction. The
crystal corresponding to Fig. 6 is seen to have a current
direction particularly suitable for observing open orbits
whose directions lie along the reciprocal lattice vectors
$100 and goi1. For this sample the tilt axis lies along the
direction given by ¢=_89°, = —24°, and Y= —86°, and
it is common to all the rotation diagrams in Figs. 7 and
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F16. 9. Stereographic plot of the field positions giving rise to
minima in the rotation diagrams for the sample with J specified
by ¢=0° 6=90° and ¢y =76°.

8 for #=0°. The most prominent dip in the magneto-
resistance occurs for H lying in (100) at 6’=90°. This
feature is seen to vanish for = 63°, where it is replaced
by a very broad trough resulting from the approach
to longitudinal magnetoresistance at ¢/=90°. Minima
arising for field positions in (010) and (001) are in-
dicated by the a positions in Figs. 6, 7, and 8. These two
planes intersect at [100] and the deep drop in magneto-

(100) (o17) Tilt Angle, ¢’
| | o
50
10°
o B
< 15
Q
<
< 20°
Q
c
o
k]
‘? 25°
o
o
[
[=4
o
o
= 30°
35°
W
a
c
L | v 1
0° 90° 180°

Rotation Angle, 8°

F1c. 10. Rotation diagrams for the sample with J specified by
¢=0° 6=90° and y=76°.
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F1c. 11. Sterographic plot of the field positions giving rise to
minima in the rotation dlagrams for the sample with J given by
¢=0° 6=0° and ¢y =87

resistance for the field in this position is seen in Fig. 8
for ¢/=90°. That this feature is related to both the
planes is illustrated by the rotation diagram for y/=94°,
where the minimum has split into two parts correspond-
ing to the field crossing (010) and (001) separately.
Since a=155° for these orbits, their associated minima
are not as deep as for (100).

A prominent, but shallow, set of minima is observed
at the position b in Figs. 6 and 7. These dips arise from
the field lying in (210) and vanish for y'=20°. A similar
set occurs at the position ¢, but in this case additional
structure is seen for y/>4°. The reason for this behavior
is seen by inspection of Fig. 6, where it is shown that
for these tilt angles the plane of the field rotation
intersects (201) and (110) at positions having only
slightly different rotation angles §’. The appearance of
the sharp structure on the right side of these features
in Fig. 7 is attributed to the excitation of open orbits
along [1107, for which a=69°, while the broader por-
tion of these minima is associated with the field lying
in (201). It should be noted that the selection of tilt
axis for this sample does not allow the field to be oriented
arbitrarily in either (210) or (201). However, those
directions not investigated in (210) are covered by
sweeps through the equivalent plane, (201), so that
the minima at b form a continuation of those observed
at ¢. The features at b and ¢ illustrate the distinction
made between the open and solid circles in the stereo-
grams of Figs. 6, 9, and 11. The dips associated with
the open circles are quite sharp and sometimes deep,
while those associated with the solid circles are much
broader and shallower.

1t will be noted from Fig. 6 that the plane of field
rotation intersects (011) only over a limited range due
to the selection of tilt axis for this sample. Thus,
although the current direction is favorable for observing
orbits normal to this plane, a set of minima for these

M. DISHMAN AND 7J.
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orbits are not seen in the diagrams shown. Their effect
is seen only for ¢’=90°, in which case the field is rotated
very nearly in (011) giving rise to the very broad and
deep depression near 6’=180°. Its breadth gives an
indication of the extent over which open orbits exist
in (011). They are more precisely observed in the
crystal studied in Figs. 9 and 10.

The mirror symmetry of the diagrams shown in Fig.
10 about the positions §’=0° and 6’=90° results from
the fact that the current axis for this sample lies pre-
cisely in the mirror plane, and the experimental
geometry is such that each rotation diagram corresponds
to the field being rotated in a plane normal to (011).
For this sample the tilt axis lies along [011], and is
common to each rotation diagram, producing the mini-
mum for §’=0° This feature is attributed to open
orbits normal to (100) for which a= 52°, thus explaining
its small depth.

A prominent set of minima in this sample is seen to
arise for the field in (011) with 8’=90°. These depres-
sions vanish for ¢'=4° and y'=30°, the cutoff in the
latter position being quite sharp Wlth the minimum
replaced by a local maximum. The cutoff in the other
position is more gradual and a vestige of the minimum
remains, as shown in the diagram for ¢'=0°. Approxi-
mately 15° on either side of this feature are observed
small, subsidiary dips, which become more prominent
as the (011) minima vanish. They are quite well
resolved for ¢'=0° and they seem to form the shoulder

(100) (ol1)
Tilt
Angle, ¥
15°
20°
< 25°
o
<
Q
4 o
. 30
Q
Q
c
S 35°
w
‘@
2
2 40°
[}
c
S 45°
= .
50°
1 11
a b ¢
! 1 ]
0° 90° 180°

Rotation Angle, 6°

F16. 12. Rotation dlagrams for the samp]e havmg J given by
$=0° 6=0° and y=87
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Fic. 13. Summary of field positions giving rise to minima for
all samples measured. Solid lines indicate the positions of narrow
minima, dashed lines indicate the positions of broad minima.

of the minima labeled ¢ in Fig. 10. These depressions
and their mirror images arise for the field in (010) and
(001); for open orbits normal to these planes, a=57°.

Troughs arising for the field in the other mirror
planes of the sample are shown at position ¢ and its
mirror image. As for the previous sample, these minima
seem to be composed of a deep part and a broad
shoulder. The latter is resolved into a separate mini-
mum when the mirror-plane minima have been cut off,
as indicated by position & for tilt angles ¢'=25°, 30°,
and 35° and it appears for field positions lying very
close to (125).

Figures 11 and 12 indicate the data obtained for a
sample with current axis very close to [011]. As com-
pared to the other samples, the rotation diagrams show
less structure owing to the fact that « is favorable only
for observing orbits with the field in (100) and (011).
The set of minima arising from field positions in (011)
are indicated by position 4 in Fig. 12. These minima are
quite narrow and deep, but there is difficulty in de-
ciding for which tilt angle they vanish. The depression
for y/=35° is quite pronounced, while for ¢'=40° it
has broadened considerably ; yet even for /= 50° some
sort of minimum still appears for H in (011).

The features at position ¢ arise for field positions in
(001). They are observed only over a small range,
since the current axis is not favorable (a=37°) for
their appearance. Their cutoff aty’=35°is in agreement
with the cutoff positions observed for these minima in
other crystals. The orbits responsible for these minima
are also seen for H lying in (100) at position a. The
splitting of this minimum for y/=35° and the appear-
ance of a shoulder for y/'=40° arises from the field
being swept through (110), which lies very close to
(100) for these tilt angles. These two planes intersect
at [001], and the field in this direction produces the
deep depression observed for y/=45°,
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The field dependence for directions giving rise to the
various minima in the magnetoresistance has been
studied, but the results are rather inconclusive. For
the deep depressions, the magnetoresistance is very low,
and the field dependence can be observed only by
increasing the gain of the nanovoltmeter. When this is
done, the signal-to-noise ratio becomes very low, ob-
scuring the shape of the recorder traces. For some of
the better oriented crystals examined in the transverse
magnetoresistance experiments, it appears that devia-
tion from quadratic behavior begins to occur for the
maximum available fields, i.e., 29 kG. For the singular
field direction, [100], where the current orientation is
not critical for observing saturation, this deviation from
quadratic behavior seems to occur at 11 kG and a
definite inflection point is noted. In this case, however,
there is some difficulty in aligning the field precisely
along [100], so that saturation is never observed. For
the shallower minima investigated, the field dependence
is very nearly quadratic.

A summary of the field positions where minima have
been observed for all the crystals investigated is shown
in Fig. 13. The solid lines in the figure indicate the
positions of the deep minima, while the dashed lines
indicate the location of the less pronounced depressions.
Table IV summarizes the location, angular range, and
cutoff sharpness for the different types. The latter
parameter refers to range over which the minimum
vanishes and its determination involves some arbitrari-
ness, since the depth of the minima for the field in a
given plane decreases quite rapidly over a range of
several degrees near the cutoff position. If it is assumed
that no information can be obtained about the existence
of open orbits for this angular range, then the cutoff

Tasie IV. Angular range of magnetoresistance minima.

Minima,
type Range Cutoff sharpness
{100} ¢=90° +0.2°
0=065.8°
—63.2°<y<63.2°
{011} ¢=0° +0.4°(y=—9.9°)
6=90° +0.2°(¥=16.0°)
—9.9°<y<16.0°
{011} ¢=90° . +0.4°
9=—48.1°
—99.6°<y< —80.4°
{102} ¢=0°
9=352.1°
—32.2°<y<0°
a $=0°
0=063°
—39°<y<0°
b »=84°
0=—33°
62°<y<85°
c $=10°
6=80°
0°<y<29°
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F1c. 14. (a) View of the repeated zone scheme with the (100)
zone faces parallel to the plane of the figure. Line S’S’ shows the
position of an orbit plane normal to both the plane of the figure
and to H. (b) Section S”S’ of the repeated zone scheme showing
fifth-order open orbit for free-electron model.

sharpness is just equal to the range itself. It is on the
order of 4° for the four cutoff positions in {100}, {011},
and {011}. On the other hand, if it is assumed that
open orbits still exist throughout the range of rapid
decrease of the minima depth, then the cutoff sharpness
is on the order of 1°. The latter assumption has been
made in obtaining the numbers in Table IV.

The data reported here are in general agreement with
that obtained by Datars and Dixon. Well-resolved
minima, not previously reported, are observed in {102}
and in the regions ¢ and ¢ of Fig. 13. The region b would
appear to correspond to the minima which they have
observed in {213}. This set was not well resolved in
the experiments reported here, and the features were
so broad that they could not be assigned definitely to
{213} planes. The set of minima corresponding to ¢
seem to lie in planes incommensurable with the crystal
lattice. They are well resolved, particularly in the
sample of Fig. 6 and would appear to be connected
with the discontinuity observed in the dHvA data for
these field directions.! A number of small depressions,
not shown in Fig. 13, are plotted as solid circles in
Fig. 9. Their positions compare favorably with the
subsidary minima shown by Datars and Dixon. For
both experiments the angular ranges observed for the
three principal types of minima in {100}, {110}, and
{110} agree to within the combined error. The un-
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certainty in these ranges is larger for their measure-
ments than those given here, but this may be due at
least in part to the interpretation of the cutoff point.
The major differences between their work and that
reported here lie in the interpretation of some of the
observed minima, as will shortly become apparent.

IV. OPEN-ORBIT CALCULATION

To interpret the magnetoresistance data further, a
search must be carried out to locate all possible open
orbits, their type and angular extent for each model
of the mercury Fermi surface. This investigation can
best be carried out by means of a digital computer. The
qualitative method of the computer search program
and the results for several models are discussed below.

A. Open-Orbit Search Method

Even in the absence of a simple model for the first
zone sheet of the mercury Fermi surface, it is apparent
that whatever its detailed shape, it will be based upon
a framework of Brillouin zones constructed in the re-
peated or periodic zone schemes,? i.e., where the zones
are stacked together in a regular array, filling all of k
space. Each zone in this scheme contains an identical
portion of the Fermi surface, the latter being connected
from zone to zone by the contact regions on the zone
faces. It is the relation of these contact regions on the
various zone faces in the repeated zone scheme that is
the primary factor determining the existence of open
orbits. To a first approximation, it does not matter
how the carrier moves within a zone, but only if it
can travel from one zone to another without returning
to its starting point. If it can do this while remaining
in a single orbit plane, then an open orbit exists for a
field direction normal to this plane.

The manner in which the open-orbit search program
functions can be explained most easily with the help
of Fig. 14. For a given field direction, 200 possible orbit
planes equally spaced across the width of one Brillouin
zone are considered. One such plane, normal to the plane
of the page, is shown in Figure 14(a) by the line S".5".
The coordinates of H normal to this plane are ¢=90°,
6=165.80° ¥=63°, the intersection of this plane with
the zones of the repeated zone scheme being shown in
Fig. 14(b). The origin of k space is taken to lie at the
center of one of the zones, labeled (000) in the figure.
For each of the 14 faces of the zone a simple shape is
assumed for the contact region on that face. The search
program then finds the simultaneous solution (possibly
imaginary) between the equation representing the shape
of the contact region and the equation of the orbit
plane. Real solutions represent the intersections of the
orbit plane and the contact region; for example, in the
(000) zone of Fig. 14 there are eight such intersection
points. One of these points, say 7, is taken to be the
starting point of the orbit tracing. Since this point lies
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on the (001) face of zone (000), the carrier will exit
across this face and enter zone (001). Now the solutions
for the orbit plane and the 14 faces of this zone are
found, in this case there being four intersection points.
The program finds that point 3’ corresponds to point 7,
and is thus the entrance point. To find the exit point
it investigates the angular relation of point 3’ to the
other intersection points. Since there are more than
two intersection points, it knows that 2’ cannot be the
exit point, since it lies on the same face as 3'; therefore,
the exit point is 4’. This point lies on the (010) face
of zone (001), and hence the carrier exits across this
face into zone (011). Here, there are only two inter-
section points, so the carrier returns to the (001) zone
across the (010) face. As each exit point is found, the
program asks if it is the starting point (point 7). If
the answer is in the affirmative, then a closed orbit has
been found; otherwise the process continues until
twelve zones have been traversed. In the example
shown, the orbit would be traced until it reached the
(211) zone. If point 2 had been the starting point, the
indicated closed orbit would have been found after
four traverses. Although Fig. 14(b) indicates schemati-
cally the path of the orbit by means of the arcs shown,
it should be pointed out that the search program con-
siders only the coordinates of points on the zone faces.
No intermediate points inside the zone are used. As
the orbit is traced in this fashion, various information
concerning its approximate arc length and direction
is printed out.

Two major assumptions made by the search program
should be mentioned. First, for simplicity, it is assumed
that the contact regions on the zone faces are elliptically
shaped. This allows the contact to be described in a
simple way mathematically, and introduces a small
number of parameters to describe the dimensions of
these regions, namely, the semimajor and semiminor
axes of the ellipses. Symmetry considerations require
that the contact areas on the 4 and T faces be circles.
Thus the total number of parameters needed to de-
scribe the contact is four, viz., the radii of the circles
on the 4 and T faces, designated 74 and 77, respectively,
and the two axes of the ellipse on the B face. The
intercept of this ellipse along the symmetry line XK
will be denoted by ep, and the intercept along the
symmetry line XU will be denoted by b5 (see Fig. 20
for the symmetry points of the mercury Brillouin zone).
This assumption of elliptically shaped contact regions
is supported by the shape of these areas for the RAPW
and pseudopotential models.

The second assumption made concerns the con-
nectivity of the Fermi surface from zone to zone. Since
the program does not consider the topology of the
surface within each zone, but only uses the size and
shape of the contact regions on the zone faces, it is
being tacitly assumed that the surface is connected
from one zone to the next like two intersecting spheres.
In actuality the surface is distorted by the lattice
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F1c. 15. (a) Section through the center of the Brillouin zone
and normal to [0117. Solid curves indicate hypothetical Fermi
surface with necks; dashed lines indicate hypothetical Fermi sur-
face connected like intersecting spheres. (b) Extended closed orbits
for surface without necks. (c) Open orbits for surface with necks.

potential near the zone faces, so that it is connected
from zone to zone by small necks. The existence of
necks means that certain regions of the surface have
negative curvature, and thus the carrier whose orbit
plane intersects the contact region may not exit through
the region, but may simply reverse its direction. This
effect is illustrated in Fig. 15, which shows a section
through the center of the Brillouin zone normal to [011].
In the figure the dashed lines indicate the cross section of
a spherically shaped surface, while the solid lines repre-
sent a surface with necks, which have been exaggerated
in size to show the different behavior more clearly. The
orbit plane shown is normal to H with coordinates
¢=0°, 0=90°, y=16°, the effect of necks on the cutoff
of open orbits being greatest for this field direction.
Figure 15(b) shows the closed orbits in the orbit plane
for the case of no necks. Since the plane intersects the
breakthrough region on the 7" face, the carriers may
exit across this face and can thus fold back upon their
starting point, creating closed trajectories. When the
necks are present, as in Fig. 15(c), the negative curva-
ture of the surface near the T face allows the carriers
to reverse their direction within the zone without
exiting across the face. Thus the extended closed orbits
of Fig. 15(b) are connected together, giving rise to
secondary open orbits along [011]. In the present
instance, the search program would erroneously con-
clude that no open orbits exist for this orbit plane.
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(c)

Fic. 16. (a) View of Brillouin zone with (011) face parallel to
plane of the figure, showing positions of orbit planes SS" and 77"
normal to [100]. (b) Section T'7” showing closed hole orbits. (c)
Section 557 showing closed electron orbits on first-zone hole

surface.

Clearly, the factor determining the success of the search
program in finding open orbits correctly is the length
of the necks as measured normal to the zone faces. For
the models considered previously these neck structures
appear to be quite small, particularly for the RAPW
model. The important consideration is the extent to
which these necks affect the cutoff angle for the open
orbits found by the search program. For the exaggerated
surface shown in Fig. 15, the actual cutoff angle is 8°
larger than that found by the search program. For the
dHvA model surface, the difference is on the order of
1°. For the other cutoff positions the differences are
somewhat less than this, owing to the obliqueness with
which the orbit plane intersects the contact regions.

B. Free-Electron Open Orbits

As a starting point for understanding the type and
order of open orbits that may exist on the mercury
Fermi surface, it is convenient to consider the free-
electron model. It is to be expected that this model will

TaBLE V. Angular range of open orbits for free
electron and RAPW models.

?,?ﬁﬁ' Extent of open orbit

type Free electron RAPW

{100} —90°<y<90° —49°<y<49°

{011} —21°<y<42° —10°<y <30°
54°<y<69°

{102} —57°<y<66° None
78°<y<90°
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serve as an upper bound on the number of possible open
orbits, since there is no breakthrough on the B and T
faces to limit their existence. Such seems to be the case,
since for practically every field direction investigated,
orbits extending through more than twelve zones are
observed at some position on the Fermi surface. For
some directions periodic open orbits up to order five
are observed, while for others, closed orbits extending
through 78 zones are seen. The major usefulness of the
free-electron model is the understanding of the kinds
of open orbits that may exist in regions of the stereo-
gram where the magnetoresistance minima vanish. By
studying these orbits, it may be learned what modifica-
tions must be made in order to obtain agreement with
the magnetoresistance data. Table V gives information
about the kinds of open orbits observed in the experi-
mentally interesting crystal planes: {100}, {110},
and {102}.

An especially useful example of the information
gained from consideration of the free-electron model
is seen in the {100} planes. Of particular interest is
the intersection of (010), (001), and (011) at the [100]
(real lattice) direction. Along this axis Datars and
Dixon® indicate that the magnetoresistance should
saturate independent of @, due to the fact that there
are two nonintersecting bands of open orbits along (010)
and (001) (Table III, case III). Contrary to this find-
ing, the open-orbit search program finds that all three
bands of orbits intersect at [1007] to form only closed
orbits. In fact, for a certain range of orbit planes normal
to [100], it finds that only closed electron orbits on
the hole sheet are allowed. This situation is illustrated
in Fig. 16, where two cross sections of a model Fermi
surface are considered. This, then, is an example of
geometric discompensation analogous to the (100)
directions in copper; under these conditions the
magnetoresistance also saturates independent of «
(Table III, case IV). It is found that no open orbits
can be created for the field along (100) simply by
modifying the free-electron model to include break-
through on the B and T faces. Therefore, for all models
of the mercury Fermi surface under consideration, only
closed orbits will exist for H along {100). However, since
the magnetoresistance is found experimentally to
saturate for the field in this direction, a major con-
straint on all models to be investigated is that they
exhibit geometric discompensation at (100).

C. RAPW Open Orbits

As seen in Table V, the range of open orbits is greatly
attenuated by the additional breakthrough regions in
the RAPW model. It is found that the most important
factor in limiting open orbits is the increased 4-face
breakthrough and its appearance on the edges of the B
faces. In the free-electron model all open orbits make
use of the A-face contact regions to traverse from zone
to zone. Thus it is not surprising that when part of
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Fi6. 17. (a) View of Brillouin zone normal to (011) face showing
positions of bands of free-electron secondary open orbits. (b)
Free-electron secondary open orbit along goi. The numbered
sections correspond to positions shown in (a). (c) Positions of
RAPW tertiary open orbit shown in (d).

this contract boundary is transferred to the B faces,
the free-electron orbits are curtailed. The search pro-
gram also finds that the introduction of contact on the
B and T faces does not create additional open orbits,
but instead interferes with existing ones. In addition,
extended orbits and higher-order open orbits, seen in
the free-electron model, do not appear in the RAPW
model. Most important, however, is the fact that the
RAPW model, under the approximations of the search
program, does not agree well with the magnetoresistance
results. Open orbits do not exist over a large enough
range in {100} planes, while on the other hand, they
extend over too great a range in {011} planes. The
RAPW model does satisfy the condition necessary to
allow (100) to be singular field directions. It is found
that there is a small band of closed electron orbits on
the hole surface for H in these directions, the width of
this band being less than 19, of the Brillouin zone
width.

Several comments should be made concerning open
orbits normal to {011} and {123} planes postulated by
Datars and Dixon® on a modified RAPW model. On
such a model they find a secondary open orbit normal
to (011) for the field along [100]. As has been pointed
out, no such orbit can exist, since [100] is a singular
field direction. For the field rotated slightly away from
[100] in the (011) plane, a secondary orbit such as the
one postulated does exist on the free-electron model, as
can be seen from Fig. 17(b). This open orbit depends
for its existence upon finding sections of the surface
between the breakthrough regions on the (100) and

TOPOLOGY OF

CRYSTALLINE Hg 739
(001) faces. The existence of such regions allows a
carrier to enter on the (001) face, orbit on a plane inside
the zone without intersecting any other breakthrough
regions, and then exit on the (010) face. No such sec-
tions can be found for an RAPW-type Fermi surface,
since the breakthrough regions on (100) and (001) are
connected at the intersection of the two faces, allowing
only closed orbits to be produced. Although these
secondary orbits are not allowed on the RAPW surface,
a band of ternary open orbits is found, as shown in
Fig. 17(d); their current direction in k space is normal
to (011). In addition, the search program does not find
the orbits shown by Datars and Dixon for the {123}
planes on the free electron or the RAPW model. It
may be that the orbit which they exhibit does not
satisfy the constraint of lying wholly within one plane.

Investigation of the two other theoretical Fermi
surfaces, the dHvA model and the HAA model, show
that they likewise are deficient in explaining the
magnetoresistance data. The dHvA model, like the
RAPW Fermi surface, supports orbits over too great a
range in {011} and over too small a range in {100}. On
the other hand, the HAA model supports very few
open orbits due to the very large regions of contact on
the B faces of the Brillouin zone.

V. MODEL FERMI SURFACE

Studies on copper®?* have shown that detailed
topological information about the Fermi surface can
be derived from studies of the high-field galvano-
magnetic properties. It is not to be expected at this
stage of investigation that such detailed conclusions can
be drawn for mercury, for which the Fermi surface is
considerably more complex. It is interesting neverthe-
less to consider how far the simple elliptical model of
the previous section can be used to interpret the
magnetoresistance data.

A. Breakthrough Regions and Open Orbits

Some indications of the relation between the break-
through regions and the existence of open orbits have
been made previously. It has been shown that certain
breakthrough regions are favorable for the existence of
orbits, i.e., the carriers use these regions to travel from
one zone to the next. Other regions are unfavorable for
the existence of the orbits, i.e., their presence changes
the open orbits into closed ones. The bands of open
orbits are thus determined for a given field direction
by orbit planes normal to the field and just tangent to
these two types of regions. It is convenient to show
the relation between the open orbits and these different
types of regions by means of diagrams, such as those
shown for {011}-type orbits in Fig. 17. Figure 17(a)

% R. V. Coleman, A. J. Funes, J. S. Plaskett, and C. M. Tapp,
Phys. Rev. 133, A521 (1964).

% J. R. Klauder, W. A. Reed, G. F. Brennert, and J. E. Kunzler,
Phys. Rev. 141, 592 (1966).
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F1c. 18. Positions of MAG V open orbits. (a) Tertiary orbits
in (100) near y=63°. (b) Secondary (sections 1 and 2) and
quaternary (sections 3, 4, and 5) orbits in (011) near ¢ =—10°.
(c) Secondary orbits in (011) near y=16°. (d) Quaternary orbits
in (011) near y=280°.

gives a view of the Brillouin zone along the normal to
(011), so that field directions in (011) are represented
by lines in the plane of the figure. Thus the orbit planes
are normal to the plane of the figure, intersecting the
zone in the shaded sections shown. The intersection
of a typical orbit plane lying in section one is shown in
Fig. 17(b) and designated also by the number 1. The
carrier moving on the trajectory shown in this first zone
exits into a second zone, which adjoins the first on
the (010) face. Rather than showing the intersection
of the orbit plane with this second zone in a separate
figure, it is more convenient instead to indicate its
equivalent position in the first zone. Thus, in Fig. 17(a)
sections one and two represent the same set of orbit
planes intersecting adjoining zones in different positions.
This convention will be used in the rest of what follows
to indicate the location of open-orbit planes in the
repeated zone scheme.

The motion of the secondary orbit of Fig. 17(b) can
be simply described using this convention and the
nomenclature introduced previously (see Fig. 14). A
carrier orbiting in zone (000) on a plane in section one,
exits into zone (010) and orbits on a plane in section
two. It then exits this zone into zone (011) and orbits
on a plane in section one. Thus the carrier alternates
from one section to the other as it travles along the
normal to (011), i.e., the plane of Fig. 17(a). The widths
of these sections or bands of open orbits are determined
by the relative positions of the favorable and unfavor-
able breakthrough regions. In the example shown the
favorable regions for section one lie on the (010) and
(001) faces [the latter lies just beneath the former in
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Tig. 17(a)]. The unfavorable regions lie on (100) and
(001), and planes tangent to these regions, normal to
the plane of the figure, determine the limits of open-
orbit existence. As the field is tilted toward [100], i.e.,
counterclockwise in the plane of the figure, this band
of orbits becomes progressively smaller, finally vanish-
ing for the field along [1007]. At this point there exists
a single-orbit plane tangent to both the (100) and the
(001) regions, both of which are unfavorable. Similarly,
if the field is rotated in the other direction, away from
[100], the width of the band vanishes when there exists
a single orbit plane tangent to the (010) region (favor-
able) and the (100) region (unfavorable). In general,
for all types of open orbits observed on the mercury
Fermi surface, the problem of determining the field
directions for which the open orbits vanish depends
upon finding the location of orbit planes just tangent to
both a favorable and an unfavorable breakthrough
region, or to two unfavorable regions.

To determine a model best fitting the magneto-
resistance data, the above considerations have been
applied to the elliptical model for orbit planes normal
to the four field orientations where the deep minima of
the rotation diagrams vanish. The four parameters of
this model have been varied such that the tangency
conditions are satisfied simultaneously at these four
orientations. Such a model is unique in the sense that
no other set of the parameters gives simultaneous cutoff
at the four positions. The sizes of the breakthrough
regions for this model, designated MAG V, are in-
dicated in Fig. 3 and Table II.

B. Empirical Model

A complete derivation of the MAG V model will
not be attempted here. Only the nature of the open
and extended orbits will be discussed, with particular
attention being paid to the relation between surface
topology and cutoff of the open orbits. This relation-
ship is most complicated for the field near cutoff
(¥=63°) in (100), where eight different breakthrough
regions are involved in the determination of the open
orbits. In the free-electron model, three different orders
of orbits normal to (100) exist near cutoff. Introduction
of breakthrough on the B and T faces of the zone, and
enlargement of the A-face breakthrough, reduces the
number of orders involved to one. The resulting ternary
band of orbits on the MAG V surface is indicated in
Fig. 18(a). Breakthrough regions favorable for the
existence of these orbits occur on (100), (100), (010),
and (010). The band is seen to lie on two sections of
the Fermi surface, its width being limited by the un-
favorable region on (001) in section one, and by the
unfavorable region on (011) in section two. This band
vanishes when a- single orbit plane is just tangent to
these two regions for ¥ =63°. Inspection of the model
indicates that first-order open orbits exist only in the
range from ¥ =0° to ¥=>54.63° at which point H is
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along [100]. For y larger than the latter value only the
ternary orbits exist and are responsible for the ob-
served magnetoresistance minima.

The next most complicated situation occurs near
cutoff for ¥=-—10° in (011). Two orders of orbits,
secondary and quaternary, are involved as shown in
Fig. 18(b). The cross-hatched regions in the figure
indicate the positions of the secondary orbits, which are
directed along [011] as indicated by Fig. 15(c). A
carrier in this orbit enters the (001) face and exits on
(010) in section one, and then enters the (010) face of
the adjoining zone in section two, exiting again on
(001) to complete the period of motion. The width of
this band of orbits is limited in section one by unfavor-
able breakthrough regions on (110) and (101), and in
section two by the (011) region.

The unshaded sections three, four, and five in Fig.
18(b) indicate the positions of the quaternary orbits,
which are also along [011]. The motion in this orbit
is similar to the secondary orbit, except that now a
carrier entering the (001) face in section three exits
through the opening in (100) and enters the adjoining
zone on section five. In this zone it can only leave
through the other exit point on (100) and return to
the original zone on section three. The remainder of the
motion resembles the secondary orbit with the carrier
exiting on (010) to the adjoining zone on section four.
The width of the band of quaternary orbits is limited
by the same unfavorable regions as limit the secondary
orbits. Both bands vanish for = —10°, when a single-
orbit plane can be found tangent to the breakthrough
on (110) in one zone and to the breakthrough on (011)
on the zone adjoining the (001) face of the first.

As the field is rotated in (011) from y=-—10° to
¥=16° the width of the quaternary band of orbits
begins to be limited by the breakthrough region on
(010). At the same time, some of these orbits in section
three no longer intersect the (100) breakthrough. Such
orbits cease to travel on section five and become second-
order orbits, circulating on sections three and four.
Eventually this change becomes complete, and the
band of quaternary orbits is replaced by a band of
secondary orbits resembling those in sections one and
two. As the field continues to be rotated [clockwise
in Fig. 18(b)], both sets of secondary orbits become
limited in width by the breakthrough regions on (111)
and (110). This effect is shown for one of these sets
in Fig. 18(c). All the orbits vanish for y=16° when a
single orbit plane can be found tangent to both of
these regions.

For the field lying in (011) only quaternary orbits
exist in the MAG V model, their trajectory being similar
to the ternary orbits shown in Fig. 17(d) for the RAPW
model. In this case, however, the carrier travels from
section three back into section one and then into sec-
tion two, thus making the order of the orbit higher than
in the RAPW model. The positions of the band of
quaternary orbits on the MAG V model are shown in
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F16. 19. (a) View of Brillouin zone along g;0: showing positions
of extended orbit in MAG V model. (b) Extended orbit in MAG V
model. The scale of drawing for both (a) and (b) is equal.

Fig. 18(d). Regions favorable for its existence in sec-
tion one are (001), (010), and (100), while the unfavor-
able regions are (110), (010), and (001). The band
vanishes for ¢=79° when a single orbit plane can be
made tangent to (001) and (110), and for ¥=90°,
when the orbit plane is tangent to both (010) and (001).
At the latter orientation, the field lies along [100],
which as shown previously, must be a singular field
direction. This requirement is satisfied by the MAG V
model; the electron orbits on the hole surface have been
shown previously in Fig. 16.

It is important to determine the over-all uncertainty
in the dimensions for the empirical model. Considering
the experimental error, the assumptions about necks
and the elliptical shape of the breakthrough regions,
it is estimated that dimensions given in Table II for
MAG V are accurate only to within #+5%. In the
pseudopotential fit more importance will thus be given
to fitting the experimental dHvA areas than the
dimensions given here.

C. Extended Orbits

Since it has been shown that the MAG V model ex-
plains the existence and range of deep minima observed
experimentally, it is now interesting to investigate the
regions of the stereogram where the less pronounced
minima occur, i.e., the dashed lines in Fig. 13. When the
parameters of the MAG V model are placed into the
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Fi1G. 20. Symmetry points of the mercury Brillouin zone.

computer search program and these regions investigated,
no open orbits are discovered. What is found instead is a
number of types of extended orbits, an example of which
is shown in Fig. 19. For the field magnitudes used in the
experiments it is estimated that the perimeter of these
orbits in real space is on the order of one or two mean-
free-path lengths. This suggests that the broad, shallow
minima observed experimentally are associated with
these extended orbits, for which the condition w,7~>>1 is
not satisfied. Several criticisms of such an association
can be made, however. When the search program
investigates a region duplicating that where a broad
minimum is observed experimentally, it is found that
the extended orbits exist over a much larger range of
rotation angle, ', than the breadth of the minimum
itself. This may be partially explained by noting that
the character of the extended orbits changes as the
rotation angle changes, so that the effective current
direction for the orbits may be a rapidly varying func-
tion of ¢. For a given J within the sample, only a
fraction of the extended orbits excited as the field is
rotated may have the proper current direction to be
observed. Thus, the minima observed in (102) and (125)
may be due to the same region of extended orbits, but
with different effective current directions.

Another criticism of this association comes from the
fact that the effective current direction for an extended
orbit would be expected to be very dependent upon
the temperature and the magnitude of the field. Thus,
it might be expected that minima due to such orbits
would be quite dependent upon these quantities, which
does not appear to be the case for the broad minima
observed. It is likely that the appearance of these
minima does not have a simple geometrical interpreta-
tion, but depends in a complicated fashion on the
anisotropy of the scattering mechanism as well as the
topology of the Fermi surface. In any case, if it is
assumed that their observation does not demand the
existence of open orbits, then the MAG V model retains
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its validity and can be used as a starting point for the

pseudopotential calculations to be described next.

VI. PSEUDOPOTENTIAL CALCULATION

In order to compare the empirical model with the
results of the dHvA experiments, it is necessary to
calculate the detailed shapes of extremal orbits on the
Fermi surface. Such a determination requires a band-
structure calculation with adjustable parameters giving
a calculated Fermi surface having its breakthrough
dimensions fitted to those of MAG V. Since these
dimensions are not directly observed by experiment
and their uncertainty is relatively large, it appears more
meaningful to place stronger weight on fitting the
dHvA areas. Thus, in the pseudopotential calculation
described here, an attempt has been made to fit only
one of the breakthrough dimensions, while simul-
taneously fitting two extremal areas on the first zone
sheet to the observed dHvA frequencies. The fitting
procedure is similar to that used in the dHVA model,
except that in this case the spin-orbit coupling is in-
cluded explicitly as a third fitting parameter and the
Fermi level is adjusted to mantain charge compensation.

The pseudo wave function for this calculation is taken
to be a linear combination of the eight plane waves
used in the HAA model. These waves are chosen in
order to take into account the fourfold degeneracy of
the free-electron states for the point W at the corner
of the mercury Brillouin zone (see Fig. 20). If the
pseudopotential is assumed to be a local operator,
then matrix elements of the form (k+g'|W|k+g)
depend only upon the wave vector, G, where G=g'— g,
and these matrix elements may be designated by the
notation, Wg. For the eight plane waves used in this
calculation, three matrix elements are seen to be in-
volved, namely, Woo1, Wou1, and Win. As has been
done in the dHvA model, it will be assumed that
W 110=W 111, since the magnitudes of gi10 and gi11 are
equal to within $9%,.

Inclusion of spin-orbit coupling in the problem can
be made in several ways.2528 In this case we use the
formulation given by Animalu,'® who has shown that
the matrix elements of the total pseudopotential, Wy,
may be expressed in the form

(k+g, X' |Wr|k+8g, X)=(k+g | W|k+8)dx,x
+k+g, X' |Wsolk+g,x). (1)

Here X refers to the spin state, W is the usual pseudo-
potential without spin, and W so is the spin-orbit term.
Matrix elements of W go are found to be of the form

(k+g', X' |Wso|k+8, X)
=(x'|is- (k+8)X (k+g)q|x), (2)

% J, R. Anderson and A. V. Gold, Phys. Rev. 139, A1429 (1965).
26 Gideon Weisz, Phys. Rev. 149, 504 (1966).

27 1,, M. Falicov and Stuart Golin, Phys. Rev. 137, A871 (1965).
28 D, Brust, Phys. Rev. 134, A1337 (1964).
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where

g=24r(M—N)q1
+ (8r/QG*)\oR | k+¢'||k+8| j2(GRu), (3)

and

1RM
q1=—/ (kg ) kkglrdr. @)
QJo

In these equations, A\; and A, represent the strength of
spin-orbit coupling from p and d states, respectively,
while Ry is related to the radius of the inner core and
for mercury has the value Ry =2.6 a.u. It is seen that
the spin-orbit part of the potential is k-dependent
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through the cross-product factor and the spherical
Bessel functions. In what follows it will be con-
venient to write the spin-orbit matrix elements in
the form

(k+¢', X' |Wso|k+8, X)=(X'|ie-Q(g",0)|X). (5)

With this expression for the matrix elements, the
Hamiltonian matrix to be diagonalized can be written as

W[4

The matrices 4 and B are given by

k|2 Woor+1Q2t Won4iQ22 Win+iQ.03
A= Woo1— Q.2 |k+gonr|? Woor+iQad? Won+iQ,!?
Wou—iQ2?  Wopr—iQ.? | k+8u1|? WoatiQ23|’
Wi1—1Q:"* Wonu—iQ:1? Won—iQ23 | k481112 o
( 0 100140, 01 10024002 0034008
B |- 001,01 0 T EER S LR SRR
T —i002—Q,0 —iQ12—(Q,1 0 10.2340,23|
—iQIB— Q08 —iQ Q18 —iQ28— (028 0

where the coordinate axes are defined by Fig. 4(a).
In specifying the components of Q(g’,g) it has been
convenient to designate 8000, So01, So11, and gy11 as 0,1,
2, 3, and to set Q,(8oo1,8011)=0Q."? for example. To
calculate E(k) the Hamiltonian matrix has been
diagonalized using standard computer techniques; for
each k vector there are four doubly degenerate eigen-
values as required by time-reversal symmetry. For a
given set of the three fitting parameters Woo1, Wou,
and A (A2=0), extremal orbits on the Fermi surface
are found by a simple search procedure that brackets
the Fermi energy, and then finds the magnitude of the
k vector on the Fermi surface in a given direction by
interpolation. To ensure that the Fermi surface found
by this procedure is compensated, the Fermi level is
adjusted for every set of the fitting parameters using
the method of Harrison.®® This method takes into
account the distortion of the free-electron sphere due
to Woo1 and Woy. The spin-orbit parameter also affects
the compensation, but the resulting shift in energy
cannot be simply expressed in closed form. Con-
sequently, it has not been included in the determina-
tion of the Fermi level; it is estimated that neglect of
this effect causes a lack of compensation of less than 1.

The breakthrough dimension most sensitive to shifts
in the Fermi level is the intercept along XK, i.e., the
parameter ap in the MAG V model. Since the area of
the orbit depends critically on this dimension, it is
advantageous to hold it fixed at the value determined
by MAG V while varying the fitting parameters to
obtain agreement with the dHvA frequencies. The
extremal areas investigated are those of the 8 and r
orbits on the first-zone surface (see Fig. 2) and the a

orbit on the second-zone surface. The latter orbit
corresponds to the minimum cross section of the disk
on the (100) zone face, i.e., its area is calculated for H
along [0117. For the 8 orbit the area is computed for
the field along [100], while the area of the 7 orbit
corresponds to H along [011].

Several schemes have been used to fit pseudopotential
coefficients to experimental information on metallic
Fermi surfaces.?2® Previous work on mercury! has
shown that it is not possible to fit all the experimental
dHvA frequencies simultaneously to within the accuracy
of the measurements (29%,) using only two parameters.
It is not to be expected that the inclusion of an addi-
tional fitting parameter will make a fit possible in the
present instance, particularly with the additional con-
straints on compensation and the value of the break-
through dimension along XK. The approach taken here
is one of investigating a large portion of parameter-
space to find regions giving reasonable agreement be-
tween the dHvA and magnetoresistance experiments.
The search for these regions has been carried out for
various fixed values of Ay, while observing the variation
of the extremal areas as a function of Wy and Woys.
The model potential of Animalu includes an additional
spin-orbit parameter X\, for the d-wave interaction
[see Eq. (3)]. Preliminary investigations indicate that
its effect on the Fermi surface is small, and it has thus
been set to zero for convenience. The signs of the
pseudopotential coefficients have been taken to agree
with the theoretical values determined by Animalu
and Heine,*®:15 for which W01 <0, and W11, \1>0. To
keep ep at its proper value and the area of the 8 orbit
within 29, of its experimental value, it is found that
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TaBLE VI. Pseudopotential coefficients (in Ry).

Model Wioo Wi Wi AL

dHvA —0.066 0.047 0.047 0.00
HAA —0.025 0.065 0.065 0.10
8§ PW —0.018 0.028 0.028 0.16

Woor cannot be taken less than —0.062 Ry. With this
constraint satisfied, an exact fit to the area of the 3
orbit and to e¢p can be found for every value of A; with
Wou in the range 0024_<_ Woug 0.045 Ry

With the assumption that the optimum values for the
coefficients lie in this region of parameter space, the final
fit is determined by the areas of the « and 7 orbits. It is
found that the o orbit is essentially insensitive to \y,
depending most strongly on the value of W ;. This be-
havior is to be expected since the second-zone surface
exists only on {001} faces. The = orbit, however,
depends strongly on all the parameters, since it exists
on a portion of the surface involving all three types of
zone faces. For most values of the fitting parameters
in the above range it is found that the area of the «
orbit is larger, and the area of the 7 orbit smaller, than
the experimental values, as is the case for both the
RAPW and dHvA models. By letting Wo lie outside
the range given above, the @ orbit may be fitted ex-
actly for Woo=—0.074 Ry. It is impossible, however,
to obtain a simultaneous fit of the o and 8 orbits with
the constraint on the dimension ap. The best fit for
the @ orbit with the parameters in the above range is
obtained for A;=0, with W and Wy taking on the
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values used for the dHvA model (see Table VI), in
which case the area is 129, larger than the experimental
value. Such a result seems to imply that the third
fitting parameter is ineffective for the second-zone
sheet. Since the parameter \; is a relativistic one, this
situation is not too surprising because the RAPW also
cannot fit this area to better than 16%,. The second-
zone surface extends some distance into the second
zone and it is possible that it is more strongly influenced
by higher-order plane waves than the first-zone surface.
Inclusion of these additional states may allow a simul-
taneous fit to the Fermi-surface dimensions in both
zones.

The introduction of the spin-orbit coefficient does
improve agreement between the calculated and experi-
mental areas for the 7 orbits. With \;=0 and the other
coefficients taking on the values used to produce the
dHvA model, the area of the 7 orbit is 289, smaller
than the experimental quantity. This discrepancy
diminishes as A\ is increased in magnitude, the other
parameters being chosen to give an exact fit to the area
of the B orbit and ap. On the other hand, the difference
between the computed and experimental areas of the
a orbit becomes larger. The best compromise occurs
when X\=0.030 Ry, with Wy =—0.062 Ry and
W11=0.042 Ry, in which case there is a 209, error in
both areas. It is perhaps more meaningful to attempt
to fit only the features of the first-zone surface and to
omit further consideration of the « orbits. In this case
it is possible to obtain simultaneously an exact fit for
the areas of the 8 and 7 orbits and the dimension az
with the coefficients in the following range: —0.030
<Wn<—0.015 Ry, 0.0266<W;;<0.0277 Ry, and
0.156<1;<0.159 Ry. For values of \, greater than this
upper bound, it is found that Wy, must be taken to be
quite small in order to fit the 8 orbit. When this is done
the Fermi surface no longer contacts the 7' face, and
thus the 7 orbits are destroyed. The final values of the
fitting parameters (see Table VI) are taken to be those
lying in the above range and giving the best fit to the
remainder of the dimensions of the MAG V surface.

Energy bands calculated for the final set of pseudo-
potential coefficients are shown in Fig. 21. Although
they bear some resemblance to the RAPW bands, it is
not possible to obtain similar Fermi surfaces for the
two models by simply shifting the position of the Fermi
level. To obtain a compensated surface for the pseudo-
potential bands, the Fermi level must be taken at a
value of 0.522 Ry, only slightly lower than the free-
electron value. This produces a model Fermi surface
(designated 8 PW) which is topologically equivalent
to those discussed in Sec. II. The breakthrough dimen-
sions calculated for this surface are given in Table II,
and the extremal areas are listed in Table VII. It is
seen that the dimensions & and 7y for the 8-PW model
are substantially smaller than those for MAG V, and do
not lie within the error limits necessary to give the
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proper cutoff for the observed open orbits. This is not
too surprising, since the fitting procedure places stronger
weight on obtaining agreement with the dHvA areas.
It is likely that the introduction of additional plane
waves, and thus additional pseudopotential coefficients,
would allow an improved fit to all the first-zone dimen-
sions and extremal areas. In the second zone the com-
puted dimensions for the disk are: 0.44 A~ along g10o,
1.28 A~ along [0117]. These values are larger than the
experimental lengths measured by the magnetoacoustic
effect??: 0.36 A—! along g100, and 1.13 A~ along [0117].
This discrepancy is to be expected because of the poor
fit to the a orbit for the 8-PW model. Finally it should
be noted that definite neck regions exist on the 8-PW
surface, but they are small enough that the assumptions
of the open-orbit search program are valid to within
the approximations used. Note added in proof. It now
appears likely that the failure of the 8-PW model is due
to its neglect of the proximity of the 54 band relative
to the conduction band (see Ref. 6). This effect could
be taken into account by using a nonlocal pseudo-
potential similar to that employed by Stark and Falicov
in their fits to the Fermi surfaces of zinc and cadmium
[see Phys. Rev. Letters 19, 795 (1967)].

The large value for A; found in the eight-plane-wave
fit does seem to indicate that relativistic effects are
important in crystalline mercury. As in the case of lead,
the empirical value for A\; is substantially larger than
the theoretical value calculated by Animalu. With the
large discrepancy in the second zone, however, the
fitting coefficients must be regarded only as convenient
parameters for describing the shape of the first-zone
sheet, and probably no deeper theoretical meaning
should be ascribed to them.

VII. CONCLUSIONS

The results of these investigations indicate that
mercury is a compensated metal with a two-sheet
Fermi surface, consisting of disk-shaped elements in
the second zone and an open, multiply connected sur-

% T. E. Bogle, C. G. Grenier, and J. M. Reynolds, Bull. Am.
Phys. Soc. 12, 183 (1967).
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TaBLE VII. Comparison of extremal areas for model Fermi sur-
faces with experimental dHvVA areas.

Extremal area (A7)

Model a B T
Experimental 0.305 0.070 0.151
dHvA—3 PW 0.344 0.070 0.107
RAPW 0.354 0.070 0.132
8 PW 0.423 0.070 0.151

face in the first zone. The latter contacts all faces of
the fundamental Brillouin zone, and a unique model
of these contact regions can be derived from the
magnetoresistance data. Calculations of the energy
bands using the pseudopotential method also give rise
to a Fermi surface with the same general features. It is
not possible, however, to obtain a detailed fit to all
the dimension of the contact regions deduced from the
magnetoresistance data, nor to the extremal area ob-
served in the dHvVA measurements. Further theoretical
calculations are needed to improve the fit and to resolve
the discrepancy between the dimensions of the first-
and second-zone surfaces.

Since the dimensions of the Fermi surface deduced
from the magnetoresistance measurements are deter-
mined indirectly, additional experiments, such as the
magnetoacoustic effect or the Gantamakher size effect,
are needed to obtain primary determination of these
quantities. Measurements of the other galvanomagnetic
coefficients, particularly along the singular field direc-
tion and in higher magnetic fields, can furnish additional
geometrical information about the Fermi surface and
perhaps explain the origin of the shallow minima ob-
served in the magnetoresistance rotation diagrams.
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