
PHYSICAL REVI EW VOLUME 166, NUMBER 1 5 FEBRUARY 1968

Effect of a Long-Range Potential on Compound States in the
(e,H) System*

JosEPH C. Y. CHEN

Department of Physics and Institute for Pure and Applied Physical Sciences,
University of California, San Diego, La Jolla, California

MANUEL ROTENBERG

Departrrtertt of A pplied Electrophysics and Iestitsste for Pere aid A pplied Physical Sciertces,
University of California, San Diego, La Jolla, California

{Received 13 July 1967)

A simple five-parameter wave function is constructed and the positions and widths of the lowest two

compound states of the (e,H) system are calculated for both singlet and triplet spin multiplicities with zero
total angular momentum. Very good agreement with previous calculations using more elaborate trial func-
tions is obtained because particular attention is paid to the asymptotic form of the wave function. A method

adopted from the double-perturbation theory for the systematic improvement of the calculation of widths
and shifts of compound states is presented in an Appendix.

I. INTRODUCTION

A NUMBER of variational calculations have re-

cently been carried out for compound-state level
positions in simple electron-atom scattering systems
such as the (e,H) and (e,He+) systems. In these cal-
culations large numbers of variational parameters' ' or
configuration interactions' were used. It is the purpose of
this paper to show that with appropriate allowance for
the physically required long-range effect for the com-

pound states, a simple variational wave function may be
constructed. 4 Such a wave function constructed for the
compound states in the (e,H) system with only five pa-
rameters is capable of yielding values which are compar-
able to previous variational results for the lowest com-

pound state in each symmetry and lower than previous
variational results for higher members of the triplet
series.

In the next section the long-range e6ect in H com-

pound states is discussed. A simple orbital wave func-
tion which incorporates explicitly the long-range e6ect
is constructed for the projectile electron. A variational
calculation is carried out using a simple five-parameter
trial wave function obtained in terms of these orbitals.
The procedure of our calculation is presented in Sec.
III, where the explicit functional form of the trial wave
function is given. Utilizing the optimal wave functions,
the widths of the states are calculated. Results of the
calculation are presented in Sec.tILIV in which a com-

parison with other variational and close-coupling calcu-
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Projects Agency (Project DEFENDER) and was monitored by
the U. S. Army Research Once (Durham) under Contract No.
DA-31-124-ARO-D-257.
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lations is made. Finally, in the Appendix, we show that
having obtained such a variational quasistationary
wave function, a systematic improvement of the calcu-
lation of level width, as well as level shift, can be car-
ried out using a mell-known stationary-perturbation
method. '

II. LONG-RANGE EFFECT

It has been shown by Gailitis and Damburg that in
the (e,H) scattering system, the interaction between the
projectile electron and the degenerate n=2 levels of
hydrogen at large distances is an attractive r ' long-
range potential. This interaction potential can be ob-
tained by asymptotically decoupling the coupled equa-
tion for the projectile electron in the 2s and 2p degen-
erate field. '7 Thus, asymptotically, one has, for the
projectile electron, the simple equation

(d'/dr'+ha' —X(X+1)/r') $a(r) =0, (2.1)

where k is the wave number of the projectile electron,
X(X+1)=1—+37 is a negative quantity which mea-
sures the interaction strength of the r ' potential tail.
Such a potential is capable of supporting an infinite
number of bound states provided the potential close to
the proton is not too singular. ' The details of the po-
tential in the interior region do not play an important
role' "in determining level positions of higher members
(n) 0) in the compound-state series just below the I=2
excitation threshold.

'A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London)
A238, 269 (1965); A247, 245 (1958). For a recent review see J.O.
Hirschfelder, W. B. Brown, and S. T. Epstein, in Advances in
Quantum Chemistry, edited by P.-O. Lowdin (Academic Press
Inc, , New York, 1964), p. 255.

6 M. Gailitis and R. Damburg, Proc. Phys. Soc. (London) 82,
192 (1963).The decoupling of the 2s-2P equations was first done
by M. J. Seaton )Proc. Phys. Soc. (London) 77, 174 (1961)j in a
different context.

7 J. C. Y. Chen, J. Math. Phys. 6, 2723 (1965).'L. D. Landau and E. M. Lipshitz, Quantum Mechanics
(Addison-Wesley Publishing Co., Inc. , Reading, Mass. , 1958).' J. C. Y. Chen, Phys. Rev. 156, 150 (1967).

"A. Temkin and J. F. Walker, Phys. Rev. 140, A2520 (1965).
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The physical situation becomes more apparent if one
examines the extent of delocalization of the solution of
Eq. (2.1). The solutions of Eq. (2.1) which satisfy the
bound-state exponential-decay boundary condition at
infinity are the Hankel function of the first kind,

2~~ xp/2

ro, the exponent decaying amplitude k, and the coe%-
cients of the polynomial f are treated as parameters.
Very encouraging results which substantiate our intui-
tion are obtained. (See Sec. IV.)

III. VARIATIONAL PROCEDURE

II i (')(iIk. Ir) =
Z7l 0

~
—

I @&Ir cosh (z) The quasistationary representation of the compound-
state wave function is given" by the bound-state solu-
tion of

(2.3) (QIIQ —h )QC =0, (3.1)

where Xp ———pP.+—', ) = (+37—5/4)'". Since the wave
number Ik I

decreases exponentially with n, P we have

Ik. I' p
—"«"p (2.4)

(t&„(r)=d(Ik Irp)f (r) r&rp
=r'"II.), (')(iIk Irp) ) r&rp (2 5)

so that at large r it assumes the solution in a r ' po-
tential tail. The function f in Eq. (2.5) is some ap-
propriate polynomial in r and the constant d(I k

I rp)

is a matching constant for the orbital at ro.
Now if the long-range potential is indeed the domi-

narit e6ect in compound-state formation, an adequate
quasistationary representation of the compound-state
wave function can be constructed in terms of such
orbitals. To test this idea, a variational calculation of
the compound states in the elastic channel of the (e,H)
system is carried out using a simple trial wave function
constructed in terms of these orbitals. The joining radius

(a) P. G. Murk. e, Advan. Phys. 14, 521 (i965); (b) M. H.
Mittleman, Phys. Rev. 147, Q (1966).

The range parameters for these solutions [see Eq. (2.3)j
are exponentially increasing as a function of n. ' This is
a consequence of the long-range r ' potential tail
experienced by the projectile electron in the 6eld created
by the degeneracy of the m=2 state of hydrogen.

It should be noted that this long-range effect is not
confined to the m=2 levels. It can be shown quite gen-
erally that for each degenerate principal quantum num-

ber there may exist one or more such r ' long-range po-
tential tail with different interaction strength XP(+1)."
As a consequence of this long-range eGect, the correla-
tion effect encountered in actual bound states does not
impose a serious problem here. This seems to be borne
out in a recent variational calculation, ' where it is found
that the lowering in the calculated energy using a 50-
term correlated trial wave function from that calculated
without correlation terms is less than a small fraction
of 1% even for the lowest resonant state.

Since the dominant long-range effect appears to de-
localize the orbit of the projectile electron, an appro-
priate description of the compound state must therefore
include this e6ect. Intuitively one would expect the
orbitals for the projectile electron to be of the form4

where 8 is the quasistationary resonance energy, and

Q is a projection operator which projects onto the closed-
channel portion of the Hilbert space. Hahn et at."have
pointed out that QIIQ satisfies the minimum principle
so that the Rayleigh-Ritz variational representation of
QC can then be obtained. Tlie choice of (p terms in
the trial function QC" leads to an r(&()p Hamiltonian
matrix which when diagonalized gives upper bounds to
the rp lowest eigenvalues of QIIQ.

Since the spacings between the compound states of
H are small and decrease exponentially, it is numeri-
cally more flexible to optimize each resonance energy
consecutively instead of solving the usual secular equa-
tions. For the noth compound state, we have the
quotient

(+)= 1 Q g (6) (3.3)

g
(+)= III.(+)Qc, (+))&11 (+)Q@ (+)

I
(3.4)

where the g ~+"s are projection operators which pro-
ject onto the eth optimized wave function. The caret
on Q4& indicates that QC is normalized:

(Qc, (+)I II (~) IQc, (+))=1 (3.5)

The superscripts (+) and (—) in Eqs. (3.2) to (3.5)
label the singlet and triplet spin multiplicities. Since the
projection operators g &+& are constructed in terms of
eigenstates of Q (with unit eigenvalues), it is clear that
g

(~) commutes with Q so that

[rr.(+),Q7= 0. (3.6)

This commutation relation, together with the idem-
potent property of Q, permits us to replace QIIQ in
Eq. (3.2) by II. We then obtain

(11 (+)Qg) (+)
I
II

I
11 (+&Q&y (+)))h , . (3.7)

(11 (k)Q4& (6)
I
11 (+)QC& (+))

"H. Feshbach, Ann. Phys. (N. Y.) 5, 387 (1958);19, 287 (I962).
I3 Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 128,

932 (I962).

(11-p"'QC'-p"'
I QIIQ I

II-p"'Q~-. "'))g (i-. ) (3 2)
(11 (+)Q@ (+)

I
11 (+)Q@ (+))

with
ap-1



For the lowest states np ——0 and II p'+&=1, Eq. (3.7)
then reduces to the usual Rayleigh-Ritz quotient for
Eq. (3.1). b =

To account for the long-range effect, we construct
our trial variational wave function for the I.=o com-
pound states lying just below the e=2 excitation thresh- b=
old in terms of the orbitals given by Eq. (2.5):

(4g) '
Q@.'+&= (LX~o(rx)4 o'+&(rg)+V Xoi(rr)4 x'+&(rg)

70 m+1 fQ&

r"xgp(r)dr=2(r&g+1)! 1—g
—"p g—

0 0 I,!

r'~gH.
&,p"&(iIk~ Ir)xxg(r)ur,

(3.13)

where the X ~'s are the radial target-hydrogen wave
functions and the subscripts 0 and 1 in the @'s denote
the s and p characters of the orbitals. The Q-projection
operator for the two-electron system" is

with

Q = 1—Po(ri) —Po(ro)+Po(ri)Po(ro),

po(r) =
I xm(r) Foo(&'))(xylo(r) Foo(r) I, (3 1o)

C2

where x~o(r) Fpp(r) is the ground target-hydrogen wave
function. Since Q is expressed in terms of pp which is

orthogonal to X2Q and X2l, the requirement that 4 (+' be
an eigenstate of Q with unit eigenvalue can be easily
satis6ed by requiring the orbitals @«(+) and f~l(+)
given by Eq. (2.5) to be orthogonal to pp.

The @ orbitals can then be expressed as
no—ln P u „&'& r"——xyp(r)

Qf n~l

=—» r'Io&&;&„"&(iIknI r)—xrp(r)
(3.14)

co+co= 1.
~here, the b s and p»n Q„o&+& {r) arise from the orthog-
onal constraint between the q and XlQ wave functions
and dQ and d,- are the matching constants at r=rQ. For
the p orbital g,&'+&, the orthogonal constraint is auto-
matically satis6ed due to the angular parts of the wave
functions. Since any arbitrary constant factor in the
series for the interior (r&ro) wave function can be ab-
sorbed into the matching constants dQ and dl, we choose
to take a.2(» =a.2(') = i.

%e take the erst coeKcient in each wave function,
a l«' and a l('), to satisfy the continuity condition of
the logarithmic derivatives of the wave function at
'f —fQ.

(3.11) and

8 no—ln Q u „~'&r"+'
n~J,

no

$ r&+&(r)=d~(k ro) g u &»r"+', r&rg

= r'&oII'&, o"'(i
I ka I r),

The appropriate expressions for a l«) and g l«& are
(3.12) then

a g&'&=

no

fro—2rp (rF) pI 1 2ro—2—rgF(rp)](bg/cg)xrp(fg)}

Q u „&'&rp"+'L1+2n—2rpF(rg)]

no

Q u &o&(rg"I 1—2e+2rgF(rg)]+L1 —2rg —2rpF(rg)](b„/cg)xylo(ro)},
n~2

(3.16)

vrith
2rg'F(rg) 3rg'—

8
F(rg) = —!nH;q &'&(i Ik~ I r)

-Bf ~ t'~F0

(3.17)

(3.18)
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TABLE I. Level position' of the 'S and 'S
auto-ionization states of H .

TABI,E II. Optimal parameters.

Symmetry Source

Present
O' Malley-Geltmanb
Bhatia- Temkin-Perkins'
Burke- Taylord

Co(+&

9.580
9.559
9.557
9.560

10.177
10.178
10.176
10.1780

0.597
0.619
0.616
0.618

P1(+) g1(+)—go(+)
S

3 $"

0 8.5 0.185
1 8.5 0.043

0 13.0 0 070
1 13.0 0.0157

Symmetry n ro(ao) A~(ao ')

1.250
1,330

1.344
1.440

a~3 (o)

—0,131034
0.852049

—0.002941
1.227897

a 3(~)

0.004806
2,582620

0.813008
1.003915

ag Present
O' Malley-Geltmanb
Bhatia- Temkin-Perkinse
Burke- Taylord

10.150
10.149
10.146
10.1497

10.199
10.202
10.201

~ ~

0.049
0.053
0,055

a In eV above the ground state of hydrogen atom.
b Reference 1.
e Reference 2.
d Reference 14.

This then permits the free variation of the rest of the
(n p 2) parameters (a „&P& and a „&'&, with 2(n &np)
for the interior wave functions.

Having obtained the optimal wave functions for the
quasistationary representation of the compound states,
the width of these states can be easily calculated if the
outgoing continuum wave functions for the decaying
electron are available. The expression for the width is

where P=1—
Q and PP is the outgoing channel wave

function. The static-exchange approximation for Pg,
which yields reasonably good results for the width, is
adopted here:

IV. RESULTS AND DISCUSSION

A variational calculation using the trial wave func-
tions given by Eqs. (3.8), (3.11), and (3.12) has been
carried out for the singlet and triplet compound states
with zero total angular momentum. In this calculation
only Gve variational parameters p, rp, k, a 3& ', and
a 3&') are used. The results are given in Table I. For
comparison, other variational results, as well as results
obtained from close-coupling calculations, are included
in this table. It is seen that our five-parameter varia-
tional results, except for the n=0 states, are better than
the 36-parameter variational results of O'Malley and
Geltman. ' Judging from the agreement, the five-param-
eter variational wave function is also consistent in ac-
curacy with the 50-term Hylleraas-type correlation vari-
ational wave function used by Bhatia et al. ' Since level
shifts are included in the 1s-2s-2p close-coupling calcu-
lation, a comparison with the close-coupling results

14 P. G. Burke and A. J. Taylor, Proc. Phys. Soc. (London)
88, 549 (1966)."J.W. McGowan, Phys. Rev. 156, 165 (1967).

PP= {&rp(rr)F(rp)+( —) Xio(rp)F(rr)), (3.20)
(2pr) I/2

where F(r) is the scattered wave function obtained from
the static-exchange approximation and &1p, as before,
is the ground-state wave function of hydrogen. F is
normalized to unit outgoing Aux.

without explicit calculation of the level shifts is not
meaningful, although our results for the n=1 are lower
than the 1s-2s-2p close-coupling results of Burke and
Taylor" with 16 correlation functions. The experi-
mental result" for the singlet n=0 state is 9.56&0.01.

Examining the energy difference h1—Bp between the
levels predicted by the three variational calculations
and the close-coupling calculation reveals that the 6ve-
parameter variational wave function consistently gives
smaller energy differences than all the other calcu-
lations. "This clearly suggests that the accurate repre-
sentation of the asymptotic form of the wave function
actually provides a lower energy. Further improvement
on the simple wave function for n=O states will prob-
ably allow even lower n= 1 energy levels. In the triplet
case, even with the present 6ve-parameter wave func-
tion for n=0, we actually obtain a lower n=1 energy
than all those previously found. In Table I we have not
made a comparison with the nonvariational calculations
of Chen' and of Temkin and Walker. "

It should be noted that in the calculation of n=1
states we varied only four of the five parameters: rp

is k.ept as a constant equal to the corresponding rp

values for n=0 states. In the course of our search for
optimized parameters, we found that the energy levels
are not very sensitive to variations of the parameters
such as a 3"' and a 3'" which affect the wave function
in the interior region, thus confirming our intuition. In
Table II the optimal parameters are tabulated.

The orbitals for the projectile electron are plotted in
Figs. 1 and 2 for the parameters given in Table II. As
expected, they extend very far in condguration space
away from the proton. ' "The details of the wave func-
tions at small r are shown in the insets in Figs. 1 and 2
for the singlet and triplet cases, respectively. The node
at small r introduced by the orthogonality constraint
between the s orbital happ&+' and the hydrogen ground
state is clear. The reason for the insensitivity of the
parameter on the trial wave functions in the interior
region is also clear, since the amplitude in this region
is very small.

A calculation of the width using these simple 6ve-
parameter wave functions has been carried out in the
static-exchange approximation. These results are com-
pared with previous results' ""and with experimental
results" in Table III.The agreement is reasonably good.

' We expect the diff'erences between energy shifts of two com-
pound states to be small so that the comparison with the close-
coupling results is meaningful.

"Xn the captions of Figs. 4 and 5 of Ref. 9, "Eq. (5.4)" should
read "Eq. (5.1)."

P. G. Burke and H. M. Schey, Phys. Rev. 120, 147 (1962).
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Fzo. 1.First two members of the
singlet wave functions (unnormal-
ized) for the projectile electron in
the field created by the degen-
eracy of the n=Z states of hydro-
gen. The inset shows the details
of the wave functions close to the
proton.
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Ke found that the width for the singlet 0.=0 state is
more sensitive to variations in the interior parameters
than it is for the other states. This is probably due to the
fact that a significant portion of the potential which sup-
ports the singlet n= 0 state is of short-range type. The
static-exchange wave function used in the present calcu-
lation of the width was obtained by solving the static-
exchange equation by a noniterative method.

Better results for both the level position and width of
the u=0 states can be obtained if we take more varia-
tional parameters for the interior parts of the orbitals

for the projectile electron. This is, however, not the
purpose of the present investigation. An improvement
which preserves the simplicity of the wave function is
possible by permitting the target electron orbitals X2o

and X~~ to be distorted.
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FxG. 2. First two members of the
triplet wave functions (unnormal-
ized) for the projectile electron in
the field created by the degen-
eracy of the n=2 states of hydro-
gen. The inset shows the details of
the wave functions close to the
proton.
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TAsr, E III. Level vridth of the '8 and '8 auto-ionization states of H,

Source

Burke-Schey' b

Burke-Taylorb
Chen~
Present
Mcoovmn (experiment)'

r, (+) (eV)

0 0543c
0.0475
0.041
0.0569
0.043+0.006

r1(+) (eV}

0.0024
0.00219
0.00218
0,00306

I'0( )(eV)

1.89&10-~
2.06' 10-5
2.01X10 5

2.31X10-~

11( )(eV)

~ ~ ~

1.18X10 6

7.03X10 7

~ ~ ~

a Reference 18.
b Reference 14.
o Revised value Lsee Ref. 11{a)j.
d Reference 9.
e Reference 1S.

~-=—E«—h-= &Q~. I ail Q~-»

r-= &Q~-l~. lg~-),

(A2)

(A4)

g,=ge Q=2~gaJ s(E x)Pag, — (A3)

Ic.x+.I-
x=Z e+eg — ga ~, (A6)

E—Qjjg g—g

where I' is a projection operator which projects onto
the open-channel portion of the Hilbert space, Q = 1 I'—
is its complement, "and finally 6' in Eq. (A4) signi6es
the Cauchy principal value. Equations (A2) and (A3)
permit us to regard 6 and I' as stationary expectation
values of the nonlocal but Hermitian operators 81 and

6~, respectively.
The diKculty in applying these equations arises in

solving Eq. (A1), even for such simple systems as (e,H)
and (e,He+). Calculation of 6 and I' must start with
approximate functions Qy; this results in approximate
values for d and I' which compare unfavorably in
accuracy with the approximate values for 8 so ob-
tained. Thus, we must rely on methods which are cap-
able of improving the accuracy of the calculation with

approximate @rave functions. Recent work on pertur-
bation theory has shown that systematic corrections to
approximate expectation values are quite possible and

APPENDIX: STATIONARY-STATE
PERTURBATION METHOD

Feshbach" has shown that the quasistationary repre-
sentation of the compound-state vive function is given
by the bound-state solution of

(QHQ —Su)QC =0,

where 8„ is the quasistationary resonance energy. The
resonance width I' and the deviation of 8 from the
physical resonance energy E are given exactly, for an
isolated resonance by

give quickly converging and reliable results. ' These same
methods can be applied to the evaluation of 4 and I'
of Eqs. (A2) and (A3).

Suppose the expectation value of QHQ is to be found.
Then by writing

x'= QHQ+ pgeg,
it is easy to show that (gc'

I
~

I Qe„& is the correct first-
order (in p) expression, where QC is an eigenfunction,
of QBQ. Further discussion of the accuracy is necessary,
however, when only approximate eigenfunctions of QPQ,
denoted as Qy, are available.

For this purpose the Hamiltonian is rewritten as

x'=Q&0Q+ light'Q+~g~g

where QHOQ is an approximate Hamiltonian whose
eigenfunctions are Qq, and QVQ is the correction.
This form leads naturally to double-perturbation theory.
The correct first-order expression for (Ql 8IQ) is then

&g~. l
~ lg~.&=(g..l Big..&+2(g~-l~lgx-&

—28 "'(Qv'~lgx~) (A9)

~h~~~ &~io'= (Qp~l &I Qy ), and Qx, is the solution of
the inhomogeneous equation

(g~.g-~. »Q .=(&Q..I~IQ..)-g~g)g.. (A10)

This equation may be solved either numerically or by a
stationary principle. For the latter purpose, let QX
=QF Qy and estimate QF by making stationary the
expression"

~.=&Q.-Q~. I Z I —:v,;QF.j
+2(6—&Q~-l~lg~-&) Ig~.& (A11)

QF may involve only electron coordinates and does
not involve a knowledge of IJO. The index J sunls over
electrons.

In general, double-perturbation theory allows arbi-
trary accuracy in the evaluation of expectation values,
within the adopted approximation to x I Eq. (A6)].

» See, for example, J, C. Y. Chen and A, Dalgarno, Proc. Phys.
Soc. (London) 85, 399 (1965).


