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A study is made of the effects of a nonspherical and multiply connected Fermi surface on the properties of
the Ruderman-Kittel-Kasuya-Yosida s-d interaction between localized spins and the conduction electrons.
At a critical value of the conduction-electron concentration ., the Fermi surface touches a number of
Brillouin-zone faces, giving rise to a number of necks as in copper and nickel. It is shown that, in this region
of electron concentration, the paramagnetic Curie temperature 6 exhibits a kink associated with a dis-
continuity in the exchange-stiffness parameter D2 R27 (R), where J (R) is the indirect-exchange parameter.
These effects are expected to be more pronounced in materials with a large number of necks in the multiply
connected Fermi surface. We choose the simplest possible model consistent with the crystal symmetry and
the Bragg condition at the Brillouin-zone faces, i.e., a tight-binding approximation for the conduction
electrons; but a number of results may be shown to be model-independent. We also neglect interband
transitions, but these are shown not to affect the long-range component of the conduction-electron polariza-
tion. The long-range effects are shown to be model-independent because they are related only to the level-
density function p (¢) and its derivatives at the Fermi level, whereas the short-range effects are shown to be
sensitive to the details of the band structure. The paramagnetic temperature § can be separated into a
model-independent term related to p(er) and a model-dependent term related to short-range effects. In
the region corresponding to the spherical Fermi surface, 6 is nearly proportional to N3, and the model-
dependent contribution to 6 is relatively small, at least for the simple cubic structure. It is also shown that
the exchange moments (R?) <Zr R2J(R) and (R*) «Zg R4J (R) are model-independent and related to the
level-density function p (e) and its first and second derivatives at the Fermi level. In the neighborhood of the
critical concentration, relatively large positive values of (R¢)/(a2(R?)) can be obtained for the simple cubic
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case, in contrast to the negative values of (R*)/(R?) obtained by Kasuya in the limit kra — 0.

I. INTRODUCTION

T is the purpose of this paper to study the effects of
a nonspherical and multiply connected Fermi sur-
face on the properties of the Kasuya-Yosida!2 s-d inter-
action between localized spins and the conduction
electrons, or the Ruderman-Kittel ® indirect interaction
between nuclear spins. This problem is here discussed
essentially with the neglect of interband transitions; we
choose a model simple enough to be treated mathemat-
ically, although some properties may be shown to be
model-independent.

We consider the conduction-electron concentration
N, as a variable parameter. As we increase N., the
initially spherical Fermi surface expands and becomes
increasingly deformed by approaching the Brillouin-
zone boundaries. At a certain critical value of N,, the
Fermi surface will touch a number of Brillouin-zone
faces giving rise to a number of necks as in copper and
nickel. The Brillouin-zone faces which first give rise to
necks seem to be those closest to the origin in k space;
in simple cubic structure there are six of these necks;
fcc (Ni) and bee (Fe) should have eight and 12 of them,
respectively. It seems reasonable to expect that this
type of effect will be more pronounced in metals with a
large number of necks in the Fermi surface.

Denoting the conduction-electron single-particle un-
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perturbed energy by e, and the lattice parameter by a,
we base our choice of model on the following require-
ments: (a) e should be proportional to k2 for k?¢*<1,
so that the results for the spherical model™* can be
reproduced in the limit 2p2a?<1. (b) e must reflect the
crystal symmetry. (c) e must fulfill the Bragg condition
at the Brillouin-zone faces.

It may be shown, in general, that the above-
mentioned touching points of the Fermi surface at some
Brillouin-zone faces are points where gradkex=0. This
is a consequence of the Bragg condition. From this fact,
one can show that the conduction-electron unperturbed
level-density function p(e) has a singularity when N,
reaches a critical value.

The simplest possible model, consistent with the
above requirements and capable of giving rise to a
multiply connected Fermi surface, can be obtained by
assuming a tight-binding approximation for the conduc-
tion electrons in a band mainly of s character.

In Sec. II we describe the tight-binding approxima-
tion. There it is shown that, for the simple cubic
structure, there are two critical values for the electron
concentration.

The s-d Hamiltonian!#5 can be written as

o= —N1Y X 5 j(KT Kl)et k) Ra

Kl K’V n
X[ (exv+taxie—awrtax)Sa?

+axvitaa-Sitawrtaag S.t], (1.1)

4T. A. Kaplan and D. H. Lyons, Phys. Rev. 129, 2072 (1963);
T. Kasuya and D. H. Lyons, J. Phys. Soc. Japan 21 287 (1966).

5 A. H. Mitchell, Phys Rev. 105, 1439 (1957); S. H. Liu, Phys.
Rev. 121, 451 (1961)
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where we stress the fact that / and /" are band indices,
so that k and K’ are restricted to the first Brillouin zone;
a4 is the creation operator for a conduction electron
with momentum k, in band /, with spin up or down,
respectively. S, is the localized spin at site R, of the
lattice; Sp*=S,*415,%. We assume that all sites # are
occupied by d spins, so that we can preserve transla-
tional invariance. This last requirement can be relaxed
in some cases. The quantity j(kZk'/) is a constant
independent of k and k’ in the case of nuclear hyperfine
contact interaction; for the s-d model this quantity is

given by
2

e
LR =Y / w8 e)

Iri—re
' l ><¢kz(l‘z)¢d(r1)dr1dr2. (12)

The s-¢ Hamiltonian is now treated by applying
perturbation theory. We assume, following Kittel and
Mitchel,® that the conduction-electron system has a
very short relaxation time so that they react very
quickly to changes in the S coordinates. Consequently,
when we calculate averages over the conduction-electron
ensemble we can consider these S coordinates as ¢
numbers. This is no longer true in an interval of time of
the order of the localized spin relaxation time. It is also
necessary to note that in the present paper we do not
take into account a possible electron transfer from the
d orbit to the conduction band, a mechanism proposed
by Anderson and Clogston.?

Following Yosida,? the first-order perturbed wave
function for the conduction electron is given by

(k'l'o’ |3Ceq| KOT)

Pxr’l'e’

k06 = P00t (1.3)

®VAGD) g e
where ey is the single-particle unperturbed energy,
here assumed to be spin-independent; exo is the energy
of an electron in the conduction band, for which we
choose /=0, and o= denotes the spin coordinate.
Now we split the sum (1.3) in two terms: the intraband
term and the interband term. The intraband contribu-
tion with /=0 requires (k'o’)#(kos); the interband
contribution corresponds to /540, where the condition
(k'¢") 5 (ko) is unnecessary.

Assuming that (a) the interband and intraband
matrix elements of 3C,q are of the same order of magni-
tude, and (b) the energy gap between the conduction
band and the first-excited band is larger than or of the
same order of the conduction-band width, then we can
neglect the interband contribution. Even the assump-
tion (b) does not seem to be essential. The reason for
this is the presence of the denominator ey y— eq. The
integrals involving this denominator are mainly deter-
mined by the phase-space volume for which ey = €.

6 C, Kittel and A. H. Mitchell, Phys. Rev. 101, 1611 (1956).
7P. W. Anderson and A. M. Clogston, Bull. Am. Phys. Soc. 2,
124 (1961).
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It is reasonable to expect the phase-space volume for
I'=1to be large compared with the corresponding phase
volume for /51, where only some few special directions
would allow ey = €.

In Sec. ITT we define a momentum-dependent sus-
ceptibility function F(q) whose Fourier transform is
related to the spatial distribution of the conduction-
electron spin polarization around a single magnetic ion
as well as to the indirect exchange parameter J(R). It
is shown in Sec. V that the neglect of interband transi-
tions does not effect the long-range component of the
conduction-electron polarization since this is related to
the behavior of the function F(q) in the neighborhood
of q=0.

Consequently it is convenient to separate the long-
range and the short-range effects. The measurable
parameters related to the long-range component are
shown to be model-independent since they are deter-
mined only by some features of the conduction-electron
energy spectrum at the Fermi level. On the other hand,
the short-range effects are model-dependent, i.e., they
are sensitive to the details of band structure over the
whole single-particle energy spectrum, as well as to the
interband transitions here neglected.

With the neglect of interband transitions we can drop
the index /, since we will be concerned only with the
conduction band. The corresponding part of the s-d
Hamiltonian becomes

B — N1 S ()i R

kk’n

X[(aw i ar—aw tar)S,?

-+ dk'.,.fdk_S Z (lk'._'rdk_'_S,."'] . (1 .4)
With the definitions
1
S(h—k) =— X RS, (L)
and
Sz 5

Sa'a'=< ) ’ (1'6)

St -8

the s-d Hamiltonian can be separated into a diagonal
part and an off-diagonal part:

3Cou="3Csa*+3Csd 1.7
3Cea®= —% 7k K) (axi'aur— ax—Tax-)S%0), (1.8)
Cod'=— 2. jkk)aw, 'Sy, (k—k)ax,. (1.9)

(k’0")7 (ko)
The unperturbed Hamiltonian is given by
3Co=2 e(artari+aytay ), (1.10)

k

where e is the unperturbed single-particle energy, here
assumed to be spin-independent.
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Using perturbation theory, in Sec. IV we determine
the chemical potential and the ground-state energy of
3Co’ =3Co+3C,4° [see (1.8) and (1.10)].

In Sec. V, the formulation given by Yosida? is ex-
tended by proving the model-independent result

tim F(q)=2%p(er).

A study is made of the spatial distribution of the elec-
tronic polarization, with particular emphasis on
parameters related to the long-range component. Some
expressions are obtained for quantities that may become
useful in connection with NMR, Mossbauer, and elastic
neutron-scattering experiments.

In Sec. VI we study the indirect effective exchange
interaction, and it is shown in Sec. VII that, as a
consequence of the fluctuations in the localized spin
coordinates S, and the almost instantaneous response
of the conduction electrons to these fluctuations, the
conduction-electron spin polarization p(r=0) at the
nuclear site also fluctuates around a certain average.
These fluctuations in p(r=0) are expected to produce a
broadening of the NMR linewidth as well as a broaden-
ing of the Mossbauer lines. At low temperatures, in the
ferromagnetic state, the average squared fluctuation is
shown to follow a 7% law; in the paramagnetic region,
the same quantity should be nearly proportional to
Tx e« T/(T—8), where X is the magnetic susceptibility.

In Sec. VIITA it is shown that the paramagnetic
temperature 6 is the sum of a model-independent term
proportional to the level-density function at the Fermi
level and a term related to short-range effects which is
model-dependent. In the limit corresponding to the
spherical model, i.e., for kra<<1, one can show that the
model-dependent term is relatively small, at least in the
simple cubic case; in this limit, the paramagnetic tem-
perature may be shown to depend on the electron
concentration through a term nearly proportional to
Nex/soc P(€F>-

In Sec. VIII B we study some effects related to the
thermal excitation of the conduction electrons in the
neighborhood of the Fermi surface. This is shown to
give rise to a temperature dependence of the indirect
exchange parameter J(R). Now, the critical tempera-
ture T, is related to Y _r=oJ(R), in the molecular-field
approximation, so that 7', itself is temperature-
dependent. Solving the self-consistency equation
T.=function(7T")=function(7T';) we obtain a correction
for the critical temperature.

In Sec. VIIIC it is obtained that in ferromagnetic
dilute disordered alloys (as Fe:Au) the critical tem-
perature 7. is a function of ¢, the concentration of
magnetic impurity, and that T';/c may decrease with
concentration, as a consequence of the effect considered
in Sec. VIII B.

The pressure dependence of 7, is shown in Sec. VIIID
to contain a term which is not very sensitive to the
details of band structure.
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In Sec. IX we obtain the result that the exchange
moments (R?)=const >_x R&J(R) and (R*)=const
X2 = RJ(R) related to the long-range component of
J(R) are determined by the level-density function p(e)
and its first and second derivatives at the Fermi level.
Explicit expressions in terms of tabulated functions are
obtained for (R2), (R%), (R*+R,*+R.%), as well as for
the paramagnetic temperature #, and the quantity
(8/9er)J(R=0), in the case of the simple cubic
structure.

In the region of electron concentration corresponding
to the spherical model, i.e., for kra<<1, the results ob-
tained by Kasuya for (R?) and (R¢) are reproduced; in
this region of electron concentration (for kpa<<1), we
obtain

(R*+R*+R.%)/(R)=~E.

In the neighborhood of the first critical electron con-
centration, just before the formation of necks in a
multiply connected Fermi surface (for << —1, see text),
we obtain a positive value for (R?) (as in the spherical
model) and relatively large positive values for the ratio
(R*)/(a*(R%)) in contrast with a negative ratio obtained
by Kasuya! in the spherical model; for w= —1—7, with
0<7<1, we obtain for the simple cubic case the result

<Rw4+sz&+Rz4>/<R4>z9/7 s

that is, a value about twice as large as the one obtained
in the region kra<<1, where the Fermi surface is nearly
spherical.

In the final section, some applications are made to
rare-earth metallic compounds and alloys.

II. TIGHT-BINDING APPROXIMATION

The unperturbed Schrédinger equation is given by®

Hoi(r) = [— (h?/2m)V*+V (1) Jp (1) = exbu(x),  (2.1)

where

V(=2 U(r—R,) (2.2)

is the periodic potential and U(r—R,) is the local
potential in the neighborhood of ion R,. In the tight-
binding approximation, the wave function ¢,(r) is

constructed from the localized s-wave functions
¢.(r—R.,),
di(r) =™ ru (r) (2.3)
where
(1) =3 e ®Rung (r—R,) (2.4)

is periodic from cell to cell in the crystal, and ¢.(r) is
the solution of the local Schrédinger equation

(= @/2m)V+U @) 1ps(r) = Esgps(r).  (2.5)

8 See, for example, A. H. Wilson, The Theory of Metals (Cam-
grldg2<37Un1ver51ty Press, Cambridge, England, 1958), 2nd ed.,
ec. 2.7.
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The single-particle energy e in (2.1) is obtained as

o= / B OCapu(r)ir [ /V H* (D, (2.6)

where V is the volume of the sample.
Defining the overlap integrals

5(R,)= / AR 0dr,  (27)
S(R,)= / $# -+ R (1)dx, 2.8)
we obtain Y
a= 3 S Re(R,)/S e RS(R,),
i} 2 -
a=[KOFT e R RIVISOFT e PSR,
(2.9)

where 3 (») is the sum over the nearest neighbors, and
more distant integrals are neglected. Furthermore,
3¢(0)= E, and S(0)=1 may be assumed relatively large,
so that the single-particle energy becomes

€= Es_['—B’Yk .

Here B is a negative constant (the local potential is
attractive) related to the overlapping integrals 3C(nn)
and S(mn), and i is the nearest-neighbor structure
factor

(2.10)

1
ye== ek Ra, (2.11)

2 (n)

where z is the number of nearest neighbors. We also note
that in (2.9) we have used the equivalence of all nearest
neighbors.

In the particular case of the simple cube lattice we
can write

a=%B Y cos(ak;), (2.12)
J

where we have dropped the constant E,, since we are
concerned only with differences of energies. Here we
note that — | B| < &< |B|, so that

—|B|<er<|B]. (2.13)
Defining the dimensionless parameter
w=23er/|B]|, (2.14)
we obtain
—3<w<+3. (2.15)

It is easy to see that expression (2.12) gives rise to the
necks mentioned in the Introduction. The Bragg condi-
tion tells us that the vector gradkex is parallel to the
Brillouin-zone face at the intersection of the Fermi
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surface with the Brillouin-zone boundary. If one
considers, for example, the plane square net, from
geometrical considerations one can show that gradge,=0
at the touching (critical) points mentioned in the
Introduction.

For the simple cubic structure, the condition

gradye,=0 (2.16)

gives rise to a set of three equations
Sil’l((lkj) =0 <]= x,y,z) )

so that ek;=0,2mw. Then we obtain the following set of
points, for which the Eq. (2.16) is satisfied:

(a) ak=(0,0,0);
(b) ak=(0,0, =), (0, &=, 0), and (&, 0, 0);
(c) ak=(0, £, &), (£, 0, %),
and (£, &, 0);
(d) ak=(%r, &, £7).

The parameter » defined in (2.14) assumes the values
we=—3, wp=—1, w.=-41, and wa=-3, respectively,
at the above points.

We also note that, from symmetry considerations, the
exchange parameter j(kk) defined in (1.2), with kK'=k,
has the same value at the different points belonging to
the same set.

In this way one can see that the region w22 —3 corre-
sponds to a spherical Fermi surface, as well as the region
wS+3. The former is of particle character and the
latter of hole character.

As we increase w from the bottom of the band, where
w=—23, when w reaches the critical value w,=—1, the
Fermi surface will just touch the Brillouin-zone cubic
faces at the points of type (b), i.e., at the center of the
Brillouin-zone cubic faces.

For —1<w<1, the Fermi surface becomes multiply
connected and with six necks. As we increase w from
—1 to +1 it seems difficult to ascertain the shape of the
Fermi surface for w=+1. But if we start from w< 43,
first recomposing the eight pieces of the Fermi surface
to obtain a continuous sphere, then, as we decrease the
value of w, we again obtain, for w<+1, a multiply
connected Fermi surface with six necks and whose
interior is empty.

III. ¢-DEPENDENT SUSCEPTIBILITY FUNCTION
The spin-dependent perturbed wave function is given

by
o)
Vg (D) = — 2

k’#k €x— €g’

X[£S*(h— K)o+ SHk—k)pox], (3.1)
where the prime in the summation is to indicate that k’
is restricted to the first Brillouin zone. For the simple
cubic system this condition is given by —w<ak;/ <.
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The polarization of the conduction-electron band can
be obtained by calculating the density of electrons with
spin up and down:

pe(N= 2

oce. states

Ve (0¥ (1)« (3.2)

Using (3.1) and the representation (2.3) for ¢x(r), we
obtain

p+(0) =2 mFu* () uy(r)

j(e k)

;c[ 5 (kKo —r

k’#k €x— €k’

X (1) (1) + c.c.] , (3.3)

where #nx* is the Fermi distribution function for the
two sets of spins up and down, respectively. The second
term in (3.3) involves a sum over the indices k and k'.
In the second term we do not have to distinguish ny~
from mt since this produces only a second-order
correction in 72, whereas in the first term this distinction
is necessary because it corresponds to a correction in
first order of j.
Using the tight-binding approximation we obtain

w* () (1) = U —x(x)

Uy =2 ' ®|py(r—R,) |*

(3.4)
where
(3.5)

is a periodic function of r from cell to cell. The next term
in (3.4) involves nearest-neighbor overlap products
¢s(r—R,)¢,(r—R,+R,,). Some properties of the func-
tion U,(r) are

U_y()=Uy(—1) (3.6)
and

UXr)=U_4(r). 3.7

We now assume that j(k,k’) depends only on the

vector k'—k. We will see that sometimes it is possible
to lift this restriction. Then we obtain

p(r)=U(r) %: et

L5 J@S (- et U @Fecd, (58)

where
~ ’ &
=2 ’

b €xyq €k

3.9)

and the prime in summation (3.9) is to indicate that q is
to be restricted in such a way that k and kK'=k4-q
belong to the first Brillouin zone. To avoid this com-
plication we can write

7
My
dk ,
€x4-q— €k

o —

k €xtq €k

8r® JBz
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|4 1
Fg)=— / ki / dK—— 5K —k—q), (3.10)
87r3 BZ BZ €x’ — €k

so that the restriction for k and k’ in the first Brillouin
zone is explicitly taken into account. It is important to
realize the necessity of this restriction, in connection
with the fact that ! and I are band indices and that we
are not using the extended zone scheme.

The function F(q), here called the momentum-
dependent susceptibility function, will be the center of
our discussion. For the simple cubic case, the vectors k
and k’ are restricted by —w<ak;<m and —w<ak/ <,
and consequently q is limited to the interior of the cube
—2r<aq;<2mw, where the equal sign is not allowed.
Outside this volume F(q) is zero as we can see from
(3.10). For other lattice structures, as long as we use
(3.10) we can extend the sum over q in (3.8) to infinity.
To determine this function F(q) we need the explicit
k dependence of e, not only near the Fermi surface but
throughout the Brillouin zone.

The fact that F(q) is zero outside the region
— 27 < aq;<2m results from the neglect of the interband
terms in (1.3). This corresponds to cutting Yosida’s
function f(| q|) at a point where f(| q|) is already small.
This becomes more evident if we take in the Yosida
spherical model a value akp~3m, for example. We note
that kp~m/a corresponds roughly to a completely filled
Brillouin zone. Then, for |q|>2x/a, we obtain q/2kp
~ga/w>2. In other words, the region |g;|>2n/a
corresponds to ¢/2kr22, where the Yosida function
f(lql) is already small compared to unity.

It is shown in Sec. V that the conduction-electron
spin polarization P(r) [see (5.19)] produced by a single
localized magnetic ion has a spatial distribution related
to the Fourier transform of the susceptibility function
F(q). This becomes clearer in Sec. IX, where the indirect
exchange parameter J(R) [see (9.11)] is shown to be
also related to the Fourier transform of F(q).

Now, from the Fourier theorem, we know that the
behavior of the Fourier transform of F(q) at large
distances is determined by the properties of the function
F(q) in the neighborhood of g=0. Being more explicit,
if we know the function F(q) in the finite region | q| <gq,
then we can determine the behavior of its Fourier
transform in the region |r|>10/qo, say.

The cutoff introduced in F(q) by the neglect of inter-
band transitions occurs only outside a region sufficiently
large (a cube of side 47 /a in the simple cubic case). In
the simple cubic case,

qo=~2m/a,

so that we can determine the conduction-electron
polarization in the region |r|> 7o, where

ro=~100/27~2a,
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and in this way we obtain the result that the interband
transitions of the type considered in this paper (see the
Introduction) do not affect the long-range component
of the conduction-electron spin polarization P(r) or of
the indirect-exchange parameter J(R).

It is demonstrated in Sec. V that in the first term of
(3.8), the difference between nit and ni— gives rise to a
term which is just that required to complete the sum
over q in the second term of (3.8). The first term in (3.8)
can be shown to be related to the diagonal part of 3C,q,
whereas the second term in q>£0 is related to the off-
diagonal part.

IV. PERTURBED ENERGY
A. Chemical Potential

Using (1.7) and (1.10), the total Hamiltonian can be
written as

3e=3Co'+3Csd 4.1)

where 3¢, is given by (1.9) and
JC(}/ = JCo-f‘JCsdo"-—' Z (Ek+dk+'r(lk++ Ek"dk_.fdk_) ’ (42)
k

Eki= efFA y (43)

and

4= j(0)5+0), (4.4)

as one obtains from (1.8) and (1.10).
Denoting by |0) the ground state of 3¢y’ and by | ¥o)
the ground state of 3C, the perturbation expansion for

(Wo|3C| W) is given by®

(Wo|3e | Wo)=(0]3Cs’|0)+(0|3Csd’ [0)

(0[3Cad’ | 2)(|3€4d'|0)

+2 , (4.5
n0 Eo"“ En

where E, and E, are the eigenvalues of 3C’ in the
ground state |0) and in the excited state |n), respec-
tively; (0]3C.4’|0) is equal to zero since 3C,s’ contains
only off-diagonal terms.

The state |0) is characterized by the fact that all
single-particle states e.* below a certain energy u are
occupied and all others are unoccupied. Later, when
necessary, we will replace this square distribution by
the Fermi distribution appropriate to a temperature 7.
We also note that the chemical potential u for 3Co’ is
different from ep, the corresponding quantity for 3Cq.
Denoting by N, the total number of conduction elec-
trons, the perturbed chemical potential u is determined

9 See, for example, C. Kittel, Quantum Theory of Solids (John
Wiley & Sons, Inc., New York, 1963).
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by the condition

1+ 2 1

k (ex=<uw)

Ne= 2

k (eget<p)

vV
=—[ / dk+ dk]
8L ep<uta e<u—4

ptAa pu—A
=/ p(e)de—f—/ p(e)de,
Ey Ey

where £, is the single-particle energy corresponding to
the bottom of the unperturbed band and p(e), the
unperturbed energy-level density of the conduction
electron for each spin state, is given by

(4.6)

vV
p(e)=é; /Bz 8(e— & )dk. 4.7)

The s-d Hamiltonian conserves the total number of
conduction electrons. Consequently, in absence of the
interaction we can write

€r
N o= 2/ p(e)de.
By

Using the Taylor-series expansion of p(e) in the
region u—A<e<u+A4, and equating (4.8) and (4.6),
we obtain

(4.8)

2 / p(e)de=2 / p(detA(w),  (49)
Ey

Ep

where we have kept only terms up to second order in 4.
From (4.9) we derive

2 / p(e)de=—A%'(u) (4.10)
or “
p'(er)
e (4.11)
g pler)

where we can see that u differs from eF only by a term
in second order of the s-d interaction. From (4.11) we
can derive a necessary condition for the validity of
perturbation theory, which is

pller) «1. (4.12)

a1

EFP(GF)
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B. Ground-State Energy of 3C,’

The ground-state energy of 3¢y’ defined in (4.1) and
(4.2) can now be obtained as

Ol/[0)= ¥ &+ T o

k (egt<u) k (e~ <u)

wtAa
=/ (e—A)p(e)de

By
u—A

+ (e+A)p(e)de.

Ey

(4.13)

Using the expansion
p(&)=p()+ (e—w)p (W) +3(e—m) %" W+ - -,

the expression (4.13) becomes

(4.14)

I

(0]5¢/|0)=2 / o(det AT —p()+1p' ()],

By

(4.15)

where, in the second term, we can replace — p(u)+up’ (1)
by —p(er)+erp’(er) with an error of order 4% Taking
into account the result (4.11) the final expression

becomes
(34

(0]5¢5]0y=2 / eo(de—A%(er),  (4.16)

Ey

where the first term is the total energy of the conduction
electrons in absence of the s-d interaction.

The expressions (4.11) and (4.16) are generalizations
of previous results obtained by Yosida? using the
spherical model with ec=#%%k?/2m. The above results
are general; in other words, they do not depend on any
specific assumption on the k dependence of the single-
particle energies €. The only condition for their validity
is that j(kK)u*(r)uw(r) must depend only on the
vectors k’—k, and r, obviously.

V. SPIN POLARIZATION

Now we are prepared to discuss the first term in (3.8).
If we define nt=3"y n %, we obtain

ukA et A
ni=/ p(e)dex/ o(e)de,

Ey By

(5.1)

up to terms linear in A, since from (4.11), u differs from
er only by a term in A2 The result is that

nt=n+Ap(ep), (5.2)
where n=2%N, and 4 = 7(0)5%(0).
Replacing (5.2) in (3.8), we obtain
p+(1)=Uo(1)n=5(0)S*(0) U o(r)p(er)
=+ qz;éofj(Q)Sz(—- Qe Uy(nF(g)+cc.], (5.3)

s-d MODEL

685

where the second term is the Zener-Frohlich-Nabarro!0:1t
(ZFN) polarization.

It is possible to prove that the correct form for the
7ZFN polarization, in the general case, should read

(7(,K) [ 2 (1) | 2 pS* (0)p(er) , (5.4)

where the average of a function ®(k) over the Fermi
surface is defined by

(@(K) )= / B(K)5(e— o)k / / b(e—e)dk, (5.5
BZ BZ

o dSy
(k) I;H/Lg e

where vi=(1/%)gradyex is the conduction-electron
group velocity. In (5.6) the integrals are to be extended
over the Fermi surface, where ¢, =ep.

In the right-hand side of (5.3) we note that the second
term involving q=0 is related to a factor p(er), whereas
the term =0 absent in the third term involves a factor
2F(0).

Now we prove the following important theorem, valid

at T=0°K:
%lig; F(q)=43p(er).

(k) )r= / (5.6)

5.7

The result (5.7) can be proved by calculating sepa-
rately p(er) and the limit in the simple cubic case; this
proof is given in Appendix A. We prefer the demonstra-
tion given here which has the advantage of being
model-independent.

At T=0°K, Eq. (3.10) becomes

dk6(ep— ek)/
BZ BZ €& — €k

where 6(x) is the step function, with value 1 for x>0,
and zero for x<0.

The above expression, as it stands, is not defined at
q=0. If we follow Van Vleck!? and replace 1/(ex— €x)
by its principal part we can see that the limit of F(q),
for q— 0, is a well-defined quantity.

Differentiating F(q) with respect to e we obtain

174
I*(q)=§— 6(k’—k—q), (5.8)

oF(q)
G(g)=
dep
=— dk 8(er— ex) o(k'—k—q)
8m3 Jpz BZ € — €
d 7
_ / dk §(ex— ) (K —k—gq),
BZ Gk"'GI«'
_____ (5.9)

10 C, Zener, Phys. Rev. 81, 440 (1951).

11 H. Frohlich and F. R. N. Nabarro, Proc. Roy. Soc. (London)
A175, 382 (1940).

12 J. H. Van Vleck, Rev. Mod. Phys. 34, 681 (1962).
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or
Vv
G(q—0) =——/ dk 8(er— &) P (5.10)
873 BZ €x— €F
Now, using the representations
1 1 1
w0(ep— ek)=—-—( > , (5.11)
27, €EFp— ék""i)\ €Ep— 6k+i>\
1 1 1
P =-< + > , (5.12)
€p— €k 2 GF—ék—"i)\ €Ep— ek'f-i)\

where A= 40, we obtain

G(q—0)

V 1 1 1
Y
8n8 Jpz  Amil(er—ex—iN)?  (er—ex+iN)2

V9 1 1 1
e
873 der J Bz er—ex—IN  ep— ex—INMmi

1V

=——— dk 6(er— &) =30 (er) . (5.13)
2 81!'3 aép BZ
If we make use of the property
eF
0(er—ex)= d(e—ex)de, (5.14)

—00

and the fact that p(¢)=0 for e below the bottom of the
band, we obtain

€F

p(e)de=%p(er).  (5.15)

F(q->0)=%/

—00

This is a model-independent result valid for arbi-
trary lattice structure; it is also independent of the
assumption of a tight-binding approximation. The
physical reason for this fact is related to the nature of
the s-d Hamiltonian which allows only excitations of
particle-hole pairs with energy eciq— €x, where ecyq is
above the Fermi level, say, and e is below the Fermi
level. Consequently, for q— 0,

€kq~ Eg €F, (516)
so that, in this limit, the excitations are possible only in
the neighborhood of the Fermi surface, at sufficiently
low temperatures, when the conduction-electron mean
free path is sufficiently large.

In the above demonstration we also note that the
quantity A appearing in (5.12) should be the same as
the corresponding quantity at (5.11), so that, if we want
to include phenomenologically the effect of a finite mean
free path, we should include a finite relaxation rate A not
only in P[1/(exr— ex)] but also in the § function (5.11).
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As we see from (5.15) and (5.3), the second term in
(5.3) is exactly the term necessary to complete the sum
in the third term of (5.3), so that we can now write

p(1)=Uo()n=£2_ [ j(q)S*(— e’ *Uq(r)
q
XF(q)+-c.c.],
where we have adopted the definition

F(0)=lim F(q);
40 :

(5.17)

in (5.17), the first term is the periodic charge distribu-
tion in absence of the s-d interaction. We note that
Uo(r) = u*(t)ux(r) is normalized by S yU,(r)dr=1, and
therefore, Uo(r) =~ 1/V in the plane-wave approximation,
so that p,(r) has the dimension of number of electrons
per unit volume.

Using the expressions (1.5) and (5.17), the spin
polarization defined as p(r) =p;(r)—p_(r) has a spatial
distribution given by

p(r)=2 S.*P(r—R,), (5.18)
with '
P(r— Rn)=5\27 % j(q)eir @R (r—R,)
XF(q)+c.c., (5.19)

where we have used the periodicity of Uy(r). We note
that P(r—R,) is not periodic in r.

As we see in (5.18), each localized spin S, gives rise
to a linearly independent contribution to the con-
duction-electron polarization at point r. This fact is
a consequence of the first-order perturbation theory.

In the derivation of (5.18) we have implicitly assumed
that, as the localized spin coordinates S, slowly change
in time, the conduction-electron ensemble reestablishes
the thermal equilibrium almost instantaneously, follow-
ing adiabatically and very closely the variations of S,.
This corresponds to assume that the conduction-electron
relaxation time 7., is very short compared to T4, where
T4 should be the shortest characteristic period required
to describe the time dependence of the S, coordinates.
This point is also discussed by Hasegawa.!?

Now, the hyperfine field seen by a nuclear spin is
proportional to the total electron spin polarization at
the nuclear site. If p(r=0) undergoes fluctuations
produced by the fluctuations in the S, coordinates [see
expression (5.18)], then we can expect these fluctuations
of the conduction-electron polarization to be detectable.
This type of effect is studied in Sec. VII.

The thermal average of p(r) in (5.18) is given by

{p(1))=(Sw*) 2 P(r—R.), (5.20)

where the average (0) of an operator 9(S1,Sq,- - -,Sx) is

13 H, Hasegawa, Progr. Theoret. Phys. (Kyoto) 21, 483 (1959).
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to be calculated by taking into account the fluctuations
in the localized spin coordinates S, (see Sec. VII). In
(5.20) we note that (S,?) is independent of »# from
invariance under translation.

From (5.19) one can see that

2
2z P(r—Rn)=;V- 2 j(QF(q) 2 e R

XUq(x—R,)+ce. (5.21)

is periodic from cell to cell of the crystal. Noting that
U (r) is itself periodic in r, it follows that

Y et R0 Y (r— Ro) = Ug(f)eit N oy 0, (5.22)

and consequently

(p(1)=45(0)Us(r)F(0)(Sw). (5.23)

In the ferromagnetic state, for r=0 at the nucleus,

(p(r=0))=2(0)Uo(0)p(er)SM «(T)/M ,(0), (5.24)
or more precisely
(p(r=0))=2(;j(kk) |1:(0) | *)r
Xp(er)SM (T)/M ,(0), (5.25)

where we have used the property F(0)=3p(er). The
average over the Fermi surface is defined in (5.5) and
(5.6), and M ,(T) is the over-all spontaneous magnetiza-
tion of the localized spins. S is the value of the local spin.

The quantity (p(0)) is of importance in NMR and
Mossbauer experiments. This term, through the hyper-
fine interaction, contributes to the shift of the NMR
frequency and to the separation of the Mossbauer
spectral lines. In terms of hyperfine fields, this is the
field produced by the conduction electrons polarized by
the d electrons. There is another hyperfine field produced
by the core s electrons when these become polarized by
the d-orbit electrons.!* As we see these two terms have
an indirect origin.

It is likely that the core polarization represents an
important or major contribution to the total hyperfine
field. On the other hand, the Mossbauer experimental
data obtained by Stearns and Wilson!® in Al:Fe have
been interpreted in terms of spatial oscillations of the
long-range polarization function P(r) and this seems to
indicate a substantial contribution coming from the
conduction-electron polarization.

In those cases where the conduction-band polarization
provides a substantial contribution to the hyperfine
field, we can expect, according to the present model, a
number of relations between different measurable
quantities. Now, the expression

Y eitR=Ns, (5.26)
R

“D. A. Goodings and V. Heine, Phys. Rev. Letters 5, 370
(1960).

s-d MODEL

687

is valid when we neglect the interband transitions, or
being more specific, is valid for a vector q limited in a
certain region of the momentum space as in (6.11) (see
discussion in Sec. VI). Using (5.26), one can easily
prove that

2 P(Ra)=4(j(kk)|ux(0)[5)rF(0),  (5.27)

and

2 R2P(R.)=—4 lin; vLi(@U0)F(@)]. (5.28)

In some cases, these sums can be obtained approxi-
mately from experimental data. In the Stearns and
Wilson experiment a plot for P(r) was obtained and
from that plot one could calculate the sums (5.27) and
(5.28) if one cut the above lattice sums at the seventh
neighbor.

The continuous integrals corresponding to (5.27) and
(5.28) are given by

4
/ P@I=—(R)FO), (529

and
4
/ PP(r)dr= —— lim V[ /(@) F(q)]
; N a0

4
(e 2)iOF(0), (5:30)
where

(€= / 2] ,(1) | . (5.31)

We note that in some of the above expressions,
wherever possible we are relaxing the restriction
F& K () ue (1) =~ j(k—K)U4(r); for example, we
believe that (5.27) and (5.29) should be valid quite
generally. This is no longer true in (5.28) and (5.30),
where the assumption j(kk’)= j(k—Kk’) is necessary.

In (5.30) we expect the first term to produce the
major contribution, due to the long-range character of
the conduction-electron polarization. The quantity
(r:)1/2 is of the order of a lattice distance whereas the
first term is expected to correspond to a distance of the
order of several lattice distances. For example, in Fe,
the Mossbauer datal!s were sensitive enough to direct a
conduction-electron polarization as far as the seventh-
neighbor shell.

In Ni, if we can consider the range of the exchange
interactions!® between different d spins as related to the
range of the conduction-electron polarization, then we
obtain a range about the same as in Fe.

15 M. B. Stearns and S. S. Wilson, Phys. Rev. Letters 13, 313
(1964); M. B. Stearns, J. Appl. Phys. 36, 913 (1965).

16 R. Weber and P. E. Tannenwald, J. Phys. Chem. Solids 24,
1357 (1963); Phys. Rev. 140, A498 (1965); J. Appl. Phys. 37,
1058 (1966).
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If we compare the lattice sums (5.27) and (5.28) with
the corresponding integrals (5.29) and (5.30) we note
the absence of the charge factor U, in (5.29) and (5.30),
where this factor becomes replaced by 1/N. This fact
is due to the normalization of Uy(r). We also note that
the absence of the factor Ug in (5.29) and (5.30) seems
to indicate their validity even without the assumption
(3.4).

The ratio between

1 1
—> P(R,) and —~/ P(r)dr
fV n V Vv

is given by

V/N PR, P(r)d
(V/3) Z P >//V (D)dr
— () [10) [/ GO L/ V),

and, in this way, we could obtain information on the
amount of departure of |#x(0) |2 from its uniform value
1/V. If we interpolate the Mossbauer data'® in Fe for
P(r), and assume that P(r) is spherically symmetric,
then one could obtain some information about the
integrals (5.29) and (5.30). The difficulty here is that
in Fe, the Anderson-Clogston’ effect seems to play an
important role, so that the effective j(kk) is negative
instead of positive as one obtains from (1.2).

The integrals (5.29) and (5.30) contribute to the
cross section in the elastic neutron scattering!? at small
momentum transfer. In this case the problem is that the
cross section is mainly determined by the d-electron
spin form-factor. In the future, it may become possible
to subtract this contribution by studying the same
process in the ferromagnetic metal containing dia-
magnetic impurities.

Another point to be observed is that if the indirect
exchange becomes really effective, then, as we will see
in the next section, the quantities (5.27) and (5.29) are
related to the paramagnetic temperature, whereas
(5.28) and (5.30) are related to the exchange stiffness

parameter
D=3153 Run¥im.

(5.32)

The dependence of some of the measurable param-
eters on p(er) can be observed in some cases. A good
material for a test of these model-independent relations
seems to be Eug-—.)Gd.Se. These metallic compounds
have been studied by Holtzberg et al.'® The effect of
replacing one Eu atom by Gd seems to be only the
addition of two more conduction electrons without
changing the f sites too much. A variation of the
paramagnetic temperature with electron concentration

17 See, for example, Thermal Neutron Scaitering, edited by P. A.

Egelstaff (Academic Press Inc., New York, 1965).
18 F, Holtzberg, T. R. McGuire, S. Methfessel, and J. C. Suits,

Phys. Rev. Letters 13, 18 (1964).
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has been interpreted in terms of the RKKY spherical
model.

VI. EFFECTIVE HEISENBERG SPIN
HAMILTONIAN

We now turn our attention to the last term in (4.5).
We note that |0) and |#) are eigenstates of 3Cy’ with
eigenvalues Eq and E,. With an error of the order 73 we
can replace |0) and |#) by the corresponding eigenstates
of 3Cp. Without introducing a new notation for this
replacement, we note that the excitations allowed by
the off-diagonal part of 3C,q [Eq. (1.9)] are the states
involving a particle-hole pair of the form

[n)=aw ok, |0), (6.1)
where (k'c")# (ko), with & and e below and above the
chemical potential e, respectively. The matrix elements
of 3C,4’ can be shown to be
(03Csd" [ )= — j(k—K)me(1— 1)

X [(1 - 6kk')6¢m’S¢m(k’— k)
+(1“6¢¢’)S¢rv’(kl—'k)]; (62)
where we have replaced the square Fermi distribution

by the corresponding distribution 7, at a given

temperature.
Adding over all possible intermediary states, and

noting that E,= E+ e — e, one obtains
Ol 112 e Kmli—ne)
n EO“'En k’'k
X[ Sa(k—K) [+ [Sy(k—k') [*]
2(k—K)nxe(1— 120
p o PETIOUT, oy

k'/#=k €x— €k’

€ €’

(6.3)

The term k’=k lacking in the second summation in
(6.3) can be shown to be exactly the term — A2%o(er)
= — 52(0)|S.(0) | 20(er) coming from the diagonal part
of 3C,q [see (4.16)]. Adding together all the second-order
terms we obtain the result

C‘Css(z) = '—'Z szSr Sm B (64)
im

where )
Jim=J(Rin)=+—2 jAqe't®mF(q). (6.5)
N2 q

We note in (6.5) the absence of Uy(r). The reason for
this is that the effect of non-plane-wave character of
¢i(r) is already taken into account through the appro-
priate single-particle energies e, which are present in
the expression for F(q). We also note that the summa-
tion (6.5) is real since 7(—q)=j(q) and F(—q)=F(q).

Another point to be observed is that instead of
7%(q)F2(q), we have j2(q)F(q) in (6.5). This is easy to
understand if we remember that each factor (e, — e )™!
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in a perturbation expansion gives rise to a factor F(q),
as in the expression for the polarization.

The indirect-exchange interaction in finite at R;,,=0,
as well as is the electronic polarization P(r) at r=0.
This fact is related to the neglect of interband transi-
tions which introduces a cutoff in F(q) for large values
of | q|. The self-energy contained in (6.4) is a constant
given by

Heri=—NJ(R=0)S(S+1). (6.6)

The type of periodic ordering resulting from the
Hamiltonian (6.4) is determined!®:2® by the vector kg
for which the quantity

Jx=253 J(R)eR

R0

6.7)

is a maximum.

Assuming ferromagnetic order and applying the
Holstein-Primakoff?' approximation, we obtain at low
temperatures

SCSSQ) _Scseli= "‘SZZVJQ“I"Z hwkbk*bk s (68)
k

where byby is the number operator for a spin wave and

hwe=2S 3 J(R)[1—eiR], (6.9)

R50

In (6.9) we can include the term R=0, since only the
difference Jo—J appears. One can show that
feow=(4S/N)[j*(0)F(0)— 7*(k)F(k)],  (6.10)
where the vector k belongs to the first Brillouin zone.
We note that F(q) is defined in a region larger then the
first Brillouin zone. With the neglect of interband
transitions this region becomes finite. In the spherical
model'—3 the field of definition for the function F(q)
becomes extended to infinity.

When we compare expression (6.10) with the corre-
sponding quantity obtained by Kasuya! [Sec. V,
Eq. (3)], we note in (6.10) the absence of terms in-
volving K50, K being a vector of the reciprocal lattice.
We will call these K0 terms “umklapp terms.” It is our
opinion that in a model where indirect exchange is
mediated by the conduction electrons, these umklapp
terms are related to the interband transitions.

This point becomes even more evident when we
note that in the spherical model'~® the expression
ee=7%%k2/2m has its validity extended to the whole
momentum space; this corresponds to the extended
zone scheme where e, x=#%2(k+K)2/2m. The object K
corresponds to our band index I

Another argument in favor of the absence of umklapp
terms in (6.10)—when we neglect interband transitions

19D, H. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 (1960)
20T. A. Kaplan, K. Dw1ght D. Lyons and N. Menyuk J. App
Phys. 32, 13S (1961), . H. Lyons, Phys. Rev. 126, 540 (1962),

N. Menyuk ibid. 127, 1983 (1962).
2T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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—is obtained if in the expression (6.9) we replace J(R)
by its expression (6.5); in the particular case of simple
cubic structure the vector q in (6.5) is restricted to a
cube given by

—2r<aq;<2r, 6.11)

where the equality sign is not allowed since —w <ak; <7
and —w<ak/<w. Another way to understand that
(6.11) is the correct field of definition for the vector q is
to replace the sum (6.5) by its corresponding integral

27

N2 878

+27/a
F(q) j2(q)e~"1Rdq,

~2m/a

(6.12)

whose boundary contains, for example, the point
= (2r/a,0,0) where F(K) is not defined, although we
could extend the definition by taking

F(K)=lim F(K+k)=3p(er).
Consequently the Van Vleck!? requirement by which

we must replace (ex— €)~! by its principal part makes
it necessary to define the integrals

2r/a
/ dgy - (6.13)
~27[a
as
2r/a—e
lim / dge- -, (6.14)
>0 —~27/ate

so that the surface of the cube (6.11) must be excluded.
It is shown in Appendix B that the exclusion of the
surface in these sums may also be related directly to the
Bragg condition.

The above discussion, restricted to simple cubic
structure, can be generalized immediately to other
structures, so that in this sense, expression (6.10) is
model-independent. The absence of the factor Uy(r) in
(6.5) and (6.10) seems to indicate that the assumption
(3.4) can be partially relaxed, whereas the assumption
7(k,k")= j(k—k’) continues to be necessary.

VII. SPIN-DENSITY FLUCTUATIONS

The thermal average of an operator 0(Sy,Ss,- - -,Sw)
is here defined by
<®(Sl,82, T >SN)>

_Tr[O(Sl,Sz,' : ':SN) exp(_ﬂscss(z))] (7 1)

Tr[exp(——BSCss(?))]

where 3Cgs® is the effective indirect-exchange Hamil-
tonian (6.4), and 8=1/kpT, where «p is the Boltzman
constant.

From (5.18) we obtain

([p(0) = (p(0)) 1) =2 k@ (Ryun) P(Rm)P(R.) ,  (7.2)
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where «®(R,,,) is the spin correlation function between
the spin at site 7 and that in site », defined by

Kz(Rmn) = (szSnz>'—' <Snz><sz> . (7.3)

This is the proper correlation function in the ferro-
magnetic state, where z is a well-defined direction along
the easy axis of spontaneous magnetization; in the
paramagnetic region it would be more appropriate to
replace @ by 3x(R), where

x(R)=(8(0)-S(R))—(8(0))-S(R))  (7.4)

is the correlation function studied by Van Hove?? in
connection with critical neutron scattering.

In the ferromagnetic state, using the spin-wave
approximation?! we obtain

1
(SeSyzy=52—25— (byby:)
N ik’

1
2 2 (bbb )ef @ OR, - (7.5)

]\72 kk’ qq’

+

where b, is the creation operator for a spin wave of
momentum k.
For boson operators?
(bi"byr) = i N (7.6)
where

Ny=(efhox—1)"1, 1.7

Using Wick’s theorem,?® the thermal average in the
third term of (7.5) can be shown to be

Bkkféqq»Nqu-{— 6kq' 6qk: (Nq“}"l)le. (78)

Applying the same procedure for (S=(0))=(S*(R)),
we obtain

1
k@ (R)=—23" Ny(Nyp+1)ei® )R, (7.9
N2 ek
Noting that
> e=RaP(R,)=45(k)Ux(0)F (k) , (7.10)

n

the expression for the fluctuations in p(0) can be
written as

16
([ 0)~(p(O) )=, & Na(Nu-1)

X[ jk—K) U (0)F(k—K) 2. (7.11)
Assuming that the major contribution comes from
k=~k’~0, due to the factor NNy we obtain for 7T,

(Lp(0)—(n(0))1%)
~[(2C/7)¢(3)7(0)Uo(0)F(0)J*(xksTa?/D)?,

221, van Hove, Phys. Rev. 95, 1374 (1954).

23 See, for example, A. A. Abrikosov, L. P. Gorkov, and I. E.
Dzyaloshinski, Methods of Quantum Field Theory in Statistical
Physics (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963).

(7.12)
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where

C= / e xtdx=1\/r.
0

These fluctuations in the conduction-electron spin
polarization give rise to a broadening of the linewidth
in NMR and Mossbauer spectra. To this contribution
we have to add other terms, as, for example, the
Korringa? linear term in T associated with the pure
hyperfine interaction between the nuclei and the
conduction electrons.

In the paramagnetic region the correlation function
becomes nearly a 6 function for 7"— 0, since different
spins are uncorrelated. In this case we can write

(Lp(0)—(0(0))1*)=1%x(0) %ﬁ PAR),  (7.13)

where «(0)=S(S+1). At finite temperatures one
should include a correction factor

TX/C~T/(T—0),

where X is the magnetic susceptibility and C is the
Curie constant. The final expression becomes

T
([p(O)—(p(.0)>]2>=%5(5+1)T—_é %‘, PXR), (7.14)

so that near the transition region we should expect a
maximum in linewidth, as it is well known.

We note that a quantity similar to }_r P2(R) appears
in the high-temperature expansion of the paramagnetic
susceptibility, i.e., the coefficient B’ in (8.1) (see
Sec. VIII) is proportional to

> JXR).

R0
VIII. PARAMAGNETIC AND CRITICAL
TEMPERATURE
A. Paramagnetic Temperature

In the paramagnetic region we can expand the
magnetic susceptibility in a power series? of 1/T of the

form
1 T 6 B
~=—(1———+_+"'>, (8.1)
x C T 712

where C is the Curie constant and 6 is the paramagnetic

temperature.

From the Heisenberg Hamiltonian (6.4) one can
derive?6:27 the result

kp0=%S(S+1) > J(R), (8.2)
R0

24 J, Korringa, Physica 16, 601 (1950).

26 W. Opechowski, Physica 4, 181 (1937).

26 A. Blandin and J. Friedel, J. Phys. Radium 20, 160 (1959).
27 A. W. Séenz, Phys. Rev. 119, 1542 (1960).



166

where we can see immediately that, except for a term
involving J(R=0), the paramagnetic temperature is
related to the quantities >, P(R,) and S yP(r)dr in
(5.27) and (5.29). The expression for 6 can be shown
to be

2
kpl= %S(S—I—1)|:Ej2(O)F(0)—](R=0)] , (8.3)

where we have only assumed that j(k k)= j(k—Kk).
We believe, without proof, that the correct expression in
the more general case can be obtained with the replace-

ment
7%0) = (72(k,K))r,

in the first term of the bracket in (8.3).

In the particular case of the simple cubic structure,
and with the help of the assumption j(k,k’)=const, we
will be able in Sec. IX to obtain explicit expressions for
J(R=0) [see (9.30)], as well as for 6 [see (9.32)], both
as functions of ep in terms of tabulated functions. We
also obtain numerical values for the paramagnetic tem-
perature as well as for other parameters, as functions
of ep. In this way we can study the problem mentioned
in the Introduction and obtain the dependence of the
magnetic properties on the electron concentration.

(8.4)

B. Effect of the Temperature Dependence of the
Indirect Exchange on T,

Another point to be observed is that in the above
expressions we are assuming that the temperature is
sufficiently low compared with T, the Fermi tem-
perature. Otherwise a correction factor of the form

[1—(T/Tp)* )= e o 8.5)

must be taken into account.
In the molecular-field approximation the critical
temperature is also given by

ksTo=3S(S+1) 22 J(R), (8.6)
R0

where T is a well-defined temperature; here J(R) is to
be evaluated at T=0°K.

If T is not so small as compared to Tr, then we must
include the correction (8.5). In this case 7. must be
obtained self-consistently through an equation of the
type T.=function(7)=function(7';). Then we obtain

Ty= Toe b Te/TR)? (8.7)

In the case T(<KTr, we can solve this equation by
an iteration procedure with the result

T, Toe— T/ TH)?

8.8)

This is the appropriate expression for our model,
since Ty Ty is a necessary condition for the validity of
perturbation theory; it is plausible that (8.8) may be-
come useful even in cases where the conduction band
involves non-s-character. If the dominant Heisenberg

s-d MODEL

691

Hamiltonian comes about as a consequence of indirect
interactions mediated by the conduction band, then
(8.8) may become a not bad approximation. This case
seems to be of some interest since most of rare-earth
and transition metals have a Fermi temperature rela-
tively low compared to that in noble metals.

C. Critical Temperature in Dilute
Magnetic Alloys

In the case of dilute disordered alloys, it has been
customary?® to replace in (8.6) the sum > rxoJ(R) by

léﬂﬁ(R)J (R)=c¢ léoJ (R), (8.9)

where p(R) is the probability of finding a magnetic im-
purity at site R,=R, and ¢=N¢/N is the atomic
concentration of magnetic impurities. The above result
(8.9) is valid only at low concentrations for ¢«<1; in
other words there are corrections involving terms
in ¢ etc.

Now, if we accept (8.9), then in (8.8) we must replace
To by ¢T, and in this case—for a disordered alloy as
Fe:Au and possibly Gd:Pd or Fe:Pd—we obtain the
following expression for 7':

T,=cT e~ (To/TF)? , (8.10)
where T, as given by (8.6), is nearly independent of
concentration.

As we see in (8.10), T./c is no longer a constant
independent of concentration. That is, for 5> 0, the slope
of the curve T, versus ¢ tends to decrease with increasing
concentration. It seems that a number of alloys follow
this rule not only with respect to the critical temperature
T. but also for the paramagnetic temperature 6.28:2%
This effect should be more noticeable in materials for
which To/Tr is not so small. The dependence on Ty/Tr
could provide another check for the formula (8.10).

Evidently, in a careful study we have to include in
(8.9) corrections involving ¢* and ¢®. We must note
furthermore that T'g and Tr may change somewhat with
alloying, but this change is probably small at low
concentrations. Some applications of formula (8.10)
are being prepared.

For the pure metal case we can write (8.6) in the form

ksTo=%S(S+1)[(2/N);*(0)F(0)—J (R=0)].

We note in (8.11) that F(0)=23p(er)~N/4B, where 2B
is the width of the conduction band.

The quantity J(R=0) may be shown to depend on
the level-density function not only near the Fermi
surface, but over the whole bandwidth.

8.11)

28 R, J. Borg, R. Booth, and C. E. Violet, Phys. Rev. Letters 11,
464 (1963); J. Crangle, ibid. 13, 569 (1964).

29 R. M. Bozorth, P. A. Wolff, D. D. Davis, V. B. Compton,
and J. H. Wernick, Phys. Rev. 122, 1157 (1961); J. Crangle and
W. R. Scott, J. Appl. Phys. 36, 921 (1965).
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D. Pressure Dependence of T,

The pressure dependence of T'. has been studied by a
number of authors.?%:3! A part of the pressure depend-
ence of T, is associated with the quantity

dJ(R=0) 9J(R=0) der
= — (8.12)
ap dep ap

for this reason we now consider the derivative of
J(R=0) with respect to ep.

With the assumption j2(q)= 72(0)= const, and using
(6.5) and (3.10), we obtain

aJ(R=0) 2 _2<O)|:V s )
3O 5 [ A= |

|4 1
X[—-—-/ dk'P :| (8.13)
8¢ Bz € — €F

Noting that

1 1 1 1
- ““‘*‘**—.= 6(6— ek)+—P )

IT €— ex—1A I €—é€x

(8.14)

we can define®? a complex level-density function whose
real part is just the usual p(e). In this way we can write
(8.13) in the form

dJ/(R=0) 27
——————=—72(0)pr(er)pr(er), (8.15)
Jdep N2
where
4
or(er)= / 8(ep— ex)dk (8.16)
(2m)3 Bz
and
Vo1 1
pr(er)= —/ P dk. (8.17)
(27!’)3 m™JBZ €k €Ep

We note in (8.15) the presence of the level density
p(ep) at the Fermi level. This is an indication that the
quantity 9J(0)/dep is now less sensitive to the details
of the conduction-electron energy spectrum. For this
reason, we believe that a relaxation on the assumption
7k k)= j(k—k’)= j(0) seems possible, in this case; a
reasonable guess seems to be the replacement, in (8.15),

72(0) = (7(k,J)r(j (I, K))r,

where the first factor is defined in (5.5) and the second

30 S, H. Liu, Phys. Rev. 127, 1889 (1962).

31 D, Bloch and R. Pauthenet, in Proceedings of the International
Conference on Magnetism, Nottingham, 1964 (Institute of Physics
and the Physical Society, London, 1965), p. 255.

32T, Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963);
%).()Vg‘)shista and J. Mahanty, Proc. Phys. Soc. (London) 85, 1215

1965).

(8.18)
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average is defined by
(7 K))r

1
= / (k) P———dk / / P
BZ €x— €EF BZ

in analogy with (5.5).

1
dk, (8.19)
Ex— €p

IX. EXCHANGE MOMENTS

In connection with the expansion of (6.9) in a power
series of k2, we define the following exchange moments:

(R2)=ZR: R2J(R)/J g, 9.1)

(R4)=ZR: RYR)/Jz, (9.2)

(RA+RAMHRNH=Y (RARAHRAHIR) /T, (9.3)
R

where Jg is a constant with the dimension of an ex-
change energy to be specified later; in this form (R?")
has the dimension of a2, where a is a lattice distance.

If the ordering becomes ferromagnetic, then some of
these exchange moments can be measured at low tem-
peratures. The T-dependent spin-wave energy has been
shown?33 to be

#we(T)=D(T)k?, (9.4)
for k?a2<1 in cubic systems; in (9.4),
D(T)=D,(1—ET%"?), 9.5)
Dy=1STg(R%), 9.6)
and
PRI ©.7)

NS (R?

The quantities Do and E have been measured for some
ferromagnetic metals, using spin-wave resonance in
thin films,6:35 so that information about (R2) and (R*)
has been obtained.

It is our purpose in this section to investigate the
effect of a multiply connected Fermi surface on the
exchange moments (R?*), or, being more specific, to
study what occurs when ey reaches a critical value ¢; for
which the Fermi surface touches the Brillouin-zone
boundary.

This is evidently a discontinuous process. The dis-
continuous expansion of the Fermi surface has been
shown?¢ to be described by a certain singularity in the

33 F. Keffer and R. Loudon, J. Appl. Phys. 32, 2S (1961).

8 W, Marshal, in Proceedings of the Eighth International Confer-
ence on Low-Temperature Physics, London, 1962, edited by R. O.
Davies (Butterworth Scientific Publications, Ltd., London, 1963).

35 H. Nosé, J. Phys. Soc. Japan 15, 1714 (1960); 16, 342 (1961);
16, 2475 (1961).

3 See, for example, N. F. Mott and H. Jones, The Theory of the
Properties of Metals and Alloys (Dover Publications, Inc., New
York, 1936).
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level-density function p(e). It seems that these van
Hove® singularities have never been directly observed,
probably because of some smearing out associated with
electron-phonon or other interactions. Anyway, it is
reasonable to expect a rapid variation of p(e) and its
derivatives in the neighborhood of the singularity.

It has been shown?7:3 that these singularities are
described by the critical points in the single-particle
dispersion relation e=e,. With the tight-binding ap-
proximation we will be concerned in the simple cubic
case with an analytic critical point (saddle point),
whereas in the body-centered case the corresponding
singularity is a nonanalytic critical point producing a
In?|¢| singularity in p(e).

The level-density function and its derivatives are
related to the behavior of the function F(q) in the
neighborhood of q=0. It seems reasonable to expect
that, at least in the neighborhood of the critical points,
we can replace

(k) — j2(ke k)= const, (9.8)

where k. is a critical momentum.

A replacement similar to (9.8) has been employed by
many authors in connection with the spherical model,
by taking j2(kk’)= j2(k—k’)= 72(0). We must note
that in the spherical model p(€) <4/ € is a rapidly varying
function of €, for e— 0; since in this case k=0, the
replacement corresponding to (9.8) should read

i K) — 5(0,0)

in the spherical model.

If the magnetic ordering is not ferromagnetic and in
(6.7) the maximum in J, occurs at g= g, it is probable
that the proper replacement corresponding to (9.8)
would be

(9.9)

7k K) — 7%k, k.4-qo) = const. (9.10)

In the case of qo5%0, i.e., spiral ordering, a study of
the quantities (R2*) may help in the determination of
the maximum in J, and its location. It is worthwhile to
note that if we compare, for example, (R*) with (R?),
the quantity (R%) is, in a sense, of a more important
physical significance than (R?), since in (9.2) the long-
range comeponnt of J(R) is more heavily represented
than in (9.1). We also note that the cut in F(q) for
|q| 2 27/a introduced by the neglect of interband
transitions does not affect the long-range component
of J(R) or of the conduction-electron polarization.

With approximation (9.8) we obtain in (6.5)

2 14
J<R>=];;j2<kc,kc>——— F(qeitRdq, (9.11)

(2m)?
where we have already replaced the sum in q by the

% L. van Hove, Phys. Rev. 89, 1189 (1953).
38 A, A. Maradudin, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1963), Suppl. 3.
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appropriate integral. We note in (9.11) that j2(k.k.)
may change from one singularity to the other.

In (9.11) the function F(q) is zero outside a region
about twice as big in each direction as is the Brillouin
zone. Consequently, we can develop F(q) in a triple
Fourier series. We will see that not all Fourier coeffi-
cients of F(q) are described by the integral in (9.11).

We also note that (9.11) may be considered as model-
independent in the sense that it could be applicable to
arbitrary lattice structure, in materials where interband
transitions are known to be irrelevant.

It does not seem to be a simple problem to calculate
the integral (9.11) for the face-centered and body-
centered structures. In those cases as well as for more
complicated structures the best way seems to be some
adaptation of the critical-point method.®® In this paper,
we will restrict ourselves to the simple cubic case, since
we are interested only in the qualitative features of the
model.

At this point, and noting (2.12), it is convenient to
define the dimensionless quantity

cx=—2y cosk;, (9.12)
J
where we note that for k— 0,
o= —3+3k?, (9.13)

so that with B<0, the bottom of the band is located at
ex—m0=—1B| or w=—3, where w as defined in (2.14)
describes the location of the Fermi level. Working with
dimensionless momenta we obtain from (3.10)

= g
\Q)=——-—=Ja),
|B| (2m)®
where 2| B| is the width of the conduction band and

f(q) is a dimensionless function given by

(9.14)

f= | dkoto—cy

—r . 1
X / dK'P
—_r Cx'—Ck

where dk=dk,dk,dk, and the region of integration is
defined by —7 < k<7 and —wr <k <.
Noting that f(q) is zero outside the cube

—2r<q;i<2r, (9.16)

we can expand f(q) in a tridimensional Fourier series

fl@=2 f(n)eirni2, (9.17)

(9.15)

3(k'—k—q),

where #;=0, =1, &2, - - -.
The Fourier coefficients f(n) are given by the triple

integral
1 2T

= (9.18)
7 —or

f(n)=

fl@)ein2dq,
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J(R=0)
3 —
rZJE
2
A
o 1 1 1 I 1
-3 -2 -l o | 2 3
w

Fic. 1. J(R=0)/x%J g versus . In this and in subsequent figures,
w is a measure of the position of the Fermi surface, as defined by
(2.14). The conduction band is empty at w= —3 and full at w=+23.
The symmetry about w=0 reflects the similarity between the
electron surface as developed from w > —3 and the hole surface as
developed from w< +3.

where the factor 3 in the phase is related to the length
4 of the sides in cube (9.16). With these simplifications
and using (9.11), (9.14), and (9.18) we obtain

JR)=Jgf(2n), (9.19)
where k)
6 si(kk.
p=————|B], (9.20)
7l'3 B2
and Rj=an;.

If we compare J(R) and P(R) in (9.19) and (5.19),
respectively, we can see that, except for an extra factor
Uy(Ra)=Ug4(0) in the integrand (5.19) both quantities
are related to f(2n).

From (9.15) and (9.18) it can be shown that the
Fourier coefficients f(n) are all real and symmetric, i.e.,

f*(@m)= f(n), (9.21)
f(—=n)=f(n). (9.22)

Now, instead of working with the function f(q) in
(9.15), it is convenient to define

(@)

dw

and

g(g)=

d(k'—k—q) (9.23)

- / dkd(w—cy) [ dkP

- -7

Cxr—w

and the corresponding Fourier coefficients

1 o2
gm)=—-0 [ g(q)ein/dg; (9.24)
(47")3 —27
in order to obtain f(n) we use the property
fn)= gn)dw. (9.25)

-0
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Using the integral representations

o0
S(w—cx)=— ety
T J -
1 0
=/ e M sin(ow—w) EdE, (9.27)
0

(9.26)

P

Crr—w
with A=+-0, we show in Appendix B that

g(2n) = — 72 (—1)retmtnCo(w)Sa(w),  (9.28)

where

(o)} G 070000, 02

and J,(?) is the ordinary Bessel function of integer order
and real argument.®®

The Fourier transforms (9.29) have been employed
in a paper by Wolfram and Callaway®? where we can
find a table for the first four quantities C,(S4) as func-
tions of w. Noting that Cn(w) is an even function of w,
whereas Sy(w) is odd, with help of their table? we have
calculated the quantity

T(R=0)/x2 = — / * Co@So(@)dw,  (9.30)

—3

with the result shown in Fig. 1.
Figure 2 is a plot of the quantity [see (8.15)]

dJ(R=0 312 g
_ )/( )=Co(w)50(w).

(9.31)
aép !B]

Using the expression (8.3) for the paramagnetic tem-
perature, combined with (5.7) and the expression (A3)

dJ(R= .
_8JR=0) ;. 2

6 d€p 18l

-3 -2 - [o] | 2 3

F1c. 2. —[J(R=0)/3er]/[(37%T 5)/|B|] versus w. The electron
surface touches the Brillouin-zone cube face centers at w=—1
and the cube face edges at w=-1. Correspondingly, the hole
surface touches its Brillouin-zone cube face edges at w=—1 and
cube face centers at w=-41.

39 G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, Cambridge, England, 1952).
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P and
% +ow
2 2 (=)™ a()Ta(8)
173 3t&
~——J It o-—s+0 |- 040
i+ & t+£
T In Appendix C we show that using (9.38), (9.39), and
(9.40) we can calculate the exchange moments (9.1),
(9.2), and (9.3) as well as Y_r J(R). The results can be
written in the form
o ] ! 1 1 1
-3 -2 - o] 1 2 3 60
w —(1)=30Co(w) , (9.41)
F1c. 3. 8/6* versus w. w?
. . . 60
for the level-density function, we obtain —(R?)/a?= —5[Co(w)+wCd(w)], (942)
71'2
s+ [ Colw)Salw)d 0.3 60
—=} 32
0* 2 0(w)+ s 0(60) 0((-0) w, ( ) —‘2‘<R4>/a4=ZECD(O’)_I"ZCUCO’(W)
where " 3w +6)Cy” 9.43
k50*=25(S+1)1% &, (9.33) +3(w*+6)Co"(w)], (9.43)
60
and J g is defined in (9.20). In Fig. 3 we plot the quantity —{Rs*+Ry*+R:*)/a*=Co(w)+wCo'(w)
6/6* as a function of . g .
For the calculation of the exchange moments, we +9C"(w), (944)
note that g(2n) in (9.28) can be written in the form where
H=2JR)/JE, (945)
g(2n)= —x*(—1)ratrrins x
and
® Co(w) = p(er) (9.46)

X / coswidt / sinwfdéGa(t)Ga(8), (9.34)
0 0

where

Gn(t) =H ]nj(i) ’ (935)

so that, for example,

1 9
— — S JR)=—r
JE 0w R
X / coswidt / sinwédfoe®(4,£), (9.36)
0 JO

where

r(i)= ¥ (~0OLG. 03]

From the addition theorem?® for Bessel functions,
one can show that for £>0 and £>0

+o0

2 (=)WOTW(H=To(t+8),

ne=—

(9.38)

+o

t
5 (=)t (8)= —+—ifl<t+s>, (9.39)

n=—o0 t

is the dimensionless level-density function defined in
(A4). In the above expressions, Cy’ and Cy”’ are the first
and second derivatives of Co(w) with respect to w. A
plot of the above level-density function in the simple
cubic case as compared to the spherical-model level-
density function is given by Mott and Jones.3¢

We note in (9.41)—(9.44) that, since Co(—w)=Co(w)
is an even function of w, the above exchange moments
are also even functions of w, or in other words, the
exchange moments are symmetric under particle-hole
transformation. This is a model-independent property
related to the form of the s-¢ Hamiltonian.

As we can see, with the approximations used in this
section, the exchange moments are related to the level-
density function p(er) and its derivatives at the Fermi
level. We have already shown that (9.41) is model-
independent, i.e., valid for any lattice structure. We
note in (9.42) that wC¢'(w) is invariant under a change
in the scaling of the bandwidth. Using the method of
Nitsovich® one can show that (R?) is proportional to
—[p(er)+erp’(er)] for the bee structure in the tight-
binding approximation. Consequently, (9.42) is very
probably valid for all lattice structures.

40V, M. Nitsovich, Phys. Metals Metall. 6, 22 (1958).
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TaBLE I. Numerical values of various terms in the calculation of (9.30), (9.31), (9.32), and (9.42) in a simple cubic crystal.
23 — S =3°CoSodw 3Co 0/6* CoSo Co —wCo — (Co+wCy")
0.0 0.302 0.448 0.145 0.000 0.895 0.000 —0.895
0.2 0.299 0.449 0.150 0.066 0.898 -0.002 —0.900
0.4 0.289 0.448 0.160 0.137 0.897 0.002 —0.894
0.6 0.271 0.450 0.179 0.217 0.900 —0.010 —0.909
0.8 0.244 0.453 0.209 0.323 0.907 —0.029 —0.934
1.0 0.199 0.435 0.237 0.525 0.871 0.181 —0.689
1.2 0.152 0.308 0.157 0.387 0.617 1.522 0.905
1.4 0.117 0.253 0.136 0.307 0.506 0.776 0.269
1.6 0.090 0.213 0.123 0.252 0.426 0.643 0.217
1.8 0.067 0.180 0.113 0.207 0.360 0.591 0.231
2.0 0.048 0.152 0.104 0.171 0.304 0.562 0.258
2.2 0.033 0.127 0.094 0.139 0.254 0.553 0.300
2.4 0.020 0.103 0.082 0.110 0.205 0.578 0.373
2.6 0.010 0.079 0.068 0.083 0.158 0.611 0.452
2.8 0.004 0.053 0.049 0.055 0.106 0.732 0.626
3.0 0.000 0.000 0.000 0.000 0.000 1.593 1.593

Noting in (9.43) that the width for w is 6, a generaliza-
tion of (9.43) can be obtained if we scale the bandwidth
in proportion to the coordination number, i.e., the
number of nearest neighbors. It seems that, with these
adjustments, the expressions for the exchange moments
can be generalized for other lattice structures. Calcu-
lations for bee are now in progress.

For the simple cubic system, we have calculated
numerical values of the quantity Cy'(w) from the first
differences in the table for Cy(w) given by Wolfram and
Callaway.?? In this way we have determined approxi-
mately the quantity

- [Co(w) +awC o’(w)]

related to (R2). In Fig. 4 we plot the result for (9.47).

For a comparison of the relative importance of the
different terms in these calculations, in Table I we show
the numerical results for the simple cubic case.

9.47)

2.0 i
1z (%
7 o2
| ':
1.0 ]
0 i 4 1
—
-10 |-
! 1 | ! 1
-3 2 - 0 \ 2 3
w

Fic. 4. (12/x%)(R2)/a? versus w.

There is no point in going on to the calculation of
(R%), since the use of second differences in the tabulated
values of Co(w) would make the results imprecise.
Qualitatively we can say that the discontinuities in
(R*) can be expected to be more dramatic than those
for (R?). Some preliminary calculations indicate that,
for the simple cube and for the bcc structures, the
over-all behavior of (R*) as a function of ez is one
following roughly as the derivative of (R%) with
respect to erp.

We have also examined the behavior of (R2) and (R*)
in the limit w — —3, where the Fermi surface becomes
spherical. Noting (9.13), we can write

Av=w+3~1kpa®. (9.48)
In Appendix D we show that, for Aw— 40,
1
Co(~3+Aw)z~f(Aw)‘/2; (949)
V2

in this way we can determine the first and second
derivatives of Cy(w). In this region, the major contribu-
tion to the exchange moments comes from the last term
in (9.42), (9.43), and (9.44). Retaining only the domi-
nant terms we obtain the result

(R2) 1
—a—z—oc G (9.50)
(R% 1 1
at - _E (Aw)?r? , —
(R:A+R R4 3 1
o —— , (9.52)
at 10 (Aw)?/?

and consequently, using (9.48) and (9.50)-(9.52),
(R%)
a*(R?)

(9.53)

=—1/ks'a?,
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and
(RARR,%)

+1.
®Y

(9.54)

Expression (9.53) is just the result obtained by
Kasuya,! with the neglect of interband transitions
(umklapp terms); (9.54) is a new result. We also note
that (9.50)—(9.54) are structure-independent, since they
correspond to kr’a?— 0.

Using the critical-point method?®® one can show that,
for the sc system, near the first singularity wy=—1 (see
Sec. II), i.e., for w= —1—1, with || <1, the dimension-
less level-density function Co(w) can be written as

Co(w)=G(w)+S(w), (9.55)

where G(w) is analytic in the neighborhood of w=—1,
and S(w) is the singular part given by

S(w)=—Q+/n for >0,

C
=0 for 7<0; (9.56)

Q is a positive constant.

Using (9.55), (9.56), and the expressions (9.42)—(9.44)
for the exchange moments, and keeping only the
dominant terms involving the derivatives of the
singular contribution .S(w), we obtain the results

51
(R?)/a?oc -~ — | (9.57)
24/7
71
RY/ato - ——, (9.58)
4/
9 1
(R*+Ry*+R.4)/at e +— ——, (9.59)
4 v/
valid for the simple cubic structure, for w=—1—7,
with 0<5<<1; consequently, one obtains
4 (R%)/a*(R%)~+(7/10)(1/7) (9.60)
an
(RA+RA+R.4/ (R~ 4-(9/7). (9.61)

The above results are valid only for wS—1, ie., just
before the formation of the multiply connected Fermi
surface. In this region, a very small increase of electron
concentration is capable of producing relatively large
variations in the magnetic properties. This fact seems
to rise some doubts on the applicability of the pertur-
bation theory. The same problem seems also to occur
in the region corresponding to the spherical model, i.e.,
for kra<l1.

For 0<5<1 we can obtain positive values for (R?)
and for (R, a result which is consistent with experi-
mental data for some ferromagnetic metals. We also
note that relatively large values for the ratio (R¢)/
(a*(R2)) can be obtained in the region 0<7<1, in
contrast with the negative value obtained by Kasuya!
[see (9.53)] in the spherical model, i.e., for kpa<<1.
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As a last comment, the quantity

D« 3 R2J(R)

R#0

(9.62)

can also be calculated from the tables obtained by
Mattis?! for the quantity Jy in (6.7) for the three cubic
systems, using the spherical model. The exchange
stiffness can be calculated graphically from the appro-
priate slopes of the curve J, versus g2 In this way we
can take into account the umklapp terms not included
in the expressions (9.50)—(9.54).

We note that the expression used by Mattis for the
conduction-electron polarization includes phenomeno-
logically a conduction-electron relaxation time T,
assumed to be a constant. This procedure introduces a
cutoff of the polarization at large distances.

The results for the graphical determination of D are
shown in Fig. 5, where the different curves are normal-
ized differently; we are concerned only with their &g
dependence.

One can also plot the above graphically obtained
(R?) versus (kra)~! for a check with (9.50). The result
indicates that, with the introduction of Mattis’s
relaxation time, the quantity (Aw)'’? in (9.49) should
be replaced by (Aw-+a?)'’?, where a is a constant. This
indicates that the effect of a finite conduction-electron
mean free path is to round off the sharp discontinuities
and kinks. A good guess seems to be that the absolute
value of the exchange moment (R?") should be limited
by a condition of the type

[(R#) <1, (9.63)

where /. is the conduction-electron mean free path.

0.0

Il
05 o T 20
kea
F16. 5. (R%)/a? versus kra. Based on tabulations by Mattis.

1 D. C. Mattis, The Theory of Magnetism (Harper and Row,
New York, 1964), p. 205,



698 P. R. P.

X. APPLICATION TO RARE-EARTH METALLIC
COMPOUNDS AND ALLOYS

The quantities discussed in Sec. IX have been plotted
in terms of the Fermi energy there described by the
parameter w. If we want these quantities in terms of
the conduction-electron concentration we have to
calculate the quantity

N pw

eF ]
N= 2/ ple)de=—

Ey m™J -3

Co(w)dw, (10.1)

and this one could do by numerical integration of the
tabulated function Cp(w).??

The change in electron concentration is usually
obtained by alloying.

We have assumed that the spins S, are located
periodically in the lattice structure. A relaxation in this
condition is possible at low concentration when the
conduction electrons ‘“‘see” an almost periodic potential.
If we dissolve magnetic ions in a metal, due to the
valence difference between the impurity ions and those
of the matrix, we can expect a readjustment of the
conduction-electron charge distribution as a conse-
quence of the electrostatic potential introduced by the
impurity and the Coulomb repulsion among the
conduction electrons. This effect is well described by
Friedel sum rules.?? In the present case we can expect a
charge and spin polarization. The charge polarization
will affect the spin polarization in (5.19) through the
factor U,(r), particularly at points r close to the im-
purity. This effect can be made relatively small if the
valence difference is not large. Now, at large distances,
the potential becomes again nearly periodic, so that,
even if the valence difference is not so small, we can
take Uy(r) as nearly independent of r, or being more
precise, we can take Ugy(r) as the periodic quantity
appropriate for the pure matrix.

As we see, the problem of charge difference makes
necessary a clear distinction between the short-range
and long-range effects. The short-range effects are
always model-dependent and very sensitive not only to
the details of the matrix band structure, but also to the
valence difference®® and local distortion of the lattice.*

On the other hand, at low concentrations, the long-
range effects are related to the behavior of F(q) in the
neighborhood of q=0; consequently they are essentially
model-independent in the sense that they depend only
on some features of the matrix conduction-electron
spectrum in the neighborhood of the Fermi level.

The paramagnetic temperature, as given by (8.3),
has been shown to be the sum of two terms, one being
model-independent and the other being model-

22 J, Friedel, Phil. Mag. 43, 153 (1952).

43 E. Daniel, J. Phys. Radium 20, 51 (1959); L. E. Drain, Phil.
Mag. 4, 484 (1959); W. Kohn and S. H. Vosko, Phys. Rev. 119,
912 (1960); T. J. Rowland, 4bid. 125, 459 (1962).

4 F, J. Blatt, Phys. Rev. 108, 285 (1957).
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dependent. The quantity J(R=0) is sensitive to the
details of the band structure, as well as to the cutoff
introduced in F(q) by the neglect of interband
transitions.

In the case of rare-earth metals, due to weak crystal
fields, the orbital angular momentum becomes un-
quenched, so that the appropriate expression for 6 is
obtained by replacing S by (g—1) J, where J is the total
angular momentum.*’ The equation for ¢ obtained by
deGennes?* in the spherical model was used by Mattis
et al.*® in a calculation of the kr dependence of the
paramagnetic temperature for different lattice struc-
tures. We note that among the cubic systems the face-
centered structure is the one which more heavily weighs
the short-range component of the conduction-electron
spin polarization, due to the compactness of the fcc
lattice.

The paramagnetic temperature of the ordered com-
pounds Eu;_,Gd.Se has been measured!® as a function
of . In agreement with these experimental results, the
values of 6 calculated by Mattis and his collaborators
show an initially rapid rise of § as a function of electron
concentration, followed by a region of linear decrease,
where 8 becomes negative for £220.60. In the present
model, 8 is positive in the simple cubic case, during the
whole process of filling the Brillouin zone; we do not
know yet whether it is possible to obtain negative
values for the paramagnetic temperature in certain
regions of electron concentration, for the body-centered
and face-centered structures.

The present model is able to describe the rapid
rise of the paramagnetic temperature in the region
—3<w<S—2, where J(R=0) is relatively small, at
least for the simple cubic case, as we can see from
Table I. This fact seems to be model-independent, since
for kra<1, the conduction-electron s-wave function is
insensitive to the lattice structure. Consequently, in
the limit of small conduction-electron concentration,
i.e., for krak1, one can show that the rapid rise of 6
with electron concentration is due to a term going
as ]'\731/3(,c x1/3,

If we could determine J(R=0) by some independent
measurement through NMR or Mossbauer technique
then a check of expression (8.3) might be provided by
the measurement of the electronic specific heat or the
Pauli electron spin susceptibility (Knight shift).4” We
note that the detection of a kink in 6, in this case,
requires only the measurement of the differences in
Knight shift as we change the electron concentration.

The main feature of the present model is the predic-
tion of a kink in 6 associated to a discontinuity in (R?)
as we increase the electron concentration. As we can see

45 P, G. deGennes, Compt. Rend. 247, 1836 (1958).

46 ), Mattis, N. Anthony, and L. Horowitz, IBM Report No.
RC-945, 1963 (unpublished); D. Mattis and W. E. Donath, Phys.
Rev. 128, 1618 (1962).

a1 W, D. Knight, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2.
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in Fig. 1, the quantity J(R=0) is a smooth function
of w. Consequently, the kink in 6 is associated with the
kink in the level-density function, and so its presence
may be considered as a model-independent result. It is
worthwhile to note that this Kohn* anomaly in 6 is
expected to be more noticeable in proportion to the
number of faces in the Brillouin zone that touch the
Fermi surface, or in other words, in proportion to the
number of necks in the multiply connected Fermi
surface.

We also note that the compounds Eu; ,Gd.Se are
ferromagnetic in the region <1 and antiferromagnetic
for ¥=~1. In the ferromagnetic region a determination
of (R%) can be obtained through the temperature
dependence of the spontaneous magnetization.*® Some
information about (R2) can also be obtained in the anti-
ferromagnetic region by measuring the 7" dependence
of the sublattice magnetization at low temperatures
through NMR techniques.5%:51 Qur model predicts, for
the simple cubic case, a discontinuous change in (R?)
from positive to negative value.

A kink in the total energy of the system was predicted
by Pick and Blandin®® from somewhat different
considerations, although essentially related to the
Bragg condition at the Brillouin-zone surface. In that
paper®? they also noted the qualitative validity of the
Hume-Rothary33:36 rules in the determination of the
phase boundaries in alloys. In the case of magnetic
alloys, a change in crystal structure may be preferred if
the gain in energy so obtained is larger than the
corresponding gain for a change in magnetic structure.

Even noting that the present model is not applicable
in Fe-Ni alloys, it seems worthwhile to observe that a
kink in the paramagnetic temperature has been shown
recently to be associated with a discontinuity in (R2).
The kink in § was observed by Peschard,® and the
discontinuity in (R2)« D was detected by means of
neutron diffraction by Hatherly ef al.5

Other compounds of interest’ are Gdsy.Ses—. and
Gday.Ss—». When x is changed from zero to 0.10 the
electrical conductivity increases by about four orders
of magnitude, without a change in lattice structure; the
lattice parameter a,, for example, does not have any
detectable change in this region, whereas the para-
magnetic temperature changes from —10°K (at x=0)

48 W. Kohn, Phys. Rev. Letters 2, 393 (1959).

49 See, for example, F. Keffer, Handbuch der Physik (Springer-
Verlag, New York, 1966), Vol. 18/2.

5 P, R. P. Silva (unpublished).
" ;; 3/; Jaccarino and L. R. Walker, J. Phys. Radium 20, 341
a ;26411{) Pick and A. Blandin, Physik Kondensierten Materie 3, 1

83 Sée, for example, W. Hume-Rothary, G. W. Mabbott, and
K. M. Channel-Evans, Phil. Trans. Roy. Soc. 233, 1 (1934).

8¢ M. Peschard, Rev. Metall. 12, 663 (1925).

5 M. Hatherly, K. Hirakawa, R. D. Lowde, J. F. Mallet, M. W.
%t;i&%fellow, and B. H. Torrie, Proc. Phys. Soc. (London) 84, 55
1 .

86 F. Holtzberg, T. R. McGuire, S. Methfessel, and J. C. Suits,
J. Appl. Phys. 35, 1033 (1964).
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to 88°K (at #=0.10). No data on (R?) seem to exist
for these compounds, in this region of electron con-
centration. If we assume that this region corresponds
to p(e) « V¢, i.e., spherical Fermi surface, then it would
be impossible to obtain a negative value for 6, unless
some new mechanism is taken into account. The effect
of interband transitions in this region is negligible, as
we have seen.

Another rare-earth compound studied by Holtzberg
el al.% is Gd4(Sb,Bii_,)s. The replacement of a Bi ion
by its closely related element Sb does not change the
electron concentration, as one can conclude from the
nearly constant electrical conductivity. These ferro-
magnetic compounds follow the 7%/2 Bloch law®” for the
spontaneous magnetization. In this way a plot of the
exchange-stiffness parameter D versus the Gd-Gd
distance has been obtained. The total increase in D is
of the order of 309, for an increase of only 29 in the
Gd-Gd distance. In the spherical model, assuming
N .= const, an increase in the lattice parameter @ corre-
sponds to a decrease in kr, so that kra is kept constant.
In our model, this situation is described by a change in
er and a change in | B|, in such a way that » does not
change. In this case, if we assume that Jz=;%(0)/| B|
= const, we cannot describe the change in (R?)«a? A
possibility to be examined is to assume for |B| a
different variation compared to that for 72(0), so that
Jr=Jg(a). This corresponds to a change in the band
width, or in other words, to a change in the conduction-
electron effective mass. This change in effective mass
has to be made consistent with the experimental results
for the electrical resistivity. We also note that the
change in Jz so obtained may be used in a calculation
of a=a(x) if we assume, as in the paper by Rocher,
that the magnetoelastic energy comes entirely from
the distance dependence of the indirect-exchange
Hamiltonian (6.4). Nofe added in proof. A paper by
L. M. Roth, H. J. Zeiger, and T. A. Kaplan [Phys. Rev.
149, 519 (1966)], dealing with the same problem, has
come to the author’s attention. They have studied the
asymptotic behavior of the indirect exchange J(R) for
R — o, and have shown this to be related to the shape
of the Fermi surface.
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APPENDIX A

In order to show that
lim F(q)=3p(er)

in the simple cubic case, let us first calculate the level-
density function and then the limit.

Using the dimensionless quantities of (2.14) and
(9.12), the expression (4.7) may be written in the form

N g
W—Ck k,
| B] (27)3[—w He—ad

(A1)

p(er’)=—

where we now replace the § function by its integral
representation (9.26) and use expression®

/ etitcoskdpb=2mJ (1), (A2)

to obtain -
( o Co(w) (A3)
pler)= o(w),
" 7| B|

where

Colw)= / coswtJ ¥(t)dt, (A4)

0

as in (9.29).

Taking into account (9.15), and replacing the integral
representation

1 resin(w—cy)?
O(w—ck)=%+—P/ dt (AS)
™ 0 14
in the expression (9.15) for f(q) we obtain
1 p° di r~
fa)=- / P— / dk sin(w—ci)t
m™Jo 2 -1
™ 1
X / P——s(K—k—q)dk, (A6)
—r Crr—Cx
since
1 v v
—[ dk| P 6(k'—k—q)dk’=0, (A7)
2 —T —r

Cx'—Cx

as one can show easily, if we take into account that
¢_x=Cx, when we first change the variables of integra-
tion k— —k, K’ — —K’ in a first step, and then inter-
change k<« K/, in a second step.

With g=(0,0,9) we can write

1
cos(kz-m
X 8(ks' —ks)d(ky —ky)o(k/—k:—q), (AS8)
% See, for example, Handbook of Mathematical Functions, edited

by M. Abramowitz and I. A. Stegun (Dover Publications, Inc.,
New York, 1965), p. 360.

P

Cx’—Cx

s(k'—k—q)=—P
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so that in (A6) we obtain

fa= —~f Pﬂv[_wdk/ﬂdk,,/; z

sin(w—cx)?
X———-———/ 8k, —ks—q)dk,, (A9)
cos(k,+q)—cosk, J —x

where we note that

/ 8(k)—k.—q)dk.

= 0(r—ks— q)—O(—T—F (A10)

2—9)7

so that k. is restricted to the common region between

and
—r<k,<m; (A12)
consequently,
1 oodt T T T—q
f(q>=—~/ —/ dkz/ dky/
mJo ¢ — —1 -7
sin(w—ci)t
(A1)

X_____._.__.___.
cos(k.+q)—cosk,

where we have assumed that 0<¢<2w; in (A13) we
have dropped the symbol P, with the understanding
that ¥~ 1=P(1/x).

Replacing in (A13) sin(w—cx)¢ by its complex ex-
ponent form, and noting that ¢x=—2_; cosk;, we can
factorize the triple integral into a product of three
terms, with the result

2()

21t

f@)= ——<z7r>2 f

et coskdk

T—q
X[e"“‘/ —_— c.c.:l , (Al14)
—= cos(k+q)—cosk

where we have made use of (A2).
The second integral in (A14) may be brought into

the form
1 p@@—a/2)
— / dk
2/ —@—am
if we change in (A14) the variable of integration to
P =Fk+3%g and note the symmetry, & (r—3¢), of the
new region of integration, so that the replacement

k' — —Fk’ can be applied with the result (A15).
Now we expand cos(k=3%¢) in a power series of g,

(A16)

e‘it cos (k+3q) eit cos(k~3%q)

(A15)

cos(k+3g)—cos(k—%q) ’

cos(k+3q) = coskF}q sink—3}q? cosk+-- - -,



166

where we keep only the first and second terms, to obtain

© Jo? (r—q/2)
f(q)zzwf Jo (t)dll:ei“’t/ et nosk
0 t —(r—q/2)
sin(3ig sink)
X——ig—-—dk—l—c.c.:l . (A17)
g sink

Noting the factor [Jo2(f)/t]eiwt~e™@t/f2, the im-
portant values of ¢ will come from the region {<1/w, so
that for ¢/w— 0, we can replace

sin(34g sink)/q sink — ¢, (A18)

and set ¢=0 in the limits of integration in k. With
(A17), (A18), and (A2) we obtain

lqi_{% £(0,0,9) = (2m)2Co(w) , (A19)
and with (9.14) and (A3),
E{% F(q)=30(er) . (A20)

APPENDIX B

Replacing in (9.24) the expression (9.23) for g(q) we
obtain

T

g(n)= (4r)3 / dke?™/28(w— cy)

-

X f dK/e=i¥'n/2p (B1)

Crr—w

so that, with the help of the integral representations
(9.26) and (9.27), we can factorize the integrations
in k and Kk’ into the form

g(m)= (4m)=3(2m)~

© 00 T
X/ e—kédg eiwtdt/ dke—i(kn/2+tck)
[} —0 -
1 T
X___[e—'iwf/ ei (&' n/24-¢eg?) C'C'J , (Bz)
24 -

where we have made use of the transformation k'— —k/,
as a new variable of integration.

Noting that
skn+ttoe =3 (3kmn—t cosk;) , (B3)
J
we obtain
/ dke® (n/2+ick) — H gt (knj/ 2+t cosk) b | (B4)
— E R
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The integral
iv i T
&, ()=—
’ 2T

gt (kvjtt cosk) g (BS)

was studied by Nielsen® (1904). For »; integer we find®®
(B6)

T
/ et hvitt cosk) Jfp = 27!'1:”7.—,1','([) )

so that, restricting ourselves to the even Fourier coeffi-
cient g(2n), we can write

f gttt dk= (27)3(—1)"Ga(t) , (B7)
where
Ga(t) =T n, ()T 0, (DT n, (D) (B8)
and
N=Ngt- Ny 1, (B9)
Taking into account that
Gn('—t)= (—-1)"6,,(1), (BlO)

one can obtain easily the result (9.28).
We also note that the ordinary Bessel function J,,(#)
can be represented by?®!

(GoOmi !

=—— [ (1—a?)%} cos(tr)dx,
T(n+$HT(E) J =

N0 (B11)

where we observe the presence of a singularity at
x#=:1. One can show that this fact occurs also in the
spherical model. We note that x=-1 corresponds to
cosk==1, i.e., k=0 or k=7, In one dimension, with
cx replaced by —cosk we can see immediately that this
is a result of the Bragg condition at £ — 0 and & — .
We note that at k~0, cosk~1—1k2 whereas at k— =+,
cosk~—1+4%(kFx)? and in both limits they corre-
spond to spherical Fermi surfaces, as in the spherical
model. As we see the Bragg condition makes necessary
the exclusion of the surface of the cube (6.11).

APPENDIX C

Let us consider, for example, the calculation of (R2).
Using (9.34), and noting that (R?)=3(R,?) from cubic

% N. Nielsen, Handbuch der Theorie der Zylinderfunctionen
(B. G. Teubner, Leipzig, 1904).

¢ See, for example, I. M. Ryshik and I. S. Gradstein, Table of
Series, Products, and Integrals (Plenum Press, Inc., New York,
1963), 2nd ed.
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symmetry we obtain
—>> n%(2n)/7?=3 / i coswidt f wsinwédf
n 0 0
X‘:‘; (=1)"T ()T, (£) % (=1)™T ()T, (8)
X% (= DrentTn,(0Ta,(8); (C1)
now, using (9.38) and (9.39) we can write

—2. n%(2n)/7*=—3 / coswidt / sinwtdé
n 0

tE
XJ ¥+ E)—T1(t+8), (C2)
£

where we note the symmetry of the factor

123
—J o} (t+8)J1(t+ §) (C3)
i+
under £ <> ¢{. With this property, the replacement
cosw? sinwt=§[sinw(t-+£)+sinf(t—£7]  (C4)

becomes convenient, since only the first term in (C4)
contributes to the integral (C2). Noting that

dTo(x) d
- 3]02(90)]1(96) = 3]02(36) = ‘—]os(x) y (CS)
dx dx

we obtain

1 0 0
- nzg(Zn)/1rz=—/ dt/ dx
n 2/ :

Hx—1) d
X sinww d——] o(x), (Co)
x

X

where we have replaced £=x—1. Using the property

/dx-~-=/ 8(x—t)d- - -,
[ 0

valid for £>0, and changing the order of integration we
obtain

—znmeH=—ﬁ@@q/x

(&)

X coswx(dJ o*/dx)dx. (C8)
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The integral in x is now performed by parts with the
result

~ 2 n%g(2n)/m?=5(d/dw)[Co(w)+wCo'(w)], (C9)
where Co(w) is defined in (A4). Noting that
fem= [ gemydo, (c10)
and that® -
Colw)=Co’(w)=0, (C11)

for w< —3 we obtain the result (9.42).
Applying the same procedure one can also prove
(9.41), (9.43), and (9.44).

APPENDIX D

Using the Fourier transforms®? of Jo(f) and Jo(f) we
obtain for Co(w) in (A4), with w=—3+Aw, for

0<Aw<]1,
Col—3+Aw) L) . o
o(—3+Aw)= ——dy,
o [—@—p]e"

—2+Aw

where

1
L(y)=—P-1p(3y*—1),
2r

and P_y;(u) is a Legendre function. Changing the
variable of integration to x=—2+4Aw—1y, we can write

86 I(—2+4Aw—1)

Co(—=3+Aw)= | ————~
o(—3+Aw) 0 [1_(1_x)2]1/2x (D2)
Ao [(—24+Aw—x)
= / — Tdx. (D3
o (2—x)tizi2

Noting the singularity at x — 0, and that the other
factors are regular at x — 0, we obtain

L(—2+44w) 8 dx
Co(—3+Aw)ym=—— o [ —
V2 0 \/x

2
=—L(—=2)(4w)'?, (D4)
V2

where

L(—2)= Al”i_rgoL(—Z-{—Aw)= 1/2x.

62 See, for example, Table of Integral Transforms, edited by
A. Erdélyi (McGraw-Hill Book Co., Inc., New York, 1953),
Vol. 1.



