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Equation (A1) may now be expressed

or
BEg 8

E = F, F, + i. (A4)
all J l+~r J II oil J i++I I ll~

gal

Using recent crystallographic data" and an experi-

menta11y determined vahsess of BE,/BI' we obtain a

value Ed,= 11..1 eV, which is in fair agreement with the

figure of approximately 7 eV obtained from compressi-
bility measurements" on trigonal Se. It is found
that the contributions of the nearest and next-nearest
neighbors to the deformation potential are approxi-
mately equal. This agrees with the estimate given by
Treusch and Sandrock' and furthermore lends some
justi6cation to our initial assumption of considering
the two components separately.
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The electronic band structure of bismuth is studied by means of a pseudopotential approach. The Lin-
Kleinman pseudopotential was adopted; its parameters were adjusted slightly to bring the band structure
into agreement with two known energy differences in bismuth. With this pseudopotential, the band struc-
ture along symmetry lines and planes is calculated and the effective masses of the carriers are studied. The
band structure is in good agreement with optical data and with effective-mass anisotropies, but the magni-
tude of the effective masses may differ from experiment by a factor of 3. Using the experimental effective
masses and g factor of the holes, we infer the energy-level scheme at T near EI. Also, we have tentatively
identi6ed a higher-lying band which has been experimentally observed. A very eKcient method of calculating
nonlocal and spin-orbit coupling terms in k m perturbation theory is presented.

1. INTRODUCTION

HERE has been considerable interest in bismuth,
both theoretical and experimental. Its interesting

properties result largely from its carriers, which are
very light and few. in number. The Fermi surface is
small and fairly simple, relaxation times are long, and
quantum sects are relatively large. Because of these
properties, bismuth has been used to develop many of
the techniques used to study Fermi surfaces, and it
makes a useful subject for other types of experiments,
such as plasma studies.

Most theoretical studies have concentrated on the
carriers themselves. Cohen and Blount' studied the g
factor of the electrons, and I.ax et at.' and Cohen'
studied the dispersion of the electrons. Abrikosov and
Falkovskii, ' and Falkovskii and Razina~ exploited the
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Research, OfBce of Aerospace Research, U. S. Air Force, under
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4 A. A. Abrikosov and L. A. Falkovskii, Zh. Eksperim. i Teor.

near-cubic symmetry of bismuth to study the small but
important regions of the Brillouin zone near T and L
where the carriers are located. Mase' made a more
extensive tight-binding calculation which has correctly
predicted the locations and symmetries of the carriers.
However, his calcujation is not su%ciently detailed to
study properties such as optica1. reQectivity.

A detailed band-structure calculation is needed to
study the eGective masses' and g factors, ' the optical
properties, ' Bi-Sb alloys, " and pressure eGects." A

»s 43, 1089 ON&) /English transl. : Soviet phys. —JETP 16,
769 (1963)g.

L. A. Falkovskii and G. S. Razina, Zh. Eksperim. i Teor. Fiz.
49, 263 (1965) LEnglish transL: Soviet Phys. —JETP 22, 187
(1966)3.' S. Mase, J. Phys. Soc. Japan IB, 434 (1958);14, 584 (1959).' The various Fermi surface measurements are now in substan-
tial agreement. For extensive bibliographies, see R. N. Bhargava,
Phys. Rev. 156, 785 (1967); W. S. Boyle and G. E. Smith, Progr.
Semicond. 7, 1 (1963);IBM J. Res. Develop. 8, 215 (1964).' G. E. Smith, G. A. Baraff, and J. M. Rowell, Phys. Rev.
135, A1118 (1964). /Recent g-factor measurements are in good
agreement with these results; B. McCombe and G. Seidel, Phys.
Rev. 155, 633 (1967)g.

'M. Cardona and D. L. Greenway, Phys. Rev. IBB, A1685
(1964).

's See e.g., J. J. Hall and S. H. Koenig, IBM J.Res. Develop.
8) 241 1964).

"See, e.g., A. L. Jain and R. Jaggi, Phys. Rev. 135, A708
(1964).
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FzG. 1. The Brillouin zone for Bi, showing symmetry points,
lines, and planes. For a more detailed description of the crystal
and Brillouin zone structure, see Refs. 3 and 16.

erst-principle calculation without any adjustable
parameters simply can not be done with suf5cient
accuracy to give some of the important energy diGer-
ences, which are of the order of 0.01 eV. Further, such
a calculation is diQicult because of the low symmetry of
the bismuth crystal and because of the large atomic
number, which necessitates the solution of the Dirac
equation. ""

Because of the wealth of experimental knowledge now
available, a phenomenological study seemed feasible,
and we chose the pseudopotential method. "'5Using only
three adjustable parameters, we are able to account for
the eGective-mass anisotropies and for many other
properties of bismuth.

The Brillouin zone of bismuth is shown in Fig. 1 with
several symmetry points. We follow the general notation
of Ref. 16, but contract the group-theoretical notation
somewhat: I5 and I 6 are degenerate under time
reversal, so we write I.,=Ip+I.p, as they —are also
symmetric under inversion. Similarly we write I. =—1-7

+Lp for the degenerate antisymmetric levels. Similarly
X =Xp+Xp and X —=Xv+Xp. At T, Tp+ and Tp+ are
degenerate and we write T4p+= T4++Tp+, and simi—larly
for T4& and I'45+. The crystal-structure parameters
are listed in Table I.

Atomic units (a.u.) will be used throughout: e=5
=m0=1; the atomic unit of energy is 1 Hartree=27. 2

eV.

2. THE PSEUDOPOTEÃTIAL AND MOMENTUM-
MATRIK ELEMENTS

A. The Pseudopotential

The pseudopotential method expresses the validity of
the nearly-free-electron model: The energy bands are
given by the free-electron kinetic energies modi6ed by

~ P. Soven, Phys. Rev. 137, A1706 (1965).
~ T. L. Loucks, Phys. Rev. 139, A1333 (1965).' J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
"For an excellent discussion and bibliography of pseudo-

potentials, see W. A. Harrison, Pseudopotentials in the Theory of
3Eetals {W.A. Benjamin, Inc. , New York, 1966).

'P L. M. Falicov and S. Golin, Phys. Rev. 137, A871 (1965).

V= V)„+V,+V„,
( ~~ v...~i 'n')=4 zpn; G- y+Gp)-~s(g)g. ..

XfG sinGrp —P cosGrp) (3)

(ka ( Vg (
ir (x )= ABgppBppprs(G)8&&e (4)

&&~lv-Ii'~')= —&lf(&)f(&')s(G)(~(~(n') &xi', (5)

TABLE I. Crystal-structure parameters of bismuth at 4.2'K. '

Symbolb

Qp

(2x)3/Op
k~
Ey
Cp

gp

Value
(a.u.)
8.9247

57'19'
0.23407
5.2184

471.59
0.52599
0.85628
0.36661
6.3081
0.50873
0.04046

Definitions and remarks

Length of primitive translation vector
Rhombohedral angle
Internal displacement parameter
Half the minimum distance between

atoms along trigonal direction
Volume of unit cell
Volume of Brillouin zone
Free-electron Fermi momentum
Free-electron Fermi energy
Lattice parameterb
Lattice parameter
Lattice parameter

a These values were taken or calculated from C. S. Barrett 1 AustralianJ. Phys. 13, 209 (1960)j, and P. Cucka and C. S. Barrett LActa Cryst. 15,
865 (1962)g.

b For a complete explanation of notation, see Appendix A of Ref. 16.

"P. J. Lin and L. Kleinman, Phys. Rev. 142, 478 (1966).'8 Q. Weisz, Phys. Rev. 149, 504 (1966).

some weak pseudopotential. The real crystal potential
which the valence electrons see is much larger than the
pseudopotential, but Phillips and Kleinman" and
others'~ have shown that both potentials have the same
set of eigenvalues. The pseudo wave functions f„„,sim-
ilar to the real wave functions in the bulk of the crystal,
are very much smoother than the real ones near the
nuclei and can be conveniently expanded in plane
waves. (The subscript e includes the spin index. ) They
satisfy the pseudopotential equation

[pP'+V jP p=&.ag.p. (&)

The pseudopotential V may be calculated from erst
principles, or one may choose a "reasonable" form with
a few adjustable parameters. The parameters are then
adjusted until the resulting band structure agrees with
experiment. The latter has been the more popular
approach, and the one we adopt.

Many diGerent forms of V have been reported in the
literature; we chose the form which was used success-
fully by Lin and Kleinman" (LK) to study the Pb
salts. Their pseudopotential has the advantage of an
intuitively reasonable form and few adjustable param-
eters. It consists of three distinct parts: Vl„, a local
potential which is the dominant term; V„an l-depend-
ent term which increases the energies of the levels with
s-atomic character; and V„, a term representing the
spin-orbit coupling. (Our spin-orbit term is actually
closer to Weisz's'p form than that of LK.) These
potentials are given by their matrix elements with
plane waves:
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where
G= k—k',

TABLE II. Some momentum-matrix elements. '

S(G)= 2 cosG. ~, (structure factor)

f(k) =Bpyp/k,

rj&(kr)P„&(r) dr.

Here n is the spin index and e is the Pauli spin operator.
The crystal-structure parameters 00 and ~ are listed in
Table I; and the pseudopotential parameters Z, P, rp,

3, and X are listed in Table III. The orthogonalization
coeKcients 8 ~1, were calculated with Herman and
Skillman's" atomic wave functions P ~(r), and approx-
imated in analytic form:

Bppp —1.125 exp ( bk ),
5=0.332,

(10)

(10')

B. Matrix Elements of m

In studying the eRective masses of the carriers, the
k m perturbation theory" proved very useful, especially
for the electrons where the two-band model is approp-
riate. Further, the matrix elements of ~ are needed to
calculate g factors. ' Corresponding to the three terms. in
the pseudopotential, Eq. (2), there are three terms in op:

oo = p+ops+ opso 1 (12)

(knl ylk'n')=kb .3og. , (13)

(knlop, lk'n')=83. .S(G)(V'a+Vs)LBpooBpoo j, (14)

(knl op„lk'n')=iaaf(k) f(k')S(G)(nlnln')XG, (15)

where G=k—k'. Equations (14) and (15) are derived

~ I'". Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Clips, N. J., 1963).

~ A. %.I uehrmann, Advan. Phys. (to be published).' See e.g., C. Kittel, Quuntum Theory of SoQds (John %'iley R
Sons, Inc., New York, 1963), pp. 179 K

f(k) =f(k)—max(0. 7 (1—0.36k),0}. (11)

It should be mentioned that the k dependence of
f(k) is appreciable for the values of k of interest here,
although it is unimportant for tin."

The pseudo wave functions were expanded into the
equivalent of about 80 plane waves for each spin, or
about 160 terms. Group theory was used to factor the
secular equation as much as possible. For the points
of highest symmetry, the machine time required to set
up the secular equation far exceeded the diagonalization
time. In this case, t.uehrmann's "greater matrix element
theorem'"0 was of considerable value, reducing the time
required to evaluate a matrix element by as much as a
factor of 12. The calculations were performed on the
IBM 7090 computers at the University of Illinois and
the University of Pittsburgh.

7r (2)

.3(3)

3 (3)

~„(4)
, (4)

7 3(5)

~3,.(3)

j3(7)
~3j(7)
7r")=0.168

0.088+0.187i—0.103
0.102—0.208
0.196—0.192+0.229i—0.104—0.196i
0.002+0.028i—0.108—0.034i—0.065+0.217i—0.075—0.051i

2=3
—0.189+0.100i—0.128—0.128

0.175
0.175
0.276—0.086'
0.276—0.086i—0.039+0.049i—0.039+0.049i
0.050+0.235i
0.050+0.235i

j=4

—0.078—0.079i
0.137—0.241i—0.057+0.17h
0.030+0.046i—0.118+0.070i—0.236—0.030i

a Refers to Eq. (16). Calculated using the "fina" pseudopotential in
Table III.

To specify the binary, bisectrix, and trigonal axes uniquely,
we follow the convention of M. Cardona and D. L. Greenway,
Phys. Rev. 133, A1685 (1964).

3 The exact form of the matrix elements may depend on the
irreducible representations used; i.e., any linear combination of
To+ and UTO+ could be called To+.

in Appendix A. The erst term p is the dominant one
and also the easiest one to calculate. The other two
terms are usually neglected, but in bismuth each may be

20/~ of the total. The problem in evaluating these
latter terms is simply that there are very many of them
because the oR-diagonal ones do not vanish. Treated in
a straightforward way, they require an exorbitant
amount of machine time to evaluate. However, with a
simple trick, they may be evaluated as quickly as the
first term. This is explained in Appendix B.

When all three terms are included in ~, the k ~
method gives, in the two-band model, electron masses
within 2% of the masses determined directly by
calculating Z as a function of k. (The error is larger in
the heavy-mass direction where the other bands are
important. ) The remaining discrepancy is partly due to
the eRect of other bands, and partly due to the omission
of an additional contribution to ~„,which reQects the
dependence of f on k (see Appendix A).

We now list some matrix elements of ~ using the
notation that To+(i) is the ith To+ level, where each
Kramers doublet, T6+ and UT6+, is counted once.
Here U is related to the time-reversal operator. ' The
matrix elements expressed in the binary, bisectrix,
trigonal coordinate system" take the form"

(T4 (1) lopl UT4+(1))=n.&u(0,0,1),
(T-(1)

I IT'(j))=, '&(-1, +', o),
(T-(1)l IUT (j))=,&'&(-1, -i, o),
(T'0) I

IT-(j'))=,, & &(0,0,1),
(T,+II

I vT;(j'))=,; "&(—1, +i, o),

«(j) I
~ IL (j'))=(o,, co}, „cr))

The values of some of these parameters are listed in
Table II.
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Pro. 2. The band structure oi bismuth along various lines and planes. LThe direction L-hi is perpendicular to the trigonal axis (Ai is
on that axis) and is of interest in interpreting tunneling measurements. See C. B. Duke (private communication); see also D. J. Ben-
Daniel and C. B. Duke, Phys. Rev. Letters 14, 902 (1965).j

3. RESULTS OF CALCULATION AND
COMPARISON WITH EXPERIMENT

%e estimated the pseudopotential parameters follow-
ing the procedures and results of Ref. 17.These param-
eters yield a plausible over-all band structure for
bismuth, but there are three discrepancies in detail:
The energy gap at L, is too large, the overlap of the
fifth and sixth bands (the sum of the electron and. hole
Fermi energies) is incorrect, and there are carriers at F.
The adjustment of three of the parameters, Z, A, and X,
removed these discrepancies. The experimental values
of the energy gap and overlap to which the pseudo-
potential was 6t arcs

Z, =Zp. (3)j—ZLL,.(3)j=O.OOO564 a.u. ,

&o=&L~ -(&)j-&Ã.(3)l=o.ool42 ..
The initial and 6nal pseudopotential parameters are
given in Table III.

It should, be pointed out that the choice of T as the
site of the holes is somewhat arbitrary. This is the site
found by Mase, ' but we are unaware of any convincing
evidence which rules out I', which has the same sym-

ALE III. Pseudopotential parameters. &

ro p Z X

Initial values 0.474b 3.37b 3.3' 0.0147e ~ 0.017e ~

Final values 0.474 3.37 3.013 0.0125 0,00993

a The matrix element in Eq. (3) is set to zero when lr. =k' to avoid the
infinity there. This defines the zero of energy.

b Calculated following the procedures of Ref. 17.
Estimated from the values for lead from Ref. 17.

~ The wave functions from Ref. i9 were used.

TmLE IV. Energy levels at the symmetry points.
(All energies below& 5.5 a.u.)

~g
Tg+
~g
Tg+
~46
gg+
Tg
~46
Tg

—0.07297—0.00770
0.21348
0.22511
0.28382
0.30238
0.31572
0.34081
0.54653

pg+
I g

~46+
Iig+
I'g
I'g
I'46
pg+
Fg
I 46

—0.10304
0.04211
0.19319
0.27660
0.27675
0.30696
0.39409
0.40983
0.46166
0.50635
0.51079
0.51860

I., —0.05181I.—0.03063
L, 0.21124

0.21527
L o 0.28183I, 0.28240I, 0.32348

0.33867

X, —0.05404
X, —0.00794
X, 0.14706
X 0.17250
XN 0.22695
X, 0.35920
X, 0.41658
X 0.46384
X, 0.48064

4 A. L. Jain and S. H. Koenig, Phys. Rev. 127, 442 (1962).

lnetry as T, as a possible site. The pseudopotential is
not decisive either, but it would be more dificult to get
comparable agreement with experiment at I', e.g., in
the efifectivc masses. Similarly one could try to put the
electrons at I rather than at I., but this would require
a drastic change in the pseudopotential to approximate
the known effective masses. (Jain and Koenig'4 def-
initely established that the holes are at T or I', and
that the electrons are at X or I..)

Pote added se proof. Recent phonon and electron-hole
recombination studies LS. H. Koenig, A. A. Lopez,
D. B.Smith, and J.L. Yarnell, Phys. Rev. Letters 20,
48 (1968)7 show that either the electrons are at I. and
the holes at T, or that the electrons are at X and the
holes at I'. The former is most probably the case.

It should also be mentioned that the quantitative
discrepancies in the effective masses described below
could obviously be reduced by varying more param-
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TmLE V. Comparison of eBective masses' and
g factor with experiment.

Tmx.E VI. The energy-band scheme at T near EJ.'

Tss+(1) -Tss (1) Ts+(3) -Tss (1) T4s (1) -Te+(2)
Theory

Holes

Experimentb Pseudo potential&
Experimental

0.057
0.028

0.0186
0.0076

0.070
0.023

P ~)trigonal axis
PJ trigonal axis
a,/as. 0~~trigonal axis'

8J trigonal axis'

0.4
6.0
1.9
0

1.45
15.6
1.9

(0.003

a Notation: Ts+(3) is the energy of the third Te+ level, etc. (Atomic
units are used. )

b That is, from the "final" pseudopotential in Table III.
& Inferred from the momentum-matrix elements and the experimental

masses and g factor (see text).

P& {binary)
ps
Ps
g d

Electrons
292

8.1
208

+10'

886
3.8

339
60

a These are the reciprocal quadratic masses (E $ Zi piA;is) in the
principal directions. The electron masses are those at the bottom of the
band.

b Reference 8 (except e~). There is substantial agreement in the current
literature with these values.

e Ratio of spin to orbital splitting for H in the direction indicated. (The
g factor is given by g =tese/poH. where po is the Bohr magneton. )

d The tilt angle is the smallest of the two angles between the trigonal
axis and the two principal axes of the electron "ellipsoid" in the mirror
plane. The sign convention is that of L. M. Falicov and P. J. Lin, Phys.
Rev. 141, 562 (1966).

e Most authors find this value ~1 (see, e.g. , Bhargava, Ref. 7); Ref. 8
finds 4.3o.

eters. %e tried varying all five parameters in the I.K
pseudopotential and even varying each Fourier coef-
6cient of the pseudopotential separately. However, we
judged the resulting improvement in the agreement
with experiment to be insufhcient to justify varying
so many parameters.

The over-all band structure along various symmetry
lines and planes is drawn in Fig. 2. It is seen that there
are many levels near the Fermi energy, which is con-
sistent with the tunneling measurements of Esaki and
Stiles. '~ The energy levels at the symmetry points are
listed in Table IV.

A. Holes

The holes are at T, and are in a T45 level as suggested
by Mase' and by the g-factor measurements of Smith,
Baraff, and Rowell. s The quadratic masses and g
factor of this level are in qualitative but not quantita-
tive agreement with experiment, as seen in Table V.
The discrepancies are due to errors either in the momen-
tum-matrix elements or in the energy differences to
nearby energy levels, or both. But as the matrix
elements at T are less sensitive to changes in the
pseudopotential than are the small energy differences,
they are probably more reliable. In fact we can combine
these matrix elements (Table II) with the experimental
masses and g factors to determine the positions of the
energy levels at T near E~ which have nonvanishing
momentum matrix elements vrith T45 . These energies,
relative to T45, are listed in Table VI and are probably
accurate to a factor of 2; the uncertainty is mainly
that of the matrix elements and many-body effects
(other bands may have some effect).

Note added in proof. J. J. Hauser and L. R. Testardi
LPhys. Rev. Letters 20, 12 (1968)jhave made tunneling

~ L. Ksaki and P. J. Stiles, Phys. Rev. Letters 14, 902 (1965).

measurements with Bi 6lms and have found four con-
ductance peaks at —0.027, —0.0037, +0.0073, and
+0.029 a.u. While it is not clear how to interpret such
measurements, three of these peaks occur at energies
close to the "experimental" band gaps at T in Table VI.
(The tunneling was parallel to the trigonal axis.)

B. Electrons

There are only two types of symmetry levels at I.
(I, and I,) and we want to determine which of the two
is the symmetry of the conduction band. The most
direct measure of this symmetry comes from recent
studies of electron-phonon recombination" which
imply" that the electrons and holes have opposite
symmetries with respect to inversion. Thus if the
assignment of the holes to the T4~

—level is correct, then
we can conclude that the electrons are in an I, level.
(Our "final" pseudopotential was chosen to put them
there. )

The electron masses are compared with experiment
in Table V. The agreement is qualitative, the large
anisotropy is present, but there are magnitude errors
of a factor of 2 or 3. Further, the tilt angle is off
by 16'. [Note added in proof. R. D. Brown, R. L.Hart-
man, and S. H. Koenig (to be published) have just
carefully remeasured the tilt angle and find +6'. This
change in sign reduces our discrepancy to only 4'.j

There is considerable controversy over the dispersion
1aw obeyed by the electrons. The two principal models,
the Lax "two-band model'" and the Cohen model, ' both
agree that the law is

when
E(1+~l~s)= sP(&)ts',

P(k))&1.

ss A. A. Lopez and S. H. Koenig, Solid State Commun. 4, 513
f966).

~7 S. H. Koenig (private communication).
ss J. O. Dimmock, MIT Lincoln Laboratory Reports Nos. 1,

41, 1964 {unpublished).

Equation (19) holds for most directions, but in the
heavy-mass direction P 1. The Lax model assumes
Eq. (18) still holds, while Cohen modifies it with the
inclusion of other bands. (In fact, even if there were no
other bands, there are still terms of order k' which
become important. ) The Cohen model also neglects
possibly important terms. "
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ALE VII. Comparison of theoretical and experimental optical-band gaps.

Designa-
tion'

(0.59, —0.43, 0.08)

(1, —0.02, —0.02)
(1, —0.02, —0.02)
(0.92, —0.10, 0.06)
(1.0, —0.19, 0.15)
(0.24, 0.24, 0.24)

[—0.116, 0.334, 0.084)

[0, 0.5, 0.5
L0, 0.5, 0.5
[0, 0.5, 0.42)
0, 0.584, 0.416
0.25, 0.25, 0.25

Location in Brillouin zone
Rectangular coordinateb Trigonal coordinate' Bands

5 —+6
4~6
5~6
4~6
4 —+6
4 —+6
4~9

Symbol

(no symmetry)

X, -+X,
X ~X.
Ab (near X)
Bb (near E)
A.6 -+ A.6

0.05
0.09
0.13
0.19
0.19
0.19
0.24

0.062

0.18

0.26

Energy (a.u.)
Theory Experiment'

a See Ref. 9.
& See Ref. 31;especially Table I.

See Ref. 16.
d In Sb, this is a 5 -+9 transition between two bands of h.1 symmetry (Ref. 31) of the single group. When spin-orbit coupling is added, A1 —+ he. This

implies a 4 -+ 9 transition in Bi because the fifth A level has symmetry A4&.

Experimentally it is dB5cult to distinguish between
the Cohen" and Lax models because the condition that
they be the same, Eq. (19),holds over most of the Fermi
surface. Further, it is dificult to make measurements in
the region in which they diBer simply because of the
relatively large effective mass there. Thus it is not
surprising that some experiments And nonellipsoidal
effects, " i.e., the Cohen model, while others (e.g. ,
Bhargava, Ref. 7) favor the Lax model.

A sensitive test of the models is the change of
anisotropy of the Fermi surface with E&, the Lax model
predicts no change. The easiest way to vary Ep is by
doping (see, e.g. , Bhargava, Ref. 7) but this has the
disadvantage of making the heavy-mass direction even
less accessible, because of impurity scattering. One
should, however, be able to vary (reduce) EI without
increasing scattering by applying hydrostatic pressure.
This should unambiguously determine the dispersion
in the heavy-mass direction.

ALE VIII. Possible critical points of optical transitions.

Designa- Energy'
tion~ (a.u.)

Ey 0.044

0.11

0.32

Bands

5~7
4-+ 8
4-+ 7

3~8

Symbol

I- ~L.
+8 ~ +45
Ja +L4

Energy
(a.u.)
0.042

0.12
0.11

0.32

«See Ref. 9.
b Because the measurements (Ref. a above) were made with the electric

field polarized perpendicular to the trigonal axis, 4 ~ 8 transitions exactly
at T are forbidden by symmetry.

+ It should be pointed out that comparisons of the Cohen model
with experiment usually mistakingly assume that m&=m&', i.e.,
that the conduction band and the valence band just below it are
"mirror bands. " in the heavy-mass direction as they are in light-
mass directions. In fact, it has recently found LR. T. Bate and
W. R. Hardin, Bull. Am. Phys. Soc. 12, 286 (1967)g that m&'«m&.' V. S. Edelrpan and M. S. Khaikin, Zh. Eksperim i Teor. Fiz.
49, 107 (1965) )English transl. : Soviet Phys. —. JETP 22, 77
(1966)j.

C. Oytical Band Gays

Cardona and Greenaway have measured the reQec-
tivity of As, Sb, and Bi, and found their spectra to be

very similar. Lin and Phillips" then analyzed the
spectrum of Sb with the pseudopotential method and
were able to determine the locations in the Brillouin
zone of the critical points responsible for three of the
experimentally observed peaks. Because of the similar-
ity of the Bi and Sb spectra, we assume that their
critical points have approximately the same locations in
their respective Brillouin zones. Ke have calculated
the energy gaps at these points" and compare them with
experiment in Table VII. The agreement is seen to be
very good. (While Lin and Phillips list up to four
transitions corresponding to a single peak, not all of
them seem relevant in bismuth. )

The locations of the critical points responsible for the
other optical peaks in Sb have not yet been determined.
As symmetry points are critical points for optical
transitions, it is tempting to compare the band gaps
there with the remaining unidentified peaks. This
comparison is made in Table VIII and is very sugges-
tive. This must, however, be interpreted cautiously
because the low joint density of states associated with
many of the energy levels near Ez at symmetry points
in the semimetals would tend to make their contribu-
tions to the optical spectrum small. "

D. Other Sands

Recent experiments"'3 have found several band
extrema near EJ, making it desirable for us to study
some of the extrema in our band structure. But because
of the expense of calculating energies at points of little
or no symmetry, the wave functions were expanded into
a small set of plane waves, about half that used for the
symmetry points. In some cases, this can considerably
distort the bands. With this note of caution, we list six
band extrema in Table IX. Note that some of the
apparent extrema in Fig. 2 are not absolute extrema.
Thus if one searches for absolute minima starting from
the "minima" along FX and along TU, one 6nds the
same absolute minimum min2.

"P. J. Lin and J. C. Phillips, Phys. Rev. 147, 469 (1966).
"While the actual critical points in Bi may be displaced some-

what from these, the energy gaps will be the same to erst order in
the displacement.
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TAMX IX. Band extrema' near Eg.

Label

ming
minq
mlQ3
maxj
maxg
max3e

Degen-
eracy

6
12
2
6
6

12

Approximate position
in Brillouin zoneb

0.5, 0.58, 0.42j
0.41, 0.54, 0.47

t 0.33, 0.33, 0.33
0.05, 0.15, 0.15
O.S, 0.68, 0.32$
0.07, 0.14, —0.063

pie

0.9
13
3.3
0.8
0.5
1.4

Reciprocal effective masses'
pl% pl 8 pM p%3

0 0 19 —4-6.2 -2.9 4.2 +1.4
0 0 33 0

0 4 —2
0 12 —2.5
0 1.5 +1.1

1.6
1.2
0.56
2
2.5
2.7

Description~

minimum on Z(TW)
general point

Lminimum of 5&
maximum in e
maximum on Z(TW)
near maximum' on Z {FX}

a These are maxima in the fifth band and minima in the sixth band. The energy differences between these extrema and Ez cannot be calculated reliably.
b In trigonal coordinates. See Ref. 16.
e E =)Zp»hA'~ where A& is measured from the extrema, and p~~ =p~a. The coordinate system is defined by the binary, bisectrix, and trigonal axes (see

Ref. 22).
d Z is a binary axis parallel to the x direction; cr is a mirror plane perpendicular to the s direction.
e The maximum along Z(l"K) disappears when a large expansion set is used. It may, however, reappear with a somewhat different pseudopotential.

Two levels were studied by de Haas —van Alphen-type
measurements on doped samples. " Their minima are
0.0020 and 0.0026 a.u. above the bottom of the con-
duction band and have reciprocal cyclotron masses
of 16 and 7, respectively, when the magnetic 6eld is
parallel to the trigonal axis. While the de Haas-van
Alphen areas were observed to be constant as the
magnetic 6eld was rotated 20' from the trigonal axis,
one can not conclude that the Fermi surfaces are nearly
spherical. The hole ellipsoid, for instance, has an
anisotropy in the quadratic masses of 10 and in the
radii of 3, but it shows only a 4% variation in the
de Haas —Van Alphen areas for this variation of the
magnetic 6eld.

None of the bands calculated in Table IX has a
reciprocal cyclotron mass comparable to that of the
lower-lying level. The Tz+(3) level could have a compar-
able mass if it were closer to T45 as indicated in Table
VI. It is unlikely, however, that this is the observed
level, for it would still lie much more than 0.0020 a.u.
above 1.,(3) as observed experimentally.

We can, however, tentatively identify the higher-lying
band with min3. The theoretical reciprocal mass is a
factor of 2 too small, but this discrepancy would be
largely reduced or eliminated if T6+ were lowered as
suggested in Table VI. This identification could be
checked experimentally by measuring the anisotropy
of electrons in this band and by determining the number
of equivalent minima, which is 2 for mina. (Because of
the relatively high symmetry of min3, its masses were
calculated using an equivalent secular equation as
large as at T.)

4. SUMMARY AND CONCLUSIONS

By adjusting three parameters in the I.K pseudo-
potential'7 to obtain two well-established energy dif-
ferences in the band structure, we have calculated the
band structure in much of the Brillouin zone. We have
obtained good qualitative agreement with the eGective
masses and good quantitative agreement with the
optical data. By combining eGective-mass and g-factor

~ G. A. AntcliGe and R. T. Bate, Phys. Letters 2$, 622 (1966).

measurements with momentum-matrix elements, we
have proposed an energy-level scheme at T near Ep.
Further, we have studied some band extrema near Ep
and have tentatively identified one of them with a
higher-lying level observed experimentally.

We have been unable to get quantitative agreement
with the experimental eGective masses, even when
many parameters were varied. The diQiculty may be
due to a poor choice of pseudopotential or its param-
eters, or to many-body eGects,"or it may represent a
limitation of the pseudopotential method itsen. Klein-
man and Phillips" have found that in Si the core part
of the orthogonalized plane wave contributes 10%
to the momentum-matrix elements. This eGect should
be larger in bismuth, which has a larger core.

It would not have been diKcult to Gt all of the
effective masses to experiment using an enhancement
factor of about 2, which would approximately double
the theoretical-reciprocal eGective masses. However,
one would expect many-body eGects'4 to have the
opposite eGect of halving the reciprocal masses, as
seems to be the case in antimony. "

Because of many-body eGects, it is undesirable to
adjust a pseudopotential to 6t eGective masses. The
6tting could be done much more precisely if several
band gaps were known, making electroreQectance"
or piezoreQectance" measurements highly desirable.

Finally we have shown how ~—p matrix elements
may be calculated efhciently.
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The purpose of this Appendix is to derive Eqs. (14)
and (15) which generalize k oo perturbation theory to
our Hamiltonian. The derivation parallels the standard
procedure. "

The Hamiltonian is

where
ti ~= g && &t/" g&& (A11)

(V,'= V, when V, is local. ) The equation for g can be
written

Also, I want to thank Gideon Weisz, S. H. Koenig, Then
P. J. Lin, G. E. Smith, and J. C. Phillips for useful
conversations. = e k 'Lr (p+k) o+ V, .+V,'

+(1/4c')oX V'W (p+k) —E k gp, (A10)

P=
oP'+ Vi,.+V,+V„, (A1) where

(Ho+II' Ek.gp—=0, (A12)

where the potentials are defined in Eqs. (3)—(9). V., is
often put in the form"

Po ———,'p'+ Vi„+V,+ (1/4c')nX VW. p (A13)

is independent of k, and where

V,.= (1/4c')nX VW p, (A2) H'= bio'+k p+ (V,' V,)—+ (1/4c')eX VW k. (A14)

where 8' is a superposition of atomic potentials. We
assume 8' to be local. To relate 8' to our V„, we
calculate the matrix elements between plane waves of
V„as defined in Eq. (A2) and compare it with Eq. (5).

From Eq. (A2) we find

(qn I V,.I
q'n') =i(1/4c')S(G) Wo(nIcr In' )Xq q', (A3)

where
6= q —q' (A4)

is a reciprocal lattice vector and where 8'G is the Fourier
transform of 8'. We have used the relation

Since p has the 3loch form for ko, it can be expanded
in terms of the/ k,. Then

Ii„.—E„k,= 'k'+ Q -.(A15)
mg E &0

Terms linear in k vanish because of the extremum at
k=o.

As we expand the g's in plane waves, we are only
interested in the matrix elements of II' between plane
waves. Further, we only need these elements to first
order in k to give E ~ correct to second order in k.

For the nonlocal term in H' we have

(«I ~WI «') =iGS(G) Wo, (AS)

Wo= —4c9.f(q) f(q'). (A6)

which we get by integrating by parts. Comparing Eqs.
(A3) and (5) we see that

(qn I
V.'—V. I

q'n')

=(q+k, nI V. I
q'+k, n') (qnI V—, I

q'n')

=AS(G)&aa'(2loo[o+k]2loofo'+k[ +ooof35oq' j
=AS(G)4a'+k(2loo[o+k]+eo)o'+k[)k=o ' k
=AS(G)b .k (7,+V, )(B„oBoo;), (A16)

k'=ko+k. (A'1)

This equation makes sense only if f(q) is independent of

q, i.e., if W is local. (X, however, may depend on G.)
While the dependence of f on q is in fact appreciable
fEq. (11)j, ignoring that dependence here leads to
errors of only ~1%%uo in the effective masses.

In k m perturbation theory, we are interested in the
energy bands near a local extremum which we take to
be ko. I.et k be the distance from ko to a nearby point k':

where we have used Eqs. (A11) and (4).
For the spin-orbit coupling term

(qn I (1/4c')e XVW k
I
q'n')

=i(1/4c')S(G) Wo(n In In') XG k
= —i&f(q)f(q')S(G)( I I

')XG k, (A17)

using Eqs. (A5) and (A6).
Therefore we can put Eq. (A15) into the standard

form of k ~ perturbation theory by writing

Ke now calculate E„~—E„~,to second order in k using
second-order perturbation theory.

From the Bloch theorem

where
(A18)

oo =p+ ooa+ ooaa . (A19)

&ik' rk, Node ..ry (AS)

has the Bloch form for the point ko.

where e &. has the periodicity of the lattice and where

(A9)

The matrix elements of ~, and ~„are given by Kqs.
(14) and (15), as can be seen from Eqs. (A14) and
(A16)—(A19).

Strictly speaking, V,'—V, contains terms quadratic
in k I as one can see by expanding the exponentials in
Eq. (A11)j which should be included in Eq. (A15) in
erst-order perturbation theory. But this contribution to
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p k ——Q;o„;Ik—6;,a;), (31)

the sum being over all translation vectors in the
reciprocal lattice and both spin directions, Then, from
Eq. (15), the desired matrix element is

Q„ol oo,.lg„o&= iZ Q—a„;*a;f(k—6~)f(k—6,)

XS(6,—6;)(a;lulu;&X(6; —6;). (32)

The evaluation of this sum is straightforward but
requires a considerable amount of work because the
sum is over two indices; typically 25 000 terms must be
calculated. This sum, however, can be broken into sums
and products of a few terms in which each term is a
sum over a single index. The resulting savings are
considerable.

This reduction is eGected when each term in the sum,
Eq. (82), depends only on a single index. This is
already the case for all of the terms except S and e, and
the reduction of the former is trivial:

S(6;—6;)=2 cosL(6;—6,) ~j
=2 cos(6,'~)cos(6; ~)

+2 sin(6,"~)sin(6; ~). (83)

To decompose ~ it is necessary to express the matrix
elements of the Pauli operator explicitly in terms of
0,; and n;. In general, the matrix elements of c are

the reciprocal eBective mass is of order 3=0.01, and
is negligible.

APPENDIX 3
The purpose of this Appendix is to show how the

contributions to the matrix elements of e from the spin-
orbit coupling and the nonlocal s shift may be readily
calculated in the pseudopotential formulation.

Consider Grst the spin-orbit interaction between the
two states g~z and P q, where

%hiLe there are 20 such terms to evaluate, they may
be evaluated quickly, arid many terms may vanish due
to symmetry.

The treatment of the contribution from the nonlocal
term, Eq. (14), is very similar and need not be repeated
except to note that we can write

h, =—,
' (1+au'), (3I)

and that the gradient in Eq. (14) takes on a very simple
form in our treatment. Using Eq. (10) we find

(&o+&o )P4oo3ooo j=—2&3ooo3ooo (k+k'). (3g)

It should be clear that a sum over a single index
depends only on the wave function of a single energy
level. The matrix elements of ~—y between two energy
levels is then a sum of several terms, each term being
a product of a function of one of the levels with a
function of the other. This fact is useful if one wants the
matrix elements of one level with several others. It is
especially important if one would want to base an
extended k p calculation" on a completed pseudo-
potential calculation, for this requires the momentum-
matrix elements between all pairs of levels at one point
in the Brillouin zone.

(The parentheses refer, in general, to rectangular
coordinates, and here they refer to the binary, bisectrix,
and trigonal axes. ) If we now denote the state T by
a=+1, and the state $ by u= —1, we can write

&a;lala )=—'{(1—,u )(1,0,0)+ao(0 i,—1)
+u; (o,i,1)}. (85)

It can be readily verified that this satisfies Eq. (84).
If we now substitute Eqs. (33) and (35) into Eq.

(82), the reduction into sums over a single index
becomes clear. For example, one of the terms is

—i {Pa„;*a;f(k 6;)c—osG,"~}(0,—i, 1)

X{Pa„,G;f(k 6,)c—osG,"~}. (86)

&T lal T&= —(Ilail&= (o,o,1),
&llalT&=&T lull&*= (I,i,O). (34)

g9 F. H. Pollak and M. Cardona, J. Phys. Chem. Solids 27, 423
(i966).


