
VOL UME $66, NUMBER 1 5 FEB RUAR V 1968

Model Calculations of Magnetic Band Structure*
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Simple model eRective Hamiltonians are used to examine the structure of magnetic sub-bands. The posi-
tions of the discrete Landau levels are shown to be accurately predicted by the first-order correction to the
Onsager quantization rule given by Roth, even for strong magnetic fields. The influence of the rational field
condition, occuring when //N Aux quanta pass through a unit cell, is investigated. The effect is pronounced
when intraband or interband tunneling occurs. In this case the broadened sub-bands split into a cluster of
jt smaller sub-bands. This fine structure may be roughly accounted for by use of an eRective Hamiltonian
based on the sub-band energy function E(q).

I. INTRODUCTION

HE electronic energy spectra of crystals in mag-
netic Gelds can be conveniently studied by means

of an effective Hamiltonian, in which the spectrum is
obtained as eigenvalues of an operator H(~). Here m

is the operator y+«'A/c, where e is the magnitude of the
electronic charge and A is the vector potential. As shown
previously, ' this formulation is valid for arbitrary
magnetic helds. In principle, the operator H is a matrix
function of e whose elements depend explicitly on the
magnetic held. When written in diagonal form, how-

ever, it is usually sufhcient to approximate the diagonal
elements by the single-band effective Hamiltonian
8"(m) obtained by replacing k by the operator ~ in the
energy-band function Z"(k) of the nth band. This
approximation is good for structure associated with
isolated bands. In this paper a one-band model effective
Hamiltonian is used to investigate certain features of
this structure. For states near the bottom or the top of
the band one expects a free-electron model, with the
appropriate effective mass, to provide a fairly accurate
description. The spectrum associated with motion
perpendicular to the magnetic Geld is expected to be
characterized by evenly spaced discrete Landau levels,
whose spacing is proportional to the held strength. This
is consistent with Onsager s area quantization condi-
tion. ~ A more rigorous analysis by Roth4 showed that
one should expect Onsager's rules to be only a zeroth-
order approximation to the true spectrum, in general.
She has given a correction formula which is a power
selles 11l the magnetic Geld. Acculate calculations on a
simple model afford a test of the accuracy of these
correction terms.

Another problem which is treated here arises in
connection with the structure of broadened magnetic
sub-bands. These are associated with a region of an
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energy band in which the energy contours in momentum
space form open orbits, or nearly touching orbits, in a
repeated zone scheme. The structure of these broadened
sub-bands are expected to be quite sensitive to the ratio
ljE, discussed in an accompanying paper' for rational
Gelds. The splitting of the sub-bands into smaller ones
has been discussed by several authors. '~ In particular
Azbels has examined this one point analytically. Model
calculations based on the eQ'ective Hamiltonian are
particularly simple in the case of rational helds, since in
that case, the difference equation one gets from the
effective Hamiltonian is equivalent to obtaining eigen-
values of a hnite matrix, and can be done by routine
methods.

Calculations were carried out also on a two-band
model to examine the onset of breakdown associated
with interband as well as intraband tunneling.

II. ONE- AND TWO-BAND EFFECTIVE
HAMILTONIANS

The one-band effective Hamiltonian can be written as

+(~) g «(R)«~R w

where we have chosen units with A= 1.The coefficients
«(R) are field-dependent in general, but can be assumed
to be closely approximated by the Fourier coefhcients
of E(k). We thus make the assumption

E(k) =pa «(R)e'R'".

We can also take a diR'erent point of view. We know
that there exists a set of coefficients «(R) which leads to
a valid effective Hamiltonian for a given magnetic Geld.
The function E(k) defined by Eq. 2 would not neces-
sarily be the correct energy-band function appropriate
to zero Gelds, but it would probably be the one deduced
from experiments done at this field value, or close to it.
In our calculations the Fourier coefficients «(R) are
taken as parameters of the model.

' K. Brown, preceding paper, Phys. Rev. 166, 626 (1968).
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Ke require the eigenvalues of

&(~)P(r) =W(r). (3)

U' &iNqg agU' (6)

As previously shown, the domain of q is a magnetic
zone, which is smaller than a Brillouin zone by a factor
X in each of the directions normal to the Geld. Equa-
tions (5) and (6) are equivalent to an N-dimensional
matrix equation. We can carry out the sum over ms

immediately obtaining

g„,„,e„[231ai+(223—23)a2j
XeXp( —i[231311 ai+2N1(23+223)p)}Um=&U~ (7)

Since we are going to parametrize the Fourier coeffi-
cients anyway we disregard the dependence on q& and
write

&23(231$1+'N2$2)= & (231 232) .

In our first model calculation we choose a simple
cubic lattice with 8 along s, one of the cube axes. We
define

3(W1, 0)=3(0, a1)=e,
with the remaining coefficients zero. The corresponding
two-dimensional energy-band function is

Although this has the appearance of Schrodinger's
equation, the operator H(23) only couples points sepa-
rated by a lattice vector. Thus, this is, in reality, a
diGerence equation with P(r) defined only at lattice
points. The components of ~ commute with each of the
components of the operator (23+erXB/c). We can pick
g(r) as a simultaneous eigenfunction of two of these
components, one along a3, the direction of 8, the other
along a~. For rational fields, in which

P—=B.(aiXa2)e/kc=2~t/N,

we can impose the additional requirement' that iP(r)
goes into a multiple of itself under magnetic translations
through Sa2. This follows from the invariance properties
of H(23) under magnetic translations. We can then
characterize the solutions by a wave vector q. Making
use of these facts Kq. (3) can be transformed into

,„,„,e[231ai+ (fp3—23)a2+233u2]

XeXp( —i[231qi ai+N3q3 a3+ 231(fig-tB) g}U
=EU, (5)

with the boundary condition

ky

Fre. 1. Energy contours for single-band model
(one-quarter of Srillouin zone).
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levels are discrete except in the neighborhood of the
extended orbit, corresponding to zero energy in Fig. 1.
The discrete levels for 1/N= 1/50 are given in the first
column of Table I. In order to compare with the
Onsager predictions we calculated the area enclosed by
the contours in Fig. 1 whose energy corresponded to the

E(k„k„)=23(cosk u+cosk„a) . (10)
elYJll1lN///////// --=- 0

The eigenvalue equation is transformed into a form
suitable for calculation in the Appendix. Numerical
calculations were carried out for c=—1, with l/N
=1/50 and 3/151. In Fig. 1 we have shown one
quadrant of the energy-band function E(k) for this
choice. The calculated energy levels are shown in Fig. 2.
The results are symmetric about E=0.As expected the

X= I N =50 g, =g
".05

&PS/NXuyjg~j

L= I N~50 N= I 5l

FIG. 2. Magnetic sub-bands and discrete Landau levels for
single-band model. The magnetic 6eld is given by 8=//E(kc/eu~).
The structure is symmetric about 8=0.
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Roth
a'(A —cf ) correction'

(10 ) (10 ')

3.87630
3.63279
3.39699
3.16880
2.94809
2.73477
2.52873
2.32988
2.13813
1.95340
1.77562
1.60473
1.44068
1.28342
1.13295
0,98926

0.39166
1.18117
1.97068
2.76017
3.54966
4.33913
5.12859
5.91803
6.70744
7.49683
8.28619
9.07550
9.86475

10.65394
11.44303
12.23199

3113—3.18—3.24
3032—3.40—3.50—3.61—3.74—3.89—4.07—4.28
4 54—4.85—5.24—5.72—6.32

3013
3418—3.24
3%32—3.40—3.50—3.60
34 73—3.89—4.07—4.28
454—4.85—5.23—5.70—6.30

T~LK I. Discrete levels and corresponding orbit areas
for a simple square lattice (I/E= 1/50).

discrete levels corresponds to three magnetic sub-bands,
which are almost exactly degenerate (almost no
measurable spread to the accuracy of our calculations).
We can think of this spectrum as arising from the
former one (except for a slight shift) by having each
sub-band decompose into three, with one extra band
centered at E=0. The splitting of the broadened bands
are shown on an enlarged scale in the right half of
Flg. 2.

The structure E(q) of the broadened magnetic
sub-band near E=O is shown in Figs. 3 and 4. The
contours for each magnetic sub-band of this simple

+ Reference 4.

calculated eigenvalues. The area of the nth contour
according to Onsagers shouM be

.Qe—

where the lowest eigenvalue corresponds to n= j.. The
discrepancy is shown in Table I along with the second-
order correction given by Roth. ' The Onsager rules are
seen to be quite accurate. The Roth correction, however,
brings the theoretical results into almost perfect agree-
ment with the calculations. It should be noted that the
value l/E= 1/50 corresponds to magnetic fields several
orders of magnitude larger than are presently available.

Although it is not apparent from Fig. 2, there are E
magnetic sub-bands in the spectrum coming from one
band. For the case l/cV= 1/50 there are two bands which
touch at Z=O. For the case l/%=3/151 each of the

.02

Fxa. 4. Magnetic energy-band structure of broadened sub-bands
near 8=0. Solid curves correspond to lj/=1/50. Dashed curves
correspond to l//=3/151.

QyNO

q„Na

effective Hamiltonian are identical. In other words, for
any sub-band the energy contour passing through a
given point with coordinates (g,Ea,g„Ea) has identical
shape. The contour spacings vary from sub-band to
sub-band, however. Thus knowledge of E(q ) for the
two values q„=o and q„=m. is sufhcient to de6ne the
bands completely. In Fig. 4 a portion of the next sub-
band is shown. The general features of this spectrum
are in agreement with those of Brailsford' based on
JWKB formulas.

Azbel' has shown that one can analyze the splitting
of the magnetic sub-bands by writing the rational

FM. 3. Energy contours of magnetic sub-band near L'=0,
for I/E'= 1/50 (one-quarter of magnetic zone). 9 A. D. Srailsford, Proc. Phys. Soc. (London) A70, 275 (1957).
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number l/N as a continued fraction of the form

1/N =1/{Ni+ 1/pN2+1/(Na+ .)7) . (12)

In this analysis one can regard the band splitting into
X~ sub-bands which in turn splits into Ã2 sub-bands.
This in turn splits into S3, and so on. This is consistent
with the result found here that when f/N= 3/151, that
each sub-band splits into three parts, with the exception
that one extra sub-band appears. Azbel's formula gives
only a semiquantitative description of the splitting
since it predicts X~%2%3 sub-bands, which is less
than the exact number E.Nevertheless it was suggested
by Chambers that one might regard the split sub-bands
as being derived from a parent sub-band by an analysis
similar to the one for the sub-band in terms of the
parent band. We therefore want to examine to what
extent we can regard the spectrum for I/N=3/151 as
being derived from the one for l/N= 1/50. This cor-
responds to a 0.67% change in magnetic field, which is
more than we would have liked to use. To get a smaller
change, however, would have required using large
values of E, which are not as convenient for calcula-
tions. We have investigated a few diferent cases for
fields corresponding to values of i/N in the neighbor-
hood of 1/50. The values of 1/N considered are 1/49,
1/50, 1/51, 3/148, 3/151, 3/154, 19/956. The last of
these can be written as 1/I 50+1/(3+1/6)7. The
prediction for this one is that each of the sub-bands
corresponding to 1/N= 3/151 breaks up into six smaller
sub-bands. This is qualitatively correct although extra
bands must appear since there have to be 956 sub-bands
in all. In Fig. 5 we show how two of the broadened bands
for f/N= 3/151 split when f/N= 19/956. In addition to
the splitting of each band into six sub-bands, one extra
band appears. This latter band may be regarded as
arising from sub-band mixing. It should be noted that
the sub-bands near the center of a cluster are broadened
Inore than the others. This agrees qualitatively with
what one might expect if an effective Hamiltonian
based on E(q) for 1/N =3/151 is valid. However, a more
quantitative test would have been possible if we split

-.045

.08

.06—

.04—

.02—

FIG. 6. Magnetic energy-band structure of broadened sub-bands
near E=O. Solid curves correspond to 1//=1/49. Dashed curves
correspond to 1/g =3/148.

the sub-bands into a large number M of finer bands,
where 3f is of the order of 20 or more. If an effective
Hamiltonian based on a sub-band spectral function is
valid, we would expect a number of discrete levels of the
Onsager type. The discrete levels should correspond to
orbits in q space given by (e+y)AO, where MAO is the
area of the two-dimensional magnetic zone. The validity
of this idea has to await more extensive calculations.
The structure of the broadened bands for the remaining
choices of t/N are shown in Figs. 4, 6, and 7.

Interband breakdown has been examined by means
of a two-band model. We assume that the two bands
result from the interaction of two simple overlapping
bands. In our model the two energy-band functions
1"(k„k„) are the roots of the secular determinant

2 cosk~c —E~

-.035 2 cosk„e—E
=0 (13)

FIG. 5. Change in sub-band structure caused
by small change in magnetic 6eld.

where 6 is an adjustable splitting parameter. The
energy contours in each band are approximately
squares with slightly rounded corners. In a repeated
zone scheme these contours are arranged in a checker-
board pattern. An octant of a Brillouin zone is shown
in Fig. 8. Magnetic-breakdown effects can be thought
of as arising from tunneling between bands at the
corners,
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.IO—
with the associated boundary conditions

~~ glgyXc~

&~X=&'~" '&n. (15b)
.08— This is transformed into a form suitable for calculation

in the Appendix. The spectrum was obtained as a func-
tion of 6, which is twice the band gap. Results for
l/X= 1/50 are shown in Fig. 9 for two portions of the
spectrum where broadening occurs. In Fig. 9(b),
broadening associated with interband breakdown is
shown. For a large splitting parameter d, the levels are
discrete and given to a good approximation by the
Onsager prescription. Those associated with the lower
band move down with 6, while the levels in the upper
band move up. A JWKB treatment of the interband

2.2

2.I

Fjo. 7'. Magnetic energy-band structure of broadened sub-bands
near E=O. Solid curves correspond to 1/E'= I/51. Dashed curves
correspond to l/37=3/154.

2.0

The two-band effective Hamittonian leads to the
coupled equations

0.2

~+a~~ EN +de =—0,

AN „+[2 cos(ny+ q.u) Ejv.=0, —
(14a)

(14b)

O.l

O.O
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UPP ER SANO

Fzo. 9. Magnetic sub-band broadening for two-band model as
a function of splitting parameter (L/%=1/50). (a) Portion of
spectrum showing intraband breakdown. (b) Portion of spectrum
showing interband breakdown.
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tunneling problem yields a wave function which

attenuates in tunneling between bands by a factor
+=exp( —(56)') in the neighborhood of E=O. (The
JWKB results are consistent with the Blount tunneling
criterion. ) It should be noted that the sub-bands begin
to broaden noticeably for A(0.6 (corresponding to
a= 0.1), and that the broadening is largest when a type
of resonance associated with crossing discrete levels

occurs. The broadening shown in Fig. 9(a) is associated.
with intraband tunneling.

IIL CONCLUSIONS

The model calculations carried out in this paper
Pro. 8. Energy contours for tv'o-band ~odel d, =0.25. Each illustrate the complexities of the magnetic spectrum in

band has square symmetry about origin (one-quarter of Brillouin
zone). simple geometries for simple bands. The parameter //E
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which we have considered corresponds to fields much
greater than presently available. Nevertheless the
first-order correction given by Roth to the Onsager area
quantization yields almost perfect agreement with our
calculations. The fine structure in the broadened
regions, associated with breakdown, is in qualitative
agreement with Azbel's description. Similar results are
expected for more general bands. It is not likely that
such structure will be observed experimentally until
much larger magnetic Gelds are available. The results
depend on long-range order, and crystal imperfections
as well as electron-phonon interactions tend to obscure
such fine structure. Uniformity of the magnetic Geld is
also crucial unless one is dealing with extremely large
fields.
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APPENDIX

In this section the matrix equations for the one- and
two-band models are put in a form suitable for obtaining
the magnetic band structure. We consider the simple
square lattice in which the only nonzero Fourier
coefficients of E(k) are e(&1, 0)=e(0, +1)=eq, and
e(&1, &1)=p(%1,&1)= p&. In terms of these param-
eters Eq. (7) becomes

Tr[T (q,)]= 2 cosXq„a. (A7)

In order to evaluate the trace of T(q,) we first write
each factor T„(q,) in the form

T„(q,) = {e,+2'p cos[q,u+(e —-', )p]} 'Ap(q, ). (A8)

The matrix T(q,) can then be expressed in terms of the
products of the matrices A„(q,) and a factor Q ', where

Q is given by

(A9)

where x„=eq/2pp+cos(eP+8) and 8= q u ——',P. We will
now show that the factors x„are the N roots of a
polynomial of degree N. We introduce the Tschebychev
polynomials f (s) defined by the relations

fp(s) —= 1,

(A10)

It is a matter of simple induction to see that

where 1 is the unit matrix. This yields

e n~pp' —e 'happ' Tr[T(q,)]+det[T(q,)]=0. (A6)

The determinant can be evaluated by multiplying the
determinants of the matrices T„(q,). It is a simple
calculation and the result is detT(q, )=1. From Eq.
(A6) one then obtains

U |——T (q.)U. , f (cos8) =—cosm8. (A11)

where U is the two-component column vector with We see from the definition of x that
elements (N„,e„+q) and T„(q,) is the square matrix with
elements f~(X eyp/2pp) =f~[COS(~+8)]

= cosNB, (A12)
Tn=[E, 2ey cos(q n+~—)]

X{eg+ 2 copsp[qgc+ (B p )$]} i

2'„=—{e,+2ep cos[qga+ (n+ ',)4]}-
)({ey+2ep COS[qgn+ ('S—p)&g}

r21=1
T22=0.

We now define

(A2)

Tllus
P~ (x)=f~(x e~/2e2)—cosN—8—(A13)

(A14)

where we have made use of the fact that eN@ is a
multiple of 2m. The x„are thus roots of the polynomial

We note from Eq. (A10), for S&1, that @~=2~ '. It
(A3) thus follows simply that

From Kqs. A1 and A3, and making use of the boundary
conditions on U, it follows that = 2(——',) [f~(—eq/2p2) —cosM]. (A15)

U~ T(q,)U~ e '"p"U~. —— ———

This leads to the secular equation

(A4)
We define n by the relation cosn= —e&/2ep and make
use of Eqs. (A9), (A11), and (A15). We obtain

det[T(q. )—e
—'~p"1]= 0, (AS) Q =2 (—e&)~[cosign —coslV8] . (A16)
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We now have to evaluate the trace of the matrix
A(q, ), where

A(q, )=+A„(q.).
We note that A„(q,+2m/Na) =A„~(q,), where Ml=1,
mod N. Thus replacing q, by q,+2~/Na corresponds to
a cyclic permutation of the matrices A„(q,) and does
not affect the trace of A(q, ). The trace is thus periodic
in q„with periodicity 2m/Na. It follows that

Tr[A(q, )7=CD+Cate'" & +Cq*e '~ &. (A. 17)

There are no higher powers in the Fourier series since
the highest contribution from the individual matrices
A„(q,) is e' &~, and there are just N matrices. The
coefficient C& is obtained by dropping all terms in
A„(q,) except those which are proportional to e

' '*. It is
convenient to factor, out of what remains, the term
e2e'"& and express the ratio e,/e, in terms of u, as before.
This leads directly to the result

U„&——F„(q,)U„, (A23)

where I' is the matrix with coefBcients

Fn= E+LVL2 cos(rnp+q, a) E7 ',—
~12 ~21 ~ ) ~22 (A24)

and cosn= —e&/em. Equation (A20) is the desired result.
The trace of the matrix T(0) is evaluated for various
values of the energy E by means of an electronic
computer O. nly for certain ranges of E can Eq. (A20)
be satisfied for real q„q,. It follows from Eq. (A20) that
the shapes of the energy contours are identical for all
sub-bands. In the case considered here &2=0 and Eq.
(A20) becomes

cosNaq, +cosNaq„= 1+~ TrLT(0)j. (A22)

The two-band model can be handled in a similar way.
We solve Eq. (14b) for e in terms of u„and substitute
into Eq. (14a), thereby arriving at the result

Cg ——eP g e'~Tr/M"],
n 1

(Alg) We define X such that 2 cosX=E and let

where %11=2cosa. , M12= —M21= —e&~', M22=0, and
&=2ml/N The .product over ri, leads to a factor
(—1)'&~ '&. This can be simplified to (—1)~ ' since if
(N —1) is odd l must also be odd, or else l and N would
have 2 as a common factor, and not be in lowest terms.
The trace is obtained by diagonalizing M 6rst. The end
result is simply

A„(q,) = 2Lcos(~+q, a)—coskjF„(q,) . (A25)

The procedure from this point is quite similar to the
previous one. The result is

g(q„q„)= -', (1—cosNX) TrLF (0)j—cosNX, (A26)

where

C,= 2(—1)"—'eP cosNn. (Al 9) g(qg)qy):—cos (Naqg) cos (1Vaqg)

cosNh(cos—Naq, +cosNaq„) (A27)

where
f(q„q„)=2LcosNn+ (—1)'+'] TrLT(0)g, (A20)

It is a simple matter to find Co from Eq. (A17) in terms
of TrLA(0)j or finally in terms of Trc T(0)$. Combinmg
these results it is found that N

F(q*)= II F.(q.)

It should be noted that g(q„q„) depends on E so that in
f(q.,q,)=cosNugcosNaq„+co—sNaq, 1j-this case the energy contours in q space will generally

—(—1)' cosNaq, cosNaq„, (A21) have different shapes in different bands.


