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Generalized Wannier Functions and Effective Hamiltonians*
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An effective Hamiltonian for an electron in a periodic lattice in a uniform magnetic field can be formulated
rigorously in terms of an orthonormal set of basis functions. These functions are obtained from one another
by application of magnetic translation operators. The Wannier functions turn out to be a special case of this
more general set, applicable in the absence of magnetic fields. Not only are these functions not uniquely de-
fined, but the form of the effective Hamiltonian will depend on their manner of selection, with the exception
that at zero Beld the effective Hamiltonian is unique. A muItiband effective Hamiltonian suitable for
breakdown calculations is described.

I. INTRODUCTION

HE effective Hamiltonian for electrons in periodic
potentials is conveniently formulated in terms of

Wannier functions. ' ' These functions, which we denote
by a(r —R„),form an orthonormal set of basis functions
which spans the space of a single energy band. This fact
is not sufFicient to define the functions uniquely since
this property is obtained by defining a(r) according to
the relation

a(r) =g '~'g e+i"&b (r) (I)
where P(k) is any real function of k, and bi, (r) are Bloch
functions. The sum is over the g states in a Brillouin
zone. (One obtains an integral in the limit of an infinite
crystal. ) The phases P(k) are usually chosen so as to
localize a(r) about the origin. ' ' The eifective Hamil-
tonian is obtained by using the Wannier functions as a
basis for a one-band representation, namely

It then follows from the time-independent Schrodinger
equation that iP satisaes the relation

E(P)0(r) =Et(r),
where E(P) is the operator obtained by replacing k by
the momen. turn operator P in the energy function E(ir).
(We choose units in which 4= 1.) The solutions of Eq.
(3) are plane waves, e'"', with corresponding eigen-
values E(k). If one deals with a potential V(r) perturb-
ing the system, which is sufficiently slowly varying
that interband coupling can be neglected, such that

(a(r—R„)
~
V~a(r —R ))=V(R„)8„„, (4)

then the equation for g becomes

E(P)4 (r)+ V(r)k(r) =E|t ( ) (~)

This is the one-band effective Hamiltonian formulation

* Supported by the U. S. Atomic Energy Commission.' Q. H. Wannier, Phys. Rev. 52, 191 {1937).' J. C. Slater, Phys. Rev. 76, 1592 (1949).' E. N. Adams, II, Phys. Rev. 85, 41 {1952).
E. I. Blount, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , New York, 1961), Vol. 13.
' Q. F. Koster, Phys. Rev. 89, 67 (1953).

Q. Parzen, Phys. Rev. 89, 257 (1953).' Q'. Kohn, Phys. Rev. 115, 809 (1959).

which has the virtue that all information having to do
with the periodic lattice potential is contained in E(p).
This formulation is suitable for potential perturbations
such as that which results from an external electric
field. However, we cannot deal with magnetic fieMs
without modifying the formulation somewhat. The
complete one-electron Hamiltonian is modified, in the
presence of magnetic fields, by replacing the momentum
operator p by the kinetic momentum a=p+eA/c,
where A is the vector potential. It is thus natural to
attempt a formulation of the effective Hamiltonian in
which E(p) is replaced by E(m). ' This simple result,
which seems to fit observations, is not so simply
derived. Its validity was first established by Kohn' in
the limit of weak magnetic fields. He was able to
establish an operator II(m) in the form of a power series
in the field 8,

H(m) =Q„B"f„(~), (6)

in which the term fo(m) is the energy-band function
E(m). Subsequently Blount" and Roth" were able to
simplify Kohn s derivation. The question of the con-
vergence of the series has not been answered to the
author's knowledge. These derivations justify the use
of an effective Hamiltonian asymptotically as 8
approaches zero.

In a previous paper" the author was able to establish
the validity of an effective Hamiltonian, not restricted
to weak fields. The approach made use of the invariance
properties of the Hamiltonian for a uniform magnetic
field. The transformation properties of the eigenfunc-
tions were found by means of group theory and from
these it was possible to construct a set of orthonormal
functions analogous to Wannier functions. However,
the particular effective Hamiltonian obtained was not
simply related to E(k), even for small fields, and in fact
did not even have the same symmetry properties. The
trouble stems from the fact, noted earlier by Kohn, '
that the form of the effective Hamiltonian is not unique.

8 L. Onsager, Phil. Mag. 43, 1006 (1952).
9 W. Kohn, Phys. Rev. 115, 1460 (1959).IE. I. Blount, Phys. Rev. 126, 1636 {1962)."L.M. Roth, J. Phys. Chem. Solids 23, 433 (1962)."E.Brown, Phys. Rev. 133, A1038 {1964),hereafter referred

to as I.
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As will be shown presently there are a variety of ways
to form generalized Wannier functions. In contrast to
the unperturbed zero-field case, the form of H(m)
depends sensitively on the choice of basis functions. It
is desirable to be able to choose them in such a way that
the effective Hamiltonian reduces to E(m) in the limit
of zero field. In this way one can establish the validity
of an effective Hamiltonian for finite fields, the form of
which should be given correctly by the asymptotic
expressions referred to previously. ~"It should be noted
that it is only the form of the effective Hamiltonian
which is under consideration here. The validity of an
effective Hamiltonian is established for arbitrary
magnetic fields.

2. GENERALIZED WANNIER FUNCTIONS

We recapitulate briefIy the group-theoretical results
established in I for rutiomu/ magnetic fields. In this case
the magnetic field is along a lattice vector and the Aux
through a two-dimensional cell is f/A (hc/e), a rational
multiple of a Aux quantum. "The restriction to rational
fields is for convenience only and has negligible effect
on the consequences. The energy eigenfunctions, which
are E-fold degenerate, serve as basis functions for ray
representations of the translation group. These repre-
sentations are characterized by a wave vector q whose
domain is smaller than a Brillouin zone by a factor E in
each of the directions normal to the field. The density
of points in q space is the same as that of points in k
space, determined by the volume of the crystal. The
energy is a continuous function of q, lying in narrow
bands whose spacing depends on l as well as N. Typical
values of E are usually in excess of 10' for presently
available fields. We can think of the states of a single
energy band as decomposing into N such magnetic
sub-bands. The over-all. density of states is only slightly
altered by the magnetic field.

A generalized Wannier function can be obtained as a
linear combination of states from these E sub-bands.
However, it is more instructive to generate functions
with the orthogonality properties of Wannier functions
without reference to eigenfunctions. We define a func-
tion Q l" 'l(r) which serves as the lth partner function
of a representation denoted by q. The pair of labels n,
m are additional indices, which could designate the
mth magnetic sub-band within the mth band, for
example. In what follows the e label will not be ex-
plicitly included. It should be noted that only a portion
of Hilbert space is under consideration. The full Hilbert
space can be obtained by making use of functions cor-
responding to diA'erent n labels. We assume the func-
tions so defined are orthonormal. This is automatically
satisfied for functions belonging to diferent repre-
sentations, or to functions which differ in /. These

"The quantum of lux used here is twice the value of the super-
gonducting flux quantum„

We assume only that the matrices D&(R) are equivalent
(diBering by a unitary transformation) to the matrices
D&(R) defined in I. We will refer to the latter as the
standard representations.

We are now in a position to define a generalized
Wannier function A (r) by the relation

where g is the order of the group, and E is the identity
operation corresponding to m=0. The sum over m as
well as l is from 1 to E.The matrix corresponding to E
is the unit matrix with elements Dl 'i(@=bi so that
Eq. (8) can be written as

A (r) = (X/g)'&'P, , y ~(r).

Under magn. etic translation, Eq. (8) becomes

(9)

2'(R)A(r) = (&Ig)'"Zl;, D-l', ( R)e- ~l( )r, («)
where we have made use of Eq. (7) and the fact that
the matrices D are isomorphic to magnetic translations.
Denoting the translated function by A (R; r), or more
compactly as A(R), we find for the scalar product of
two such functions

(A(R') IA(R))= (&/g)Zl, l,-,-,~,. Dl - "(R')
XDi.~(R)(4. l' l4-i')

= P/g)Ei, -,g Dl-"(R')Dl-'(R)

where the last step follows by virtue of the orthogonality
relations for irreducible representations. If we want the
functions A(R) to span the states of X magnetic
sub-bands it is sufFicient to choose the functions p ~~ as
eigenfunctions in the mth sub-band. However, a more
general form of A(r) is obtained by letting p i'i be a
linear combination of eigenfunctions ip l'l according to
the unitary transformation

4ml Pm' ll mm' Pm'l (12)

The orthonormal set of eigenfunctions f are basis
functions for the same representations as the set p. The
eigenfunctions which serve as basis functions for the
standard representations are denoted by 4' &'i. These
differ from the set f l' by a second unitary trans-
formation

fml=+V +ml'i l l'

From Eqs. (9), (12), and (13) we obtain

A(r)= (E/g)'"pl „,, Ui &%„p,
where

(13)

(14)

(15)

lf We regard %ml'l aS the (ll, l) Clement Of a matriX We

functions transform under the magnetic translation
operators, defined in I, according to the relation

&(R)e- =Z e-'D«'(R).
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can write Eq. (14) in compact form in terms of the
trace:

(16)A (r) =Tr[(E/g)'I'g, U«V «5.

This is the generalized Wannier function expressed in
terms of standard eigenfunctions and an arbitrary
unitary E&(E matrix U.

In the special case of zero magnetic Geld, Eq. (16)
reduces to the definition of the conventional Wannier
function given in Eq. (1). In that case the representa-
tions are one dimensional so that the sum over q is
taken over an ordinary Brillouin zone. The eigen-
functions 4'i are the Bloch functions, and the unitary
one-dimensional matrices Uq are merely phase factors
e'&''i&. When dealing with 1X1 matrices the concept of
trace is superfluous. This result does not necessarily
imply that it is always possible to define a generalized
Wannier function for small magnetic field which
approaches the conventional one in the limit of vanish-
ing field.

«(R) =X/gP(, p,„,„,, D(„*&(R)

XA - '(0)(4-~'12II4- i ')
=X/gQ( „,, DE„*&(R)H„(&
= Tr[1V/gP, D~&(R) H&5, (19)

where Z ~« ——Q„«lZlg~ &), and is independent of n.
We recall that the matrix H& can be brought to diagonal
form Hz'i, by means of the unitary transformation W'i,
and that the representative matrices D&(R) can be
brought to the standard form D&(R), by means of the
unitary transformation Vi. Making use of the facts that
the trace is invariant to cyclic permutations, and that
U'i= V&W'i, it is a straightforward matter to obtain the
following relations

«*(R)=Tr[X/gP, UtD«(R) UH.*«5
=Tr[x/gp, D«(R) UH, *«Ut5. (2o)

Thus the most general efFective Hamiltonian can be
obtained by use of Eq. (19) with either H& in diagonal

3. EFFECTIVE HAMILTONIAN

Because of the arbitrary unitary matrix U in the
definition of the generalized Wannier function, we will
find a corresponding lack of uniqueness in the single-
band effective Hamiltonian based on these functions,
This arbitrariness is investigated here. We seek. a form
which approaches E(««) in the limit of weak magnetic
fields.

As shown in I the effective Hamiltonian can be
written in the form

EI(««) =JR «(R) exp( —iR ~) (17)

where «(R) is deGned as

.(R)=(A(R)lalA(o)). (18)

From Eq. (10) we Gnd

form and some arbitrary choice of representation, or
equivalently by using standard representations, with
H& in arbitrary form.

The asymptotic expansions~" mentioned earlier
yield an efFective Hamiltonian which approaches the
zero-field form as the magnetic field approaches zero.
We may thus hope to find an appropriate choice of U'i

for which A(r) closely approximates u(r) in weak
magnetic fields. Luttinger" derived an approximate
one-band efFective Hamiltonian, making use of the set
of functions obtained from u(r) by magnetic transla-
tions. We recall that, in the symmetric gauge, a mag-
netic translation consists of a pure translation combined
with the gauge transformation exp[-,'i(g XR) r5, whe~e

)=GAB/igc. The basis functions a(R; r) are thus of the
form

a(R; r) =a(r+R) exp[-', i(IiXR) r5 (21)

'4 J. M. Luttinger, Phys. Rev. 84, 814 $951).

The functions are not orthonormal because of the
presence of the plane-wave term. However, the matrix
element (o(r) l u(R; r) ) can be expected to be very small
in general, since the wave vector of the plane wave is of
the order 0.2X10 ' (BXR) atomic units, with 8 in

gauss and R in atomic units. The problem of forming a
set of orthonormal functions from the set a(R; r) is
analogous to the problem, in the absence of a field, of
forming orthonormal functions from a set of orbitals
P(r—R). In the latter case one forms Bloch sums of
orbitals, which are then normalized. The resulting
Bloch functions are added, as in Eq. (1), to form the
orthonormal functions. In the present problem, instead ~

of Bloch sums we make use of the group projection
operators" (of which the Bloch sum is a special case) to
form functions with the symmetry properties of the
eigenfunctions. If we make use of the standard repre-
sentations, the projection operators are equivalent to a
Bloch sum in the lattice planes defined by a& and a3,
while in the a~ direction the sum only couples planes
separated by Ea2. A particular partner function for a
given representation will appear E times, each associ-
ated with a different set of planes. These Sfunctions can
be orthonormalized, by the Schmidt procedure, for ex-
ample. In this way each function associated with a given
set of planes is modified by a slight admixture of the
other functions. If it were not for this mixing, applica-
tion of Eq. (9) would yield the result A (r) = a(r). Thus
the actual function obtained deviates from a(r) by a
small admixture of the other basis functions. For
commonly available fields, the deviation is expected to
be extremely small.

The Schmidt process for orthonormalizing a set of
functions is not the most satisfactory method for the
functions under consideration. In this method the
difFerent functions are not on an equal footing, since one
function is retained unmodified except for a scale factor.
A second one is then chosen, combined linearly with the
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Grst so that the resulting function is orthogonal to it,
and normalized. A third function is mixed with these
two, and so on. Thus certain functions undergo more
modification than others.

A more symmetric procedure is obtained by
"rotating" each of the normalized functions (regarded
as vectors) simultaneously. The rotation of the vector
X transforms it to X„', where

X„'=gLX„—-', P,,„(X„X;)X;j, (22)

and g is a normalizing factor. The primed vectors are
not fully orthogonal, but their scalar products are of
order e' if the original ones are of order ~. This procedure
can be repeated to any order, and a corresponding
one-band effective Hamiltonian can be obtained that is
sufIicient for problems involving isolated bands.

The previous formulation ignores interband effects.
In most physical applications it is sufIicient to neglect
these except when dealing with nearly touching or
overlapping bands. We will thus not concern ourselves
with the general case, but rather deal with a formulation
involving only a few bands. In principle, we could use a
direct generalization of our previous method. The
procedure would be to start with conventional Wannier
functions a"(r) from each band e, and use group pro-
jection operators on these. Orthonormalization of these
functions would involve some interband mixing. From
the resulting functions we could form the sets of gen-
eralized Wannier functions 2 "(R), which have the
property

(A"(R) ~A"(R'))=8, 8R,R' ~ (23)

The multiband effective Hamiltonian H(m) is then a
matrix operator. In this representation the Schrodinger
equation becomes

where

and
c (R)= (2"(R)

i Hi A "(0)). (26)

?t should be noted again that the functions f (r) are to
be evaluated at lattice points only.

The formulation just given yields a conceptual frame-

work on which to base approximation methods, when
interband eBects become important. However, it is
inconvenient to apply directly in the form given, since
the orthonormalization procedure can be carried out in
a variety of ways, and is generally cumbersome. The
size of the oft-diagonal elements in the e6ective Hamil-
tonian does not necessarily give a true indication of the
interband mixing caused by the magnetic Geld, since the
functions 2 "(R) do not refer to the original bands. As
already noted, the orthogonalization procedure used in
forming these functions can be carried out in such a way
that there is a large amount of admixture of other
bands. In zero field this would correspond to mixing
Bloch functions from different bands in forming the
Wannier functions.

We wish to establish a useful approximation pro-
cedure, based on the ideas presented, which does not
depend sensitively on the details of the form of the
effective Hamiltonian. We consider first the matrix
H(k) obtained, by replacing the operator m by the
vector k in the effective Hamiltonian. If we diagonalize
this matrix, in the absence of fields, the diagonal
elements are the original energy-band functions 8"(k),
no matter how much interband mixing one used in the
original choice of Wannier functions. The corresponding
result does not hold in the presence of a magnetic Geld.
In that case the diagonal terms depend on the original
choices of A"(R). However, it is usually a suKcient
approximation to neglect this fact and. assume that the
multiband effective Hamiltonian can be obtained by
writing the zero-Geld effective Hamiltonian in some
nondiagonal form, and replacing p by m. Recently,
Hardy'5 has shown that there exists a particular form
for which this result is rigorous. However, it is not clear
that one can Gnd this form simply. It turns out, how-
ever, that the results are not too sensitive to the
particular form chosen, and that one can go a long way
in the analysis merely from a knowledge of E"(k). Some
of these remarks will be illustrated in an accompanying
paper'6 in which calculations using model effective
Harniltonians are carried out.

~ R. J. Hardy, BuQ. Am. Phys. Soc. 12, 4j.5 (1967)."I".A. Sutler and E. Brown, following paper, Phys. Rev. 166,
630 (1968).


