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Polarization Effects in Slow-Neutron Scattering. III.
Nuclear Polarization*
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The theory of polarized-neutron scattering is extended to include the effects of nuclear polarization.
General formulas for the cross section and the polarization of the scattered beam are given for arbitrary spin
orderings. Several experiments which allow the determination of the spin dependence of the nuclear scattering
amplitude are discussed.

INTRODUCTION

"N two previous papers, ''- one of us has discussed
.. various aspects of the scattering of slow neutrons
from magnetically ordered solids. By making use of the
density-matrix description for the polarized beam,
expressions were derived for the cross section and for the
polarization of the scattered beam resulting from a
combination of nuclear, magnetic, and spin-orbit
scattering from crystals with arbitrary magnetic
ordering. Elastic scattering from particular arrays
was considered in more detail. Some of these results
have also been given by other authors. ' '

None of these authors has explicitly considered the
e6ects of nuclear polarization on the scattering. Since
many of the interesting features of the scattering are
characteristically observed at low temperatures, such
e6ects are possible, especially as the experiments are
performed at ever decreasing temperatures and in-

creasing magnetic 6eld. For instance, Shull and Ferrier'
have been able to detect a scattering contribution due
to the small "brute force" polarization of V" at temper-
atures below 15'K. In the particular case of the rare
earths, the hyper6ne splittings are large enough so that
nuclear-polarization-dependent terms should be clearly
observable in the 1—4'K range.

The occurrence of nuclear-polarization-dependent
terms raises two, somewhat separate problems. First,
in many experiments they may represent only a
nuisance, for which a correction must be made. The
expressions to be derived in this paper should facilitate
this correction. Second, several of the terms are of
interest in connection with the problem of the spin
dependence of the nuclear-scattering amplitude. Ex-
periments with unpolarized nuclei always lead~ to two
possible pairs (a+, a ) for the scattering amplitude due
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to compound nuclear states of spin (I+-,', I——', ),
respectively. This ambiguity can only be resolved, and
the values a+ and a determined separately, by taking
advantage of the nuclear-polarization-dependent terms.
This has previously been investigated only for the
simplest cases of purely nuclear scattering' and scatter-
ing from a colinear ferromagnet. '

The principal results of this paper are contained in
Eq. (20), which gives the cross section for scattering of
a polarized beam, and Eq. (21), which gives the
polarization of the scattered beam.

GENERAL EXPRESSIONS FOR SCATTERING
CROSS SECTION AND FINAL POLARIZATION

OF THE SCATTERED BEAM

We will make use of the previously employed
formalism and notation. "The cross section in Born
approximation for scattering of a polarized beam is
given by Eq. (I.1)

d'o. k' mo
Spa «L'Uaa'(K)Ua «(K) pj

and the polarization of the final beam P& is given by
Eq. (I.16)

d'0- k' moapr, , ———
~ pp, trLQ„"(K)S'U...(K)p]
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Here k and k' are, respectively, the initial and final
wave vectors of the neutron, and K=k —k'. The scat-
tering system, which has probability p, of being in
initial state q with energy E~, goes to Anal state q'

with energy E, . The quantum numbers q and q' refer
to such properties as the state of magnetization, dis-
tribution of phonons, and arrangement of nuclear spins.
'U(K) is the Fourier transform of the interaction be-

M. E. Rose, Atomic Energy Commission Report No. AECD-
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cal errors appear in the paper. In the second term of Eq. (1), re-
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factor of —,

' to the last term.
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tween the neutron and the scatterer. The density matrix

p is given by
p=-,'1+P.S,

where 1 is the 2)(2 unit matrix, S the neutron spin
operator, and. P the neutron-beam polarization. The
trace in (1) and (2) is over neutron spin coordinates.

We consider a potential 'U(K) which is the sum of
nuclear, magnetic, and spin-orbit contributions,

'U (K) ='U„(K) +'0„(K)+'U.,„(K),
where

'U„(K:) = (2m''/mp) (Tp+Ts S), (4b)

V~(K) = (2nA'/mp) (2ye'/mc') Q S (4c)

'U,.(K) =i(2prfP/mp) (2ye'/mpc') R S, (4d)

and the detailed form of the operators Tp, T,, and Q
are given in (I.6). We have introduced R for the oper-
ator appearing in (II.7) . The electron charge and mass
are e and m, respectively. while the neutron mass and
gyromagnetic ratio are mo and p= —1.91, respectively.

Upon inserting (4a) into (1) and (2) we are led to
consider six types of terms:

(i) purely nuclear scattering,
(ii) purely magnetic scattering,
(iii) nuclear-magnetic interference,
(iv) pure spin-orbit scattering,
(v) spin-orbit-magnetic interference,
(vi) spin-orbit-nuclear interference.

Of these, (i)—(iii) have been treated in (I), except
for terms involving nuclear polarization, i.e., terms
involving Tq. Terms (iv) —(vi) are treated in II, and
may be taken over with no change except for the com-
ponents of (vi) involving T~. We will not consider spin-
orbit effects any further since ter'ms involving 'U„are
smaller than their magnetic counterparts by a factor
of m/mp. However, the operator structure exhibited in
(4b) —(4d) gives a very simple recipe for adding spin-
orbit terms to the general expressions (5) and (6)
derived below. Terms (iv) follow from terms (ii) with
the replacement Q—+i(m/mp) R. Terms (vi) follow
from (iii) in the same way. Terms (v) are found by
considering those parts of (iii) involving T~ and re-
placing T~~i(2ye'/mpc')R. The factor i appearing in.

these replacements changes the experimental conditions
under which spin-orbit terms are observed relative to
their magnetic counterparts. For instance, we may
write (iii) as twice the real part of the product of
nuclear and magnetic amplitudes. In passing to (vi),
then, this would become minus twice the imaginary
part of the equivalent products. The conditions under
which such a term may be observed are discussed in
II.

We proceed now by inserting (4a) —(4c) into (1)
and (2), using (I.7) to evaluate the indicated traces.
At this stage we do not explicitly repeat the terms
previously derived, which are given in (I.S) for the
cross section and (I.17) for the polarization. We 6nd
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We should point out that both (I.S) and (I.17)
contain terms which are second order in T~. These lead
to both nuclear-polarization-dependent and -inde-

pendent terms. Only the latter have been carried
through the remainder of the analysis in I.

ELASTIC SCATTERING

An inelastic scattering event is one in which E~.~E,.
This may occur by means of an interaction between the

incident neutron and any combination of the phonon,
electron spin, and nuclear spin systems. We make
rather different approximations for these three systems
in order to proceed with the calculation of elastic
scattering. The approximations all have the character
that they give the coherent scattering and all of the
nuclear polarization dependence properly. This is
presumably everything of experimental interest as far
as the present work is concerned. The purely magnetic,
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inelastic scattering will not be included. This is treated
in other work" and will be unchanged by the presence
of nuclear polarization. In detail, we proceed as follows.
We write the lattice states

I q) as a product of phonon,
electron spin, and nuclear spin parts, so that the sum
over q and q' is really a multiple sum over the quantum
numbers of these systems individually.

(a) For the nuclear spin system we make a quasi-
elastic approximation, E, =I, for all q . Since this is a
complete set of states we may immediately sum over
final nuclear states, and the answer will appear as a
thermal average over initial nuclear states, denoted by
diagonal braces, e. g. , (I„).

(b) Except for very slow neutrons, the same ap-
proximation is valid for the electron spin system in a
paramagnet situated in any presently attainable
magnetic field. However, in an ordered magnetic system
we consider only coherent elastic scattering, for which

I
q') =

I q). These approximations only affect the
purely magnetic scattering terms. The nuclear operators
do not aA'ect the electron spin system in the uncoupled,
approximate representation we are using. Therefore, in
both the purely nuclear scattering and in the nuclear-
magnetic interference terms we in fact need only
consider those cases in which the initial and final states
of the magnetic system are the same.

(c) Since nuclear-polarization experiments are per-
formed at low temperatures, the phonon inelastic
cross section is expected to be small. We will ignore the
phonons entirely. For the coherent scattering, this
amounts simply to dropping a Debye-Wailer temper-
ature factor common to all terms. The "isotropic"
background scattering will, however, not be given
correctly below. Our results will give this background as
due to only isotopic and nuclear spin incoherence, with
a certain dependence upon nuclear polarization.
Phonon inelastic scattering will add to this background
a part of what will appear below as coherent scattering,
with a different dependence upon nuclear polarization.

We now give explicity the only nonvanishing matrix
elements which, in the light of the above approxima-
tions, will appear in (5) and (6). For the magnetic
system we follow (I.9)—(I.11),

(q'I Q I q)=b, , +exp(iK R„)j„(K)S„q„, (7a)

where
q„=I~X (~„XK). (7b)

Here, 5„ is the magnitude of the electronic spin for the
ion at site v, with position vector R„ from the origin,
q„ is a unit vector in the direction of this spin, and
f„(K) is the magnetic form factor for this ion. E is a.

unit vector in the direction of K.
For the nuclear operator To we have

(v'
I

7'o
I c)=~'. Z «p(iK. R ) {a }, (8a,)

where

{a„}=La„+(I„+1)+a„—I„]/(2I„+1) (8b)

is the familiar coherent scattering length for the
nucleus at position R„with spin l„.The matrix elements
of T& are given by

(q'
I
Ti I q) = (q'

I g exp(iK R„)C„I„ I q), (9a)

where

C„=2I (a„+—a„—)/(2I„+1)). (9b)

The physical significance of C„may be seen as follows.
The strength of the nuclear coherent scattering is given
by I {a„}I'. On the other hand, the scattering cross
section for an isolated atom is given by

{ I
a„ I'}=L(I„+1) I a,+

I +I„
I
a„- I2j/(21„+1) . (10)

The spin incoherent scattering appears as the diHerence
between these two quantities:

{ I
a I'}-

I {a } I'=ll. (~.+I)
I
C. I', (»)

so that C„might be called the "incoherent scattering
length. " An experimental determination of C„will
resolve the ambiguity in the spin-dependent scattering
lengths, (a„+, a„). Equation (11) shows that C„2 is
known from measurements with unpolarized nuclei, so
that it is sufhcient to determine simply the algebraic
sign of C„.

If we insert (7)—(9) into (5) we obtain for the
elastic scattering cross section

do/did'= g exp} iK (R.—R. ) ]L{a"*}{a.}+lc"*c.((1. I )+&P (I"XI.))j
vv~

+Re{ g expl iK (R„—R„.)j{a,*}cP (I,)}+2Re{ g exp} iK (R„—R„.) jP„(K)L{a„.*}q„P
vv~ vv~

+~c„*(I„')q„+~ic„*P ((I„)Xq„)g}+magnetic terms, (12)

where we have defined the magnetic scattering amplitude p„(K) by

P (K)=(7'/ ')~.f.(K)

' A. W. Saenz, Phys. Rev. 119, $542 (1960).
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The purely magnetic terms in (12) are given by the last line of (I.12) . The final beam polarization is given by
inserting (7)-(9) into (6):

—,'Pr(do/dQ') = Q expLiK (R„—R„.)]PP{a„.*}{a„}—-', Pc„"c,(I„~I„)—-', ic„.'c„(I„.yI„)]
vi )'

+ Re{ Q expLiK (R„—R„.l]L-', {a„.'}c„(I„)+-,'i{a„*}c,(I.)XP+-,'c„*c,((I,"P)I,)]}

+ Re{ g expl iK. (R.—R")]{a"*}P.(K)Lq.+i(q. it P)]}

+-; Re{ g expLiK (R.—R")]c"'P.(K) L&I"&(q P)+(&I"& P) q

—P((I„.) q„) —j(1„.&gq„]}+magnetic terms. (14)

The purely magnetic terms are given by the last two
lines of (1.18).

To perform the thermal averages over the nuclear
magnetic substates, we assume that the nuclei are un-

correlated. This is an excellent approximation for most
magnetic materials; the internuclear coupling is the
Suhl-Nakamura interaction, which is quite weak
compared to the usual hyperfine interaction at each
individual nuclear site. %e will not discuss such

cases as liquid He' or solid hydrogen, although they are
very interesting. Inthese the CGective internuclear

coupling is very strong as a result of the correlation
between electronic and nuclear states, which is brought
about by Fermi statistics, and there is also the possi-

bility of nuclear "spin waves. "
The thermal averages in (12) and (14) may then

be written as"

(15c)

5-wave neutrons if one observes a vector quantity,
i.c., thc 6nal polarization.

We dehne the vector-nuclear polarization P„~ by the
relation

(16)

The magnitude of P„~ varies between unity for
complete polarization and zero for no polarization. It
will be convenient to define a new symbol

Before (12) and (14) can be applied, they must be
averaged over isotopic distributions. To be consistent
with (I) we shall use angular brackets ( ) to denote
isotopic averages. There should be no confusion with
the use of such brackets to also represent thermal
averages in (12) and (14). The thermal averages wiH

no longer explicitly appear, except in the term
(I,(P I„)), for which we will use a double set of
brackets to indicate the combined isotopic and thermal
average.

The averaging is performed exactly as in I. We
dchnc~ foi instance,

The last, term of (15c) can. only be calculated if the
nuclear hyperfinc Hamiltonian is known. For un-

oriented nuclei it equals (1/3) I(I+1)P. Since it
appears only in the expression for the polarization of
the incoherent scattering, it is presumably of minor

experimental importance. It is, however, interesting

to note that this term depends upon the second moment,

of the nuclear spin distribution. It will be present even

if the nuclei are aligned but not polarized, as would

occur, for instance, as a result of the interaction of the
nuclear electric-quadrupole moment with a crystalline
electric field gradient. Such a term can only occur for

"In (15b), a factor (i—8„,) in the first term of the right-hand
side vi)oui. d be extraneous. After thermal averaging, (I„) is no
longer an operator, so that iI„) )& (I„)=0.

where r is the concentration of the 0.th isotope with
coherent scattering length {a }. Similar definitions

apply to the isotopic averages of all other nuclear
amplitude combinations appearing in (12) and (14).

Further, we have a set of relations similar to

V+V

1V=V ~

We use (11) to express
I
C„ I' in terms of more

familiar quantities. We also include at this point the
purely magnetic scattering found from (I.15) for the
cross section. and (I.19) for the polarization. The
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anal results are

do/dQ'=
I P exp(iK R„)(«a„})I'+~i

I P exp(iK R„) (d.) I'+ Re{ g exp[iK (R.—R. )](«a„*})(d,P)}
v vvt

+-',iP.{g exp[iK (R„—R„.)7(d„*)X(d,)}
vvt

+ Z{&« I
a I'})—1&«a}& I' —l I &d, &I'—&(I,+» '«

I
a. I'}P" P&

v

+((I+I) 'I «a.} I'P~ P)+ReL(«a*}d P)—(«a*})(d P)7}
+2 Re{p exp[iK (R„—R„.)]p,(K)[(«a..*})q„P+-,'(d„,*) q„+-',P ((d„.*)Xq„)7}

vvt

+ g exp[iK (R„—R„.)]p„*(K)p„(K)[q,"q„+iP (q. Xq„)7. (20)
vvt

The first four terms give the nuclear coherent scattering. This is followed by the nuclear incoherent scattering. The
next to last line gives the coherent nuclear-magnetic interference terms. The last line gives the coherent, pure,
magnetic scattering.
—' Po(rd /odQ') =oP

I P exp(iK R„)(«a„})I2——,'P
I g exp(iK R„)(d, ) I' —Si P exp[iK (R„—R„)7(d„*)X(d.)

v v vvt

+2 Re{ g exp[iK (R„—R„.) 7[(«a„.*})(d„)+i(«a„.*})(d„XP)+-', (d„.* P)(d„)]}
vvt

+ 2 {—2P[&« I
a I'}&

—2& I «a } I'&+
I &«a }&

I' —-'
I &d ) I'7

v

+2 ((~ +I) '«
I
a. I'}P.~)—2 &(I.+ll '

I
«a } I'P.~)

+-,' Re[(«a„*}d„)—(«a„*})(d„)+i(«a„*}d„XP)—i(«a„*})(d„XP)+-',(( I
c„ I'I„(I„P)))—-', (d„*)(d„P)]}

+ Re{ p exp[iK. (R„—R. ) 7[(«a„*})p„(K)(q„+i(q,XP) )
vvt

+lp. (K) ((d"*)(q P)+(d"* P)q.—P(&d"*) q) —i&d"*)Xq )7}
—

2 2 exp[iK (R.—R")]P" (K)P.(K) LP(q" q.)+i(q"Xq ) 7
vvt

+ «P exp[iK (R,—R")]p"*(K)P.(K)(q" P)q' (2I)
vvt

The order of the terms is the same as in (20): nuclear
coherent, nuclear incoherent, nuclear-magnetic inter-
ference, and pure magnetic scattering.

DISCUSSION AND EXAMPLES

Let us consider experiments designed to determine
the sign of C„.The simplest experiments would be those
in which the coherent scattering is observed. It should
be remembered that besides the isotropic elastic back-
ground due to nuclear incoherence, calculated above,
there is an inelastic background which we have ignored.
Part of this, the phonon inelastic scattering, will have
the nuclear-polarization dependence of the coherent
nuclear scattering. This will further complicate the
over-all polarization dependence of the background,
which is already quite complicated enough.

As far as coherent scattering is concerned, nuclear
polarization enters only through the quantity (d„).
The terms linear in (d„) are those of interest. It can
be seen that the vector 2 (d„) plays the same role in the
scattering from polarized nuclei as the vector p„(K)q„
plays in the scattering from a magnetized electronic
system. The experimental conditions under which the
magnetic terms containing a factor i can be observed
were discussed in I. The corresponding nuclear-

polarization terms will be observed under identical
conditions.

To illustrate the effect of the various terms in (20)
and (21), we shall give a few specific examples. Many
of the results have already been given elsewhere.

(a) We consider first the case of "brute force n-uclear

polarization, " which has been discussed previously by
Rose. ' This is polarization due to the interaction of the
nuclear magnetic moment with an externally applied
field in a nonmagnetic material. For this situation, (20)
gives for the coherent scattering

(do/dQ') =
I g exp(iK R„) («a„})I'

v

+-,'
I Q exp(iK. R„)(d,) I'

v

+ Re{g exp[iK (R„—R„..)](«a„.*})(d„P)}. (22)
vvt

Let H be a unit vector in the direction of the external
field. It is convenient to consider separately the com-
ponents of the neutron beam which are parallel (sub-
script +) and antiparallel (subscript —) to H The.
nuclear polarization may also be parallel or anti-
parallel to H, depending upon the sign of the nuclear
gyromagnetic ratio gz.
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The coherent nuclear scattering cross section may
then be written,

(«/«')„=
~ Q exp(iK R„)({o„}~-',d„ II)

~

.

Substituting from (Sb) and (17) we find, for each
isotope, that the neutrons which are parallel to the
direction of nuclear polarization see a coherent scatter-
ing amplitude given by the upper pair of signs in

g+ $~ g—f~ pg 23

As P —+1, this coherent amplitude —+a+, as it must,
since the compound state in this process is just that of
total spin I+~i and z component I+,'. We will —expect
to find that the spin incoherent scattering vanishes in
this instance. The neutrons which are antiparallel to
the nuclear polarization see a coherent scattering
amplitude given by the lower set of signs in (23). As
I'~ +1, this a—mplitude +(u++2I—o )/(2I+1) . The
amplitude is still a mixture because the initial state of
nucleus "up" and neutron "down" does not lead to an
eigenstate of the compound system.

We note that C„always occurs in the combination
C„I„P„~=d„. Therefore the sign of J'„~ must be known
before the sign of C„can be determined. Further, the
presence of even-even isotopes, for which d„=0, may
have a large effect on the experimental result. The
physical basis for this is as follows: As the nuclear

polarization is changed, the coherent amplitude of each
polarized isotope is effectively changed. This in turn
changes the relative amount of isotopically coherent
and incoherent scattering. It is possible for instance to
arrange an experimental situation in which the isotopic
incoherence would vanish at a particular nuclear
polarization for one of the isotopes. The complicated
expressions for the nuclear incoherent scattering are a
result of this interplay of spin and isotopic incoherence.

Let us continue the example by determining the in-
coherent scattering for a monoisotopic scatterer. We
find

X {1—LI/(I+1)3(&")'—Ll/(I+1) jP" P}
As argued above, we find that if Pv = 1 and P~ P =+1,
the incoherent scattering vanishes. We note that the
incoherent scattering is reduced if 8~~0, even for
unpolarized neutrons, while the coherent scattering is
increased. The coefficient { ~

a ~'} —
~

{u}~' is known
from experiments with unpolarized neutrons so that
the experimental determination of («/«');„, adds no
new information on the scattering amplitudes. The
term in P~ P, however, permits a determination of the
sign of P~ relative to the applied field, which is often
an unknown quantity.

Finally, we consider the polarization of the scattered
beam:

2'(«/«') =—',P
~ g exp(iK R.) ({a„})~' ——,'P ~ g exp(iK R„)(d„) ~'

+—,'Re{ g expLiK (R„—R. l j[({a,*})(d„)+2(d„*P)(d„)+i({a„*})(d,XP)7), (24)
vv~

which must be divided by (22) . The simplest method of determining (d„) is clearly to use an unpolarized incident
beam and analyze the final polarization, since in this case the desired term is the only one which contributes.
The last term in (24), which contains a factor i, is the analog of a magnetic term discussed in I. It can be observed
if the nuclear amplitude contains a large imaginary part (strong absorption) or if the nuclear structure factor is

complex.

(b) Nuclear polarization may often be enhanced by placing the nucleus in a magnetic material. A large number
of possibilities are then opened up which we cannot investigate here. We shall simply write down the result for a
simple colinear magnetic system with only one type of magnetic ion; that is, either a ferromagnet, antiferro-
magnet, or saturated paramagnet in which all the electron spins are either parallel or antiparallel to a unit vector

q. Then q„=&q, where q =XX (rlXZ) is independent of v. Further we assume that I„ is colinear with il. The
nuclear coherent scattering is again given by (22), and the coherent cross section is

«/«'= (22) + [ g exp(iK R)p„(K)q„ f'+2 Re( g expLiK. (R„—R„)jp„(K)q„({a„*}P+-', d„*)) (25)
vvI

which is the result given in Ref. 9. In analogy with the previous discussion, this result may be interpreted as a
coherent mixture of nuclear and magnetic scattering with a modi6ed nuclear coherent scattering length.

A particularly interesting case of (25) occurs for the superlattice reflections in an antiferromagnet. Since (d„)
as well as q„reverses sign between antiferromagnetically coupled neighboring atoms, the nuclear polarization
terms enter into these reflections. For an unpolarized beam, and for only the superlattice reflections

«/«'=
~ +exp(iK n) ~'i +exp(iK r){:p (K)q. +2(d)71'

where we have written R„=n+r;, n being the vector from the origin to the origin of a unit cell, and r, the position
vector within the unit cell,
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Once again, a term linear in (d„) may be isolated by analyzing the Anal polarization for an initiaHy unpolarized
beam. YVC have, again for the superlattice rejections only,

Pf(da-/dn') =Re( g exp[iK (R„—R„.) jt -,'(Ia, *I){d.)+{Ia..'})p,(K)q.j}.

The experimental geometry may then be chosen so
that q =0, i.e., K parallel to q.

(c) The nuclear polarization tends to be colinear
edith the electronic magnetization; this led, above, to
nuclear polarization effects in the superlat tice re-
jections of an antiferromagnet, which are normaBy
thought of as being of pure magnetic character. The
same phenomenon occurs in more complicated magnetic
systems. Let us for instance consider a magnetic
spiral. As shovrn in I, this is a case in vrhich the vector
product terms in (20) and (21) contribute.

Ke consider a spiral which propagates with a ferro-
magnetic component in the direction u3, while spiraling
about in a plane defined by the vectors ug and N2. The
unit vectors g„giving the direction of the electron spin
are then expressible as

rj, ='giiu3+g&I@y cose R„+u2 slue R„I

=~iiu, +-',~.L'u exp(i'R, )+u, exp( —i'R„)] (26)

riii +'V~

where s= (2x/X. )u8, X, being the wavelength of' the
spllRl Rnd Qg =Qy~tQ2.

Similarly, foI' thc nuclcRI' poIRI'lzRtlon wc %1ltc

I „=2'„,i"u,+-',r„. Lu exp(i'R„)

+tti. exp( —ie R )j
(P x)2+(p ilv) 2 (p X) 2

(« ii) =(~.2.2'. ii );

(d„i)= {C,I,P,i"').

The ncccssRI'y vcctoI' I'clRtlons Rrc

Qg' Qy=0; Q+' Q

Ag Qy =0; Q3 Q3= I '

Q+ g Q+ ——n3 &us ——0;

Q+QQ = —2iQ3, Q3X Qy =~fQy )

and. the vector identity

(~xs). (cxD) =(A c) (a D) —(a D)(s c).

which vanish unless c ls R I'cclplocR1 lattice vcctox'.
Ignoring this pathological case we find, for the co-
herent scattering, a central peak involving the ferro-
magnetic components of q and P~:

In the course of the calculation, terms appear of the
form

Z exp(iK R„) Z expLi(K+. ) R„,3

(dtT/dn') „„f„y „],=
~ g, exp(iK. R„){Ia„}) ~

y-'
( g exp(iK R,) {d„ii) ~2

+ ReI g expt iK (R„—R, )](Ia„."I )(d„ii)(P u3) I+2 Re( Q expLiK (R.—R„)]p„(K)gii
vv~ vv~

&&L{I; I)P (-..-E(E '))+-, (d. *)(l-(E '.) )-- (d, *)P (-..&«) (.'E)»
+

~ g e p(iK R„)p„(K)gii ~'Ll —(E u3)q

to which Rre added satellites involving the spiral, or J, components of g and I'~',

( Ar/dQ'), .g.gg;g., ——-',
[ Q expLi(K&e) R]{d„i)[ (l&P u, )

+-', Re( p expLi(K+e) ~ (R„—R„.) jp„(K)gi(d„ i")Ll+(E u3)'aP (ug+E(It u, ) )+iP (u3XE) (ug E)1}
vv~

+-,'
~ Q exp[i(K+e) ~ (R.—R, )lp. (K)gi ~'Ll+(E u3'+2(P E) (E ug) j.
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This reduces to Eq. (27) of I if we set I'P =0, rt~
~

=0,
qi ——1. Although we will not calculate it, the nuclear
polarization also a6ects the final neutron polarization
in all three peaks.

It may be in order to point out several problems in-
volved in performing the experiments we have indi-
cated. In a typical sample, diGraction occurs from
many "mosaic blocks, " rather than from a single large
crystallite. A portion of the beam di6racted by the
upper layers of the crystal may be rediffracted into the
incident direction by deeper layers; this is, in fact, part
of the familiar phenomenon of secondary extinction.
Since the polarization of the diGracted beam may be
changed in magnitude and direction, the analysis of the
redifFraction process may be extremely complicated,
and it is thus important to ensure that the experimental
crystal is extinction free.

%'bile the above diffraction process occurs only at
occasional crystallites, absorption will occur through-
out the body of the crystal. Thus, even though the
absorption is small enough so that the nuclear ampli-
tudes in (20) and (21) may be taken as real, absorption
may still play a signihcant role in the experiment. The
absorption is, in general, spin-dependent —that is, it is
different for the I+—,

' and I pnuclear —states. Further,

the spin dependence of the absorption cross section may
be opposite to that of the scattering, leading to possibly
erroneous results. Again, as in secondary extinction,
the analysis becomes very complicated if the crystal
is too thick. However, if the crystal is extinction-free,
then each spin component of the incident beam may be
treated individually. The usual thin crystal-di8raction
solutions then apply to each component separately,
each with its own appropriate absorption coeKcient.
In principle, this coefFicient should include both in-
coherent scattering and true absorption, but in practice
only true absorption fiill be important. The spin de-
pendence of this quantity is given by'

where

o..=op.+o,.P~ P, (27)

op, ——[(I+1)/(2I+1) ]o,++[I/(2I+1) ]o, ,

o =[I/(2I+1)3(a' —a. ),
and 0. + are the absorption cross sections for the two
possible compound states. Although a.„,is unknown for
most nuclei, it may be determined by studying the
transmission of the incident beam with the crystal
rocked out of the reflecting position (see, for instance,
Ref. 9).
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Elastic Moduli and Ultrasonic Attenuation of
Polycrystalline Europium from 4.2 to 300'K

M. Roszw
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The longitudinal and transverse acoustic velocities and the ultrasonic attenuation of high-purity poly-
crystalline europium metal have been measured by a pulse technique between 4.2 and 300'K. The variations
with temperature of the Young modulus E, shear modulus G, adiabatic compressibility K„and Debye tem-
perature eg, have been determined. The Noel point at 91'K is marked by drastic changes in the elastic
moduli and ultrasonic attenuations. Anomalies in the attenuation and in the compressibility are observed at
about 150'K. The limiting value of OD is 117'K.

INTRODUCTION

EVERAI physical properties of europium diGer
from those of the other rare-earth metals: for

instance, its bcc structure, in contrast to the mostly
hexagonal metals of the series, the large atomic volume, '
and the high compressibility at room temperature. '

The magnetic susceptibility' exhibits a small anti-

' D. B. McWhan, P. C. Souers, and G. Jura, Phys. Rev. 143,
385 (1966).' F. H. Spedding and A. H. Daane, The Rare Farths t'John
Wiley 8z Sons, Inc. , New York, 1961).' R. M. Bozorth and J. H. Van Vleck, Phys. Rev. 118, 1493
(1960).

ferromagnetic-type maximum at 90'K. No remanence
was observed, i.e., no ferromagnetic state occurs.
Nevertheless, europium does not display a typical
antiferromagnetic behavior. The high-temperature sus-
ceptibility is consistent with the fact that the Eu ions
are in a divalent state. At lower temperatures, however,
the susceptibility fits a trivalent model.

Neutron di8raction measurements4 show that Eu
undergoes an antiferromagnetic transition, with a Neel
point at 91 K, followed by a continuing ordering

4 N. G, Nerenson, C. E. Olsen, and G. P. Arnold, Phys. Rev.
13'/, A176 (1964) .


