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order terms were examined and it was found that di-
vergences may enter. It was shown how the divergences
may be avoided for the case where one of the excited
states is bound and the other is in the continuum. How-
ever, the divergences have not been removed when both
excitations are in the continuum, and this problem is
being studied further. It was also shown that the
methods of this paper are applicable to problems of
multiple atomic excitations. Numerical calculations
utilizing these methods are planned for several atoms.

ACKNOWLEDGMENTS

I wish to thank Professor M. E. Rose for his support
and encouragement. I also wish to acknowledge helpful
conversations with V. Celli, V. Devanathan, J. M.
Eisenberg, S. Kohler, M. Rho, A. Ron, H. Schmidt,
F. Schwabel, %. D. Whitehead, and M. Zuckermann.
I am particularly grateful to Professor R. A. Ferrell for
very helpful comments. I am also grateful to the U. S.
Atomic Energy Commission and the National Science
Foundation for financial support.

P H YS I CAL REVIEW VOLUM E 166, NUM BER 1 5 FE B RUAR Y 1968

Approximate Variational Solution of the Thomas-Fermi Equation for Atoms

P. CsAvINszKY

TRW Systems, Redondo Beuoh, Cutiforniu

(Received 1 September 1967)

An approximate solution of the Thomas-Fermi (TF) diKerential equation is obtained by making use
of an equivalent variational principle. The trial solution, depending on several parameters, is chosen in
such a way that it satis6es the boundary conditions imposed on the TF equation together with the sub-
sidiary condition that the electron density be normalized. The numerical values of the parameters are
determined by extremalizing the variational expression with respect to the parameters. Using the approxi-
mate solution, one 6nds that at large distances from the nucleus, the radial electron density decreases
exponentially, as required by quantum mechanics —in contrast to the original TF theory, where the above
quantity decreases as the inverse fourth power of the distance from the nucleus. The approximate TF func-
tion is then used for calculating the energy necessary to remove all electrons of an atom and for calculating
the interaction energies between atoms in the Firsov approximation. In the former case the improvement
upon the original TF theory is found to be substantial, and in the latter the interaction energies closely
approximate Abrahamson's interaction energies based on the Thomas-Fermi-Dirac model.

I. INTRODUCTION
' 'T is a shortcoming of the Thomas-Fermi (TF) theory
~ ~ of the atom' that it leads to a radial electron density
which decreases as the inverse fourth power of the
distance from the nucleus, ' whereas the Hartree" ap-
proximation, its quantum-mechanical equivalent, gives
an exponential decrease. The purpose of the present
paper is to show that the above shortcoming can be
eliminated by making use of the flexibility in imposing
boundary conditions when the TF. differential equation
is replaced by an equivalent variational principle.

Bohr radius u~, and Z the atomic number, the TF
theory leads to the differential equation

d,'y/doo'=d't'/x't'

which, for a neutral atom, is to be solved4 with the

boundary conditions

(2)

Choosing'

II. THEORY

Introducing the dimensionless variable x by

x= 4(2Z/9m')'"(r/utt),

where r is the distance from the nucleus, in units of the

the variational principle

' For a review of the subject see P. Gombis, EncyclopeCha of
I'hymcs, edited by S. Flugge (Springer-Verlag, Berlin, 1956), Vol.
XXXVI.

~ See Ref. 1, p. 132.
"D.R. Hartree, Proc. Cambridge Phil. Soc. 24, 111 (1927).
' P. A, M, Dirac, Proc, Cambridge Phil. Soc. 26, 376 (1930).

4 The most accurate numerical solution is given by S.Kobayashi,
T. Matsukuma, S. Nagai, and K. Umeda, J. Phys. Soc. Japan 10,
759 (1955).

e S.Fliigge and H. Marschall, Reehenmethoden der Qnuntentheorie,
(Springer-Verlag, Berlin, 1952), p. 262 8,
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(3) into the Euler-Lagrange equation, ' TABLE I. Ratio of the approximate to the exact solution
of the TI equation.

results in the TF equation.
The problem is now the selection of a trial function

p which satisfies the boundary conditions in Eq. (2).
Obviously, a large class of functions is admissible, and
therefore, in choosing one, we resort to a form which
permits computational simplicity in connection with
tile Ill teglal II1 Eq. (4).

Choosing a trial function of the form
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p= [a exp( —nx)+b exp( —px)g', (5)

where tt, $, n, and p are as yet undetermined parameters,
and requiring that

the boundary conditions in Eq. (2) are satisfied. With
Eq. (5) one calculates Ii in Kq. (3) and then evaluates
the integral in Kq. (4). The resulting expression, a
function of the parameters a, n, and p, is then extremal-
ized with respect to these parameters subject to the
subsidiary condition that the electron density be
normalized. This is an important point since previous
attempts, 'I based on a trial function of exp( —yx),
resulted in an unphysical solution since a one-parameter
trial function is not compatible with a subsidiary
condition.

The subsidiary condition is expressed as

where g is the number of electrons, de is the volume
element, and p is the electron density which is related'
to/by

g rQ)
e/2

4e.tt' (xi

t = ,'(9+/2~)'I'~~~-

HI. DISCUSSION

To compare the approximate solution of the TF
equation with the exact one, the ratio of these quanti-
ties as a function of x is tabulated in Table I. It is seen
that marked deviation occurs only at large values of x
rejecting the exponential decrease of the trial solution.

To test the approximate TF function of Kq. (5) with
the parameter values of Eq. (8), the energy necessary
to remove all electrons of an atom is calculated9 from

E=(»/n(2/9-) IV(0)~ I (~/")
The result is listed in Table II together with data
obtained by the original TF equation. For comparison's
sat.e "empirical" values are also given which were
calculated by Slater's rules. "

It is seen from Table II that the unmodified TF
theory leads to total ionization energies which are too
large compared to the "empirical" values. It is also seen
that the present approximation leads to a much better
agreement with Slater's values, particularly for the
lighter elements.

As another test of the approximate TF function the
interaction energies between noble gases, both for the
homo- and heteronuclear cases, are calculated in the

TmLz II. Comparison of total ionization energies
(in units of 8 /cg).

Details of the calculation are given in the Appendix.
Here the results are summarized by

u= 0.7 j.Ii, n= 0.1"15,

0=0.2889, rt=P/n=9 5, .

where the new parameter n, as explained in the Ap-
pendix, is introduced to simplify the numerical
calculations.

H
He
Be
C
Ne
Ar
Fe
Kr
Xe
Hg
U

2

6
10
18
26
36
54
80
92

Present

0.585
2.951

14.87
38.30

126.14¹1
2272
2505
6453

16145
22370

TF

0.769
3.875

19.53
50.30

165.7
653.0

1540
3291
8476

21210
29380

Empirical

0.5
2.904

14.68
37.86

129.5
525.4

1249
2704
7079

18680
25520

e R. Courant, Dgferertteat arag Irttegrat CaletCke iInteracience
Publishers, Inc., New York, 2952), Vol. II, p. 497fF.

~ M. G. %'esselorv, Zh. Eksperim. i Teor. Fiz. 7, 829 (2937).' See Ref. 2, p. 125.

9 See Ref. 1, p. 135.I See Ref. 1, Table 5, p. 183; also J. C. Slater, Phys. Rev. 36,
57 (2930),
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Pro. 1. Interaction energies for (a} Ne-Ne, (b) Ar-Ar, (c) Kr-Kr, (d) Ne-Ar, (e}¹-Kr,and (f) ¹Xe(on logarithnnc scale and in
units of e'/ug) as a function of internuclear separation (on linear scale and in units of ag). The symbols are as follows: TFD—Thomas-
Fermi-Dirac (as calculated by Abrahamson}; F—Firsov; B—Bohr; MF—modified Firsov (present calculation). The vertical arrows
point to the atomic radius in the TFD theory.

Firsov" approximation. In Firsov's theory this quantity
is given by

and E is the internuclear distance. Firsov limits the
validity of his approximation for 8&1.9@~ mainly
because the TF electron density falls off too slowly.
This viewpoint was also shared by Abrahamson, "who
calculated the interaction energies between noble gas
atoms in the Thomas-Fermi-Dirac (TFD) approxi-

mation. '2'3 Since his work requires very extensive
numerical calculations it is of interest to calculate the
interaction energies in the Firsov approximation by
making use of the TF function obtained in this paper.

Figures 1(a)-1(f) show Abrahamson's values (TFD),
Firsov's values (F), the present paper's results, here-
after called the modified Firsov values (MF), and values
obtained by the Bohr approximation" (B), i.e., by

Pn(g) (Z,Z,e'/g) exp) (Zt213+Zeala)t12(g/tr~) j
both for some homonuclear" and heteronuclear" cases.

"A. A. Abrahamson, Phys. Rev. 130, 693 (1963)."0.B. Firsov, Zh. Kskperim. i Teor. Fiz. 32, 1464 (1957};33, ' A. A. Abrahamson, Phys. Rev. 133, A990 (1964).
696 (1957) English transls. : Soviet Phys. —JETP 5, 1192 (1957); ~4N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd,
6, 534 (1958 ]. 18, No. 8 (1948).
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It is seen from the figures that the agreement between
the modified Firsov approximation and the Abrahamson
approximation is very good at smaller internuclear
separations and is reasonably good over all nuclear
separations considered. This behavior is interesting
since the Abrahamson approximation is beset with a
difIIculty, namely the fact that in. the TFD model the
electron density of neutral atoms extends only to a
given distance from the nucleus, the so-called atomic
radius, and there it abruptly drops to zero. This physi-
cally unattractive aspect of the TFD model has also been
criticized by March. " Consequently, interaction-
energy calculations based on the TFD model should
not predict any interaction energy for internuclear
separations larger than the sum of the radii of the atoms.
For this region Abrahamson obtained his values by
extrapolations. These values, therefore, are probably
not more reliable than the modified Firsov values which
are based on Eq. (5), or expressed otherwise, on an
electron distribution whose asymptotic behavior is more
in accordance with the requirements of quantum
mechanics than that of the TFD model. Finally, it is
also seen from the figures that the unmodified Firsov
approximation and the Bohr approximation can only
be used for small values of R.

where

L= L,+L2, (A1)

and

-', (d4/dx)'dx,

-'qP/'x '/'dx,

a straightforward evaluation of the integrals leads to

f1+n /'1+4n+n')
Li=n ~a4+4a'b! +a'b'!

(3+n 4 1+n

n+n
+4ab' !+-',b'n, (A2)

1+3n)

"N. H. March, Advan. Phys. 6, No. 21 (1957).

APPENDIX

Substituting Eq. (3) into Eq. (4) and introducing
the notations

2+m a' a'b 2a'b
+ + +n"' 5"' (4+n)'" (3+2n)'" (2+3n)'/'

2a'b'

ab4 b'
+ . (A3)

(1+4n)'/' 5 (5n)'"

It should be remarked here that to facilitate nu-

merical calculations a new variable has been introduced
defined by n=P/n. It is also remarked that the formula

displayed in Eq. (A3) has been obtained by making use

of the recurrence relations between F functions which

appear on account of the fractional powers of x in the

integrand of L2.
To evaluate the integral of the subsidiary condition

in Eq. (6) one makes use of Eqs. (5) and (7) and obtains

3a'(1 a) 3—a(1—a)' (1—a)'
+ + +

~3/2 38/2 (2+n) 3/2 (1+2n) 3/2 (3n) s/2

2 X
(A4)~z'

where use has again been made of the properties of F
functions. It is seen from Eq. (A4) that for neutral

atoms X/Z=1 and, for this reason, the solution of the

TF equation remains universal.

To extremalize L in Eq. (A1), subject to the sub-

sidiary condition in Eq. (A4), the following procedure

is carried out. A value is picked for n at random and

then a value for n is picked and modified in succession

until for each value of n one finds values for a with

which Eq. (A4) is satisfied. Using the 6xed n value and

the various n and u values L is calculated. When that
value of n is found which makes L a minimum then it
is kept constant and n is varied. This lowers the mag-

nitude of the minimum. This cycling is continued until

the minimum of L as a function of n, n, and a is found.

The numerical values are displayed in Eq. (8).


