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Some thermodynamic relationships which include volume and pressure e8ects are presented for the case
of the ideal bulk type-II superconductor. On the basis of published data, it is assumed that the upper-
critical-Geld transition at (H.2, T.-) occurs without discontinuities in the entropy and magnetization and
without infinite discontinuities in the second-order derivatives of the Gibbs free energy. For an ellipsoidal
specimen in an applied Geld H directed along a principal axis at (H.&, T,), Clapeyron- and Khrenfest-type
equations yield hV=O, hE= (S /4m V) (BH2/BP)'r, and hp= (—S0/4s Vl (8II~2/BP} r(BIIs/8T) p. Here
g indicates the diGerence between the superconducting- and normal-state values at constant II; V is the
specimen volume (which is shown to be field-dependent in the superconducting type-II mixed state);E'= —V (aV/aP}~, & is the isothermal compressibility; P=—V '(BV/8T) ~,~ is the thermal expansivity;
and S,= (8$4r(I, I„)j/BII}p—,r, where I, and I„are the total superconducting- and normal-state magnetic
moments and the derivative is taken at (H,2, T,).

I. INTRODUCTION

LTHOUGH the standard thermodynamic analysis
~

~

originally developed by Keesom, Rutgers, Gorter,
and Casimir for the ideal bulk type-I superconductor is
well known, '' there appears to be no comparable
treatment for the case of the ideal bulk type-II super-
conductor. In the present paper' we outline such a
treatment which includes volume and pressure effects.
Since relatively little is known about the ideal reversible
type-II lower-critical-Geld transition at H,&,

4 we focus
attention here on type-II properties in zero magnetic
field and at the upper critical Geld H,2.

From Eq. (1), the first derivatives of G are

s= (aG/aT)~, p-,

I= —(aG/aH) r p,

V = (aG/aP)rr, r,

and the second derivatives of 6 are

(2a)

(2c)

C/T= (aS/aT)rr, p= —(a G/aTs) (3a)

Xv= —(aV/aP)rr, z'= —(a G/aP )rr, r, (3b)

II. STANDARD FORMULAS /3V =(aV/aT)~ p=(asG/aTaz)„, (3c)

As usual, ' ' we define a "magnetic Gibbs free energy"
G Leverywhere continuous across the transition surface
in H (happ/ied magnetic field), T, P space) such that

dG = SdT IdH+ VdP—, —

where S is the total entropy of the specimen, 1 is the
total magnetic moment of the specimen, and t/' is the
specimen volume. For simplicity, we shall assume that
H is directed along a principal axis of an ellipsoidal
specimen so that the magnetization m per unit volume
is uniform and also directed along the principal axis.
Thus H is parallel to the total magnetic moment
I=rDV and vector notation is not required.

~ A portion of this work was completed while at Atomics
International Division of North American Aviation, Inc. , under
partial support of the U.S. Atomic Energy Commission.

~ A. B. Pippard, Elements of Classical Thermodynamics (Cam-
bridge University Press, London, 1961),pp. 129—135.

D. Shoenberg,

Superconductivity

(Cambridge University
Press, Cambridge, England, 1952},pp. 56-77.

' A preliminary version of this work has been reported by R. R.
Hake, in Proceedings of the Conference on the Physics of Type-II
Superconductivity, edited by 3. S. Chandrasekhar (Western
Reserve University, Cleveland, Ohio, 1964), Vol. I, pp. I-15.

For a review see S.Serin, in A Treatise on Superconductivity,
edited by R. D. Parks (unpublished).

where C is the total heat capacity of the specimen, E is
the isothermal compressibility, and P is the thermal
expansivity, all at constant applied field II.

From Eq. (1) and the condition that the order in
which partial derivatives of 6 are taken is immaterial,
the Maxwell relationships follow:

(a V/aH) r,p = —(aI/aP) r ~

(a V/aT) p, rr = —(aS/aP), „,
(aI/a T)p,rr = (as/aII) r,p.

(4a)

(4b)

(4c)

III. DIFFERENCES BETWEEN SUPERCONDUCT-
ING STATE AND NORMAL STATE IN

ZERO FIELD

For the type-II superconductor we can arbitrarily
defirre a "thermodynamic" critical field H, such that,
independent of specimen shape,

PG (0) —G, (0) jr,p =—V, (0)HP/Ss-,

where (0) indicates the value at H=0, and subscripts
e and s, respectively, designate normal and supercon-
47i
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ducting states. We shall use subscript s and the term
"super conducting state" to indicate any thermo-
dynamically reversible superconductinglike condensed
phase, e.g., the Abrikosov' mixed" or vortex phase, or
the nearly perfectly diamagnetic Meissner phase
existing below the lower critical field II,& in zero-
demagnetizing-coefficient ("zero rr") type-II super-
conductors and below the thermodynamic critical
field H, in zero-e type-I superconductors. We shall not
make the usual approximation that G„(hence Ie„r

5„, V„, C„, E„, P„) is independent of H, since for
extreme type-II superconductors with very high upper
critical fields, i.e., H.s (T=O) &50 kG, recent mag-
netization measurements' ' indicate that (BI„/BH)r,r
is comparable with (r7I,/BH)r, r at high H(H„.

For a type-II superconductor, H, can be obtained
from the area between the renersib1e superconducting-
and normal-state magnetization curves, since, from
Eqs. (1) and (5) and the condition G„(H,s, T,) =

G.(H,r, T,),
V, (0)H, '

8x

EIo 2

(I„—I,)dH, (6)

where the integration is at constant (T, P). Alterna-
tively, from Eq. (3a), G„(0) and G, (0) and hence H,
can be obtained' "via a double integration of (H, T)
history-independent specific-heat data. If y (the
electronic specific-heat coefficient per unit volume)
and T, (the zero-field superconducting transition
temperature) are known, then H, can be estimated
from the BCS expression"

II, Ho[1 —(T/T ) ']=2.42/'~'T L1 —(T/T, ) 'j. (7)

Differentiating Eq. (5) at H=O in accordance with
Eqs. (2) and (3) yields specimen-shape-independent
differences in first- and second-order derivatives of 6
between the type-II zero-field superconducting state
and the zero-field normal state:

(Sa)

Ls.(0) —s.(0)] ., =0

fC, (0) —C (0)]T,,p (VT./4~) (~H./~T) p,

Lv. [o~-r.(oI~, ,.=-, '(' ') —,' ('—),
L V.(0) —V-(0) lr. .~=0

(Sb)

(9a)

(9b)

(10a)

(10b)

(11a)

(11b)

4 V 2 BTBE' BI' BT BE BT

LP, (0) —P„(0))r„p———(1/4rr) L(BH./BP) r (BH,/r7 T)p].
In most cases, we expect the terms in I I brackets to be relatively small. " For notational simplicity we have
set V, (0) = V. Equations (Sb), (9b), (10b), (11b), (12b) are also valid for a type-I superconductor, ' '
independent of specimen shape. Equations (Sa), (9a), (10a), (11a), (12a) are va, lid for a type-I super-
conductor, independent of its shape, if H. is defined as in Eq. (5). LExcept for usually negligibly small

magnetostrictive, " penetration depth, and normal-state magnetization corrections, II, as defined by Eq.
(5) is identical to the critical field H, for the destruction of superconductivity in a magnetically reversible,

' A. A. Abrikosov, Zh. Eksperim. i Teor. Piz. 32, 1442 (1957). (English trsnsL: Soviet Phys. —JETP 5, 1174 (1957)g.
'R. R. Hake, Phys. Rev. Letters 15, 865 (1965).' J. A. Cape, Phys. Rev. 148, 257 {1966).
8 R. R. Hake, Phys. Rev. 158, 356 (1967).
9 R. R. Hake and %. 6. Brammer, Phys. Rev. 133, A719 (1964).
"R.R. Hake, Rev. Mod. Phys. 36, 124 (1964).
"R.Radebaugh and P. H. Keesom, Phys. Rev. 149, 217 (1966).
» L. J. Barnes and R. R. Hake, Phys. Rev. 153, 435 (1967); Ann. Acad. Sci. Fennicae, Ser A VI, 210, 78 (1966)."J.Bardeen, L. ¹ Cooper, and J. R. SchrieGer, Phys. Rev. 108, 1175 (1957).
'4For a discussion of the ~elative magnitudes involved in typical cases, see Ref. 2, pp. 73—77. For a more recent compilation

of experimental values of (8F&,/8P) z showing its wide variability for diGerent elements (even changing sign), see M. Levy and J.L,
Olsen, in physics of High presslre and the Corldemsed phase, edited by A. Van Itterbeek (North-Holland Publishing Co. Amsterdam,
1965),p. 525.
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zero-Fl type-I specimen. ] Alternatively, equations
similar to Eqs. (8a), (9a), (10a), (11a), (12a) with

(0) replaced by (H, ) can be obtained' for zero-Is

type-I superconductors from the Clapeyron equations
valid at the transition surface in (H, P, T) space.

IV. DIFFERENCES BETWEEN SUPERCONDUCT-
ING STATE AND NORMAL STATE AT

THE UPPER CRITICAL FIELD

S„(H.I) —S,(H,s) =0. (17)

Assllllllllg tile gellel'Rl validity of Eqs. (16) Rnd (17),
Eq. (13) becomes indeterminate t experimentally,

(AH, s/BT)p appears to be nowhere infinite, so that
Eqs. (13) and (16) imply Eq. (17)].Since an in6nite

(BT,/8P)a is unreasonable, Eqs. (14) and (17) imply

V„(H.s) —V, (H.s) =0, (18)
"D.Saint-James and P. G. de Gennes, Phys. Letters V, 306

(1964);%.J. Tomasch and A. S. Joseph, Phys. Rev. Letters 12,
148 (1964);C. F.Hempstead and Y.B.Kim, i'. 12) 145 (1964).

' For a reviewer of early low-Ifg magnetization and specific-heat
measurements, and the Gor'kov-Goodman formula, see E. A.
Lynton, SNPercomdlctivity (Methuen and Company, I td. ,
London, 1964), 2nd ed. , pp. 67 G.

'7 T. McConville and B. Serin, Phys. Rev. 140, A1169 (1965').
'8 F. J. Morin, J. P. Maita, H. J. Killiams, R. C. Shenvood, J.

H. Kernick, and J.K. Kunzler, Phys. Rev. Letters 8, 275 (1962).
'9 W. H. Keesom and M. Desirant, Physica 8, 273 (1941).

)For type-II interpretation of this data, see T. G. Berlineonrt,
Rev. Mod. Phys. S6, 19 (1964).g

'4 Current theory admits the possibility of a violation of Kqs,
(16) and (17) in certain extreme type-II superconductors: K.
Maki, Phys. Rev. 148, 362 (1966);N. R. %'erthamer, K. Helfand. ,
and P. C. Hohenherg, sNd 147, 295 (1.966).

A. Clayeyron Equations

The Gibbs free energy 6 is everywhere continuous
across the II,s transition surface in (H, P, T) space
between the mixed state and the normal state (we
ignore the "sheath state'" here, assuming that it
has negligible effect on the reversible bulk thermo-
dynamic parameters). Thus differential displacements
of G taken parallel to the transition surface just
inside (dG, ) and just outside (dG ) must be equal.
Considering displacements at constant. I', H, and T,
we obtain, respectively, the Clapeyron equations:
(BH s/BT)p

=LS„(H,s) S,(H,s) j//[I—, (H,s) —I„(H,s) j, (13)

(BT,/r)P) FF

=
L V-(H.s) —V.(H s) 3/LS-(H. s) —S.(H.s)j (14)

(BH.s/aP) r
=LV.(H") —V-(Hs)j/I:I (H.s) —I-(Hs)3 (»)

Thus far, magnetization measurements'6 8'6 on type-II
specimens, covering a wide Gor'kov- Goodman-cal-
culated Glnzburg-I andau Kg range, 0.71+Kg + 100,
indicate

I,(H.s) —I„(H,s) =0, (16)

and calorimetric measurements" "" '9 in the presence
of magnetic 6elds on type-II specimens with 0.85&
a6& 68 suggest

and Eqs. (14) and (15) also become indeterminate.
Equation (18) has apparently not been checked ex-
pcI imentally.

B. Ehrenfest Equations

From the direct and indirect experimental evidence
supporting Eqs. (16)—(18), we shall assume that the
first-order derivatives of G (viz. , S, I, V) are every-
where continuous across the II,2 transition surface in
(II, P, T) space. Calorimetric measurements4' Is's Is

on type-II superconductors suggest that along H, 2 the
ideal zero-transition-breadth type-II superconductor
would be characterized by firufe discontinuities in the
specific heat and, by inference, other second-order
derivatives of the Gibbs function, in contrast to the
injirufe discontinuities which appear to characterize
the X transition in liquid helium" and possibly the type-
II lower-criticaMeld transition at H,g.4 The idealized
type-II upper-critical-field transition then appears
to be a rare (possibly unique) example of a transition
which is second order in the sense described by Ehren-
fest" FIf all poiirfs on the transition surface. Thus we
utilize the Ehrenfest approach and write, e.g., con-
sidering displacement of 5 along and on either side of
the transition surface at constant I',

(rFS„/BH) prdH+(8$„/BT)padT= (rfS /r')H)p rdH

+(8$./BT) p,adT. (19)

From relationships such as Eq. (19), considering
order displacements of S, I, V at constant P LEq.
(20) J, at collstRllt II LEq. (21)$, and at constant T
fEq. (22) j, we obtain

(
(f)S /r)T)»F —(4)S /tiT) p a

BT p (r7$„/aH) p,r (aS,/AH) p r—(20a)

(~I /d T)p,a (~I-/~T) p,a—
(BI /dH) p,r (r7I,/r)H) p r—(20b)

(~V./&T) p,a (BV./aT) p,a-
(20c)

(&Vs/&H) p,r (8V,/BH) p r '—

(
(~S4/4)T) FI,P (risn/r7 T)a,P

ar a (aS„/aP), —(aS,/gP)„, (21a)

(~I,/&T) a,p —(aI./aT) a,p
(&I /&P) a,r (BI,/8P) FF,r—(21b)

(~V./»), (av./aT)„, —
(21c)

(4)V~/&P)FF, r (r7 V,/r)P)FF r '—

2'Preliminary length measurements on the type-II supercon-
ductor Nb by K. Fawcett and G. K. %'hite appear to be in
qualitative accord with Eq. (18) and suggest a Geld-dependent
length in the mixed state as indicated in the present analysis. G. K.
%'hite (private communication).

» M. J. Buckingham and %'. M. Fairbank, in Progress As I.o7gI
Temperature Physics, edited by C. J. Gorter (Interscience Pub-
lishers, Inc. , Neer jt'ork, 1961),Vol. III, p. 80.

28 P. Khrenfest, Commun. Phys. Lab. Univ. Leiden, Suppl. No.
75b, 1933 (unpublished).
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(aI,/aP) r,ri (aI„—/aP) r, ir

(aI„/ae), , (aI./—ae), ,

(22b)

(a V,/aP) r,H —(aV /aP) r, ii
22c

(a V„/ae) r,p (a V—,/ae) r,p

(
aH.2 (aS,/aP) r,H (aS—„/aP) r, v

aP r (aS„/aH) r,p (a—S,/aEI) r,p

By straightforward manipulation of Eqs. {20)—(22)
Lafter substitutions indicated by Eqs. (3) and (4)],
some useful Ehrenfest relationships, Eqs. (23)—(27)
can be derived" for type-Il superconductors. Subject
to the validity of Eqs. (16)—(18) and the condition
that second-order derivatives of G do not become
infinite at the upper-critical-field transition, Eqs.
(23)—(27) should be valid for any ellipsoidal type-II
specimen in an applied 6eld H directed along a principal
axis:

Lc,(e,i) C„(H 2—)]= T, (ae,~/aT) ""pg(aI /aII) p, T, (aI,„/a—e)p, r, ],
EK.(H,&)

—X„(H.2) ]= V '(aH, 2/aP—) 'rE(aI,/ae) p, r, (aI„/aH—)p, r ],
[j8 (H2) P (H2)]= V i(aeg/aP)r(aII „/aT)pDaI/aH)p r, (aI /aH)i r,]

(aT./aP)» =Ã. (H.2) —&.(H.2) ]/LP. (H.2) —&-(H")]
= vT, P, (e„)—P„(e„)]/LC. (H.,) —c.(H„)],

(23)

(24)

(25)

(26)

(27)

where pressure derivatives of T, and H,~ are related by

(aT,/aP) ri = —(ae.2/aP) r/(ae, n/aT) p, (28)

(aI,/ae) p,r, means that the derivative is taken at
constant (P, T) at the transition surface where T=T,
and H=H, &, and for notational simplicity we have set
V„(H,2) = V, (K2) = V. Equation (23) was apparently
first derived by Goodman. "

Evidently only Eq. (23) has been checked via direct
substitution of experimental data. """Discontinuities
in the bulk modulus 8=—E ' at H,2 have been deduced
from elastic-moduli data on type-EI Pb—Tl alloys
by Alers and carbon. 26 As far as we are aware, no
measurements of discontinuities in thermal expansivity
p at H,2 or measurements of (aT,/aP) ri at H, 2 have been

reported, although there have been measurements of
zero-field values of hP for the type-II Nb3Sn" and
zero-field values of aT./aP for the type-II super-
conductors Nb3Sn '~" V&Ga, " ViSi " Nb 25 a—t.%
Zr" La" V" and Xb'-'

V. COMPARISON OF THE TYPE-II SUPERCON-
DUCTING STATE AT ZERO FIELD AND AT

THE UPPER CRITICAL FIELD

('omparison of Eq. (8a) with {17) and Eq. (10a,)
with (18) shows that Sp,r and Vp, r for a type-II super-
conductor must be Geld-dependent below H,2 since, in
most cases, one expects" that even for extreme
type-II superconductors' '

~
LS„(H,2) —5„(0)]

~

—=

~
&5.(K2) ~&~ ~5,{K2) j, and»«wise

) &V.(H.2) ~(
24To obtain Eq. (23), apply Eqs. (3a) and (4c) to Eq. (,20a}, then multiply by Eq. (20b). To obtain Eq. (24), apply Eq. (4a)

to Eq. (22b) and apply Eq. (3b) to Eq. (22c), then multiply the resulting equations together. To obtain Eq. (25), apply Eqs. (3c)
(4b), and (4c) to Eq. (22a), then multiply by Eq. (20b). To obtain Eq. (26), divide Eq. (24) by Eq. (25). To obtain L~q,
{27),divide Eq. (25) by Eq. {23).

25 B. B. Goodman, Phys. Letters 1, 215 (1962). See also P. G. de Gennes, Superconductivity of Metals and Alloys, translated by
P. A. Pincus (W. A. Benjamin, Inc., New York, 1966),pp. 52—55.

"G.A. Alers and J. A. Karbon, in Proceedings of the Conference on the Physics of Type-II Superconductiv~&y, edited by B. $.
Chandrasekhar (Western Reserve University, Cleveland, Ohio, 1964), Vol. I, p. II—82; Bull. Am. Phys. Soc. lp, 347 {1965).» B. G. Lazarev, L. S. Lazareva, A. I. Sudovtsov, and F. Yu Aliev, Zh. Eksperim. i Teor. Fiz. 43, 2312 (1962) LEnglish transl. :
Soviet Phys. —JETP 16, 1633 (1963)g. For the thermodynamic interrelationshiP with the measured AC{T,) and {BHc2/PP) z„
see C. Guo-kuang, L. Ti-hang, and K. Wei-yen, Acta Phys. Sinica 21, 817 (1965).

28 B. G. Lazarev, L. S. Lazareva, O. N. Ovcharenko, and A. S. Matsakova, Zh. Eksperim. i Teor. Fiz. 43, 2309 (1962) t English
transl. : Soviet Phys. —JETP 16, 1631 (1963)g. W. Buckel, W. Gey, and J. Wittig, Phys. Letters ll, 98 (1964).» C. B.Muller and E.J.Saur, Rev. Mod. Phys. 36, 103 (1964)."E. S. Itskevich, M. A. Il'ina, and V. A. Sukhoparov, Zh. Eksperim. i Teor. Fiz. 45, 1378 (1963) I English transl. : Soviet
Phys. —JETP 18, 949 (1964)$."T.F. Smith and W. E. Gardner, Phys. Rev. 146, 291 (1966).

'2 W. E. Gardner and T. F. Smith, Phys. Rev. 144, 233 (1966)."From Eqs. (2a) and (2b), S (H«) —S (0) =—ASn(Hc2) = (H,2/2) pV„(&z /8T) p,EIc2+z~(8Vn/Bl') E,Hc21, neglecting magneto-
striction and assuming that the normal-state susceptibility z„per unit volume is independent of H. Order-of-magnitude
estimates suggest that for typical extreme type-II superconductors which do not contain localized magnetic moments, both terms in
the t g brackets should be extremely small, leading to

Likewise, from Eqs. (2b) and (2c),
[ ~s, (a.,) [&) ~s.(a.,)[.

i-~ Vn (Hc2) = (Hc2 /2) )Vn (~Xn/~P) IIc2p Ts+Xn (~V/~P) IIc2ppe],

and order-of-magnitude estimates suggest
I ~V.(&:) I&l n&.(&.a) I.



THERMOD YNAMICS OF VOLUME AND PRESSURE EFFECTS

~
hV, (H„) ~. This FI dependence of Si,r '4 and Vi,r"

in the Geld-penetrated mixed state at H,i&H(H, 2

contrasts with the type-I case where the field is almost
totally excluded from the bulk of a zero-e specimen
below H., so that Si,r and Vp, r (except for magneto-
striction) are field-independent for 0(H(H, . The
field dependence of S over a wide fmld region in the
mixed state of type-II superconductors'4 opens up some
interesting possibilities for cooling via their adiabatic
magnetization" without type-I Aztermediate-state eddy-
current losses.

It is of interest to compare the Rutgers equation
(9b) for [C,(0) —C„(0)jr. ,p =—ECit(T.) with the Ehren-
fest equation (23) for [C,(H,s) C„(H,—s) j= ACED(T, ),
where T,(T„since in Eq. (23) (BI,/BH)r r, is not
defined at T, =T„H,2 ——0."'7 If we substitute into
Eq. (23) an expression for (BH,s/BT)'i in terms of
(BH./BT)z obtained by differentiating the Abrikosovs

expression as generalized by Maki, "
H,s(T) =v2x, (T)H, (T),

a,nd if we further substitute into Eq. (23) the zero-n
Abrikosov-Maki expression for the limiting slope of the
magnetization versus applied field curve at the upper
critical field H, & (as generalized to properly include the
very high-x& case' '),

so that 3 (xp = 1.9) = 1, 3 (xp~1/v2) ~po, and
&(xp~po)~0. 86. It has been suggested" that in the
limit as T,—+T., the specific-heat jump dC~ associated
with the lower-critical-field transition at H, i should add
to ECg, so that

lim PBCs(T, )+ACr(T. ) j//ACR(T, ) =1, (32)
~S~~C

for all x such that Eq. (30) is preserved. Equation (32)
might be a useful result, since it would appear to de-
termine lim~, ~,AC~ as a function of ~0, assuming the
validity of Eqs. (9b), (23), (29), and (30) as T,—&T..
However, strictly speaking, for finite-size specimens
lim&, „z,hC& ——0, because, in analogy with the parallel-
6eld, thin-film case, the lower-critical-held transition at
H, g should be suppressed" as T,~T, and the pene-
tration depth X~~, although H,s(T,~T,) retains its
significance as a second-order transition field between
superconducting and normal phases. If then we for-
mally require

lim IxCE(T,)/ACR(T, ) =1,
Ts~Tc

(33)

and assume Eqs. (9b), (23), and (29) to be correct,
then we obtain

(BI./BH) r.
,r. (dI /HEI) I—,r, =So/4x— lim (S,/4x) = V(4x2Kps)

~8~To
(34)

= V[4x(2x,' —1)&p&-' (30)

where Ps=1.16 for a triangular vortex lattice, ' then in

the limit as T, +T, and x. +—x, (T, ) =xp, ps—the ratio of
the Ehrenfest and Rutgers expressions for d C becomes
for the zero-m case

Because of the numerous experimental difFiculties in
obtaining meaningful specific-heat and magnetization
data very close to T„Eqs. (33) and (34) are probably
only of academic interest for bulk materials, 4' although
they may be of some significance for the parallel-6eld
very-thin-film case.4'

A—= [lim AC~(T, )]/ACg(T, ) =2xp'[(2xp' —1) 1.16j ', ACKNOWLEDGMENTS

(31)

~ In Refs. 10 and 11, S(H, T) in the type-II mixed state,
derived by direct integration of (H, T)-history-independent
specihc-heat data taken in the presence of magnetic 6elds
0&H&H, 2, is shown gra hically for V-5 at. 'po Ta (Kg 5)
(Ref. 10) and V {Kg=0.98 (Ref. 11).

"Nearly reversible magnetocaloric cooling and heating in the
type-II mixed state have independently been observed in well-
annealed specimens by R. R. Hake and L. J. Barnes, in Pro-
ceedings of the 1Vinth Internationat Conference on Lozv-Tempera-
ture Physics, edited by J. G. Daunt, D. O. Edwards, F.J. Milford,
and M. Yaqub (Plenum Press, New York, 1965), p. 513; and T.
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