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A system of charged particles in a ring of radius E. is considered, assuming separability of the tangential
component of the total momentum. The dependence of the free energy upon the magnetic Qux through the
ring is shown to be strongly affected by the dimensionality. irrespective of the speci6c dynamical properties
of the system, one finds in the one-dimensional case that a realistic choice of R leads to the exclusion of ther-
modynamically stable Aux trapping. The entirely different criterion for the three-dimensional case is sepa-
rately discussed and is seen to be closely related to the mean-square fluctuation of the total momentum.

I. INTRODUCTION

r 1HE preceding paper by Schick deals with a one-
.dimensional system of interacting fermions under

conditions where Tomonaga's treatment of collective
modes of excitation is applicable. The evaluation of the
free energy in the presence of a vector potential shows
that such a system in a ring of macroscopic radius R
does not exhibit thermodynamically stable flux trap-
ping. It is the purpose of this paper to demonstrate that
the basic arguments of this conclusion have a con-
siderably more general validity than Tomonaga's
method and to further clarify the essential differences
between systems of one and more dimensions.

Based upon a simple relation between the energy and
the total momentum of a system of particles it will be
seen in particular that stable flux trapping is excluded
beyond a characteristic radius E*,which is independent
of specific properties of the system. The order of mag-
nitude of R* is strongly affected, however, by the
dimensionality. For a one-dimensional system it is found
to be so small as to exclude stable flux trapping for a
realistic value of E. Among other special features, the
problem of long-range order in a one-dimensional system
of fermions is thus not pertinent to the purposes of this
paper. This conclusion does not apply to a three-
dimensional system where E~ is typically found to be so
large that it far exceeds any realistic radius of the ring.
Stable flux trapping hinges here upon criteria which
involve the diferent long-range characteristics of the
normal and the superconductive state of a metal. It will

be shown that these criteria can be reduced to refer to
the mean-square fluctuation of the total momentum
and that it is of decisive importance in this context
whether or not the equipartition theorem is applicable.

II.EIGENVALUES OF ENERGY AND MOMENTUM

Consider a system of E particles with mass m and
charge e, contained in a circular ring with inner radius
R and radial width d(&R. In addition to any other
coordinates such as y, s, and a spin variable, a particle
shall be described by its x coordinate, measured along
the ring, so that all dependences on x have to be periodic
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with period 2xR. Because of the magnetic field, caused
by a current around the ring, the vector potential A

points in the x direction and is independent of x. It will
be assumed that the dominant contribution of the
magnetic flux C through the ring arises from its interior
so that A =I/27rR can be considered to remain con-
stant within the ring.

The contribution to the kinetic energy of the particles
due to their motion in the x direction is then given by

2;= (1/2m) g(p~ —eA/c)', (1)

where p& represents the momentum conjugate to the
x coordinate xI, of the kth particle (k=1, 2, ~ ~, N).
Denoting by

the total momentum in the x direction, one has

pj =P,/N+pI',

where p&' depends only upon the relative momenta and,
from Eq. (1),

T = (P, NeA/c)'/(2Nm)—+Qpj,". (4)

The dependence upon E, is of particular importance and
it is indicated, therefore, to separate the first term on
the right side of Eq. (4) from the remaining contribu-
tion of T, to the total energy. The total Hamiltonian of
the particles will thus be written in the form

BC = (P, NeA/c) '/(2Nm) —+3C',

where 3C' contains the kinetic energy of the motion in
the y and s direction and of the relative motion in the
x direction as well as any additional terms which arise
from interactions and characterize the specific dy-
namical properties of the system.

As the essential feature of K' it will be assumed that
it is independent of I', and of the conjugate coordinate

X= (Qxp)/N (6)

of the center of gravity. This assumption is evidently
justified for the part of 3C' contributed by the kineti&
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energy, and it is also justified for the additional part if
the underlying interactions are invariant against a
common translation and a common change of velocity
in the x direction, applied to all the particles. This
invariance is violated inasfar as the lattice provides a
fixed frame of reference and causes modifications
through the presence of a periodic potential and of
interactions between particles which are mediated by
lattice deformations. As in the usual theory of metallic
conduction, however, one can in essence account for
these modifications by interpreting the mass m in Eq.
(5) as an effective mass.

The relation between BC and P can thus be con-
sidered to simply express the separability of the motion
of the center of gravity. In order to clarify some impor-
tant further implications, a set of relative coordinates,
to be denoted by f, such as

oi

=exp(iPX/A) P, '(&,)

P, '(&,+27rR) =exp[2~iPR/(M) ]Pq'((i) . (12)

that the eigenvalues P have to be of the form

P =n5/R,
with integer e.

A more interesting result is obtained if one chooses,
for example, the transformation xz~xq+27rR, leaving
all coordinates xl, for 4&2 unchanged. According to
Eqs. (6) and (7), this corresponds to the transformation
X—+X+2~R/A, P&~Pi —2m R, while all relative coordi-
nates $i for i/1 remain unchanged. The invariance of P
under this transformation requires in view of Eq. (8)

expLiP(X+2irR/Ã) Pi] Pq (gi 2~R)

(& =xi —xi+i, 2 ~ ~ e g (7) Similarly, the individual increase of x3, x4, ~ ~ ~, xz by
2zR leads to the result

shall be introduced besides the coordinate X of the
center of gravity. An eigenstate of the system with
given eigenvalue P of P, can then be represented by the
wave function

Pr, ,(X,&) = exp(iPX/6') P,'((),

where q represents the system of additional quantum
numbers necessary in addition to P in order to fully
characterize the state of the system, and where of all
the arguments required by a full coordinate representa-
tion only X and $ have been explicitly retained. The
corresponding eigenvalue of 3C is then given by

Ep, , (P—EeA/c) ——'/(2mÃ) +Eq',

where E,' is an eigenvalue of K' such that

/ E/y/

It is necessary, at this point, to emphasize a difference
from the familiar case of separability which is essential
for the following discussion. Although the operator P
does not occur in R' and its eigenvalue P has therefore
been omitted in the characterization of P' and E', a
dependence of these quantities on P has to be foreseen
in view of the periodicity of the wave function around
the ring. This periodicity has to be satisfied for every
one of the particles of the system so that it requires the
invariance of P under the transformation x&—+x/, +2~R
for each of the E possible values of 0 individually as well
as for any number of them.

Considering erst the special case where this trans-
formation is applied to all values of k simultaneously,
it is seen from Eqs. (6) and (7) that it corresponds to
the transformation X~X+2zR, while all relative co-
ordinates $ remain unchanged. According to Eq. (8)
the peridicity of f therefore merely demands in this case

P, '($i+2vrR) = exp L2iriPR/(iVA) ]f, '($~), (13)

obtained by replacing in Eq. (12) fi by t&, f&, ~ ~ ~, P/v i
and, hence, valid for all values of l. This result repre-
sents a set of cyclical conditions to be imposed upon the
solutions P,' of Eq. (10) so that these solutions as well

as the corresponding eigenvalues L&', ' depend generally
on P.

No such dependence appears in the familiar separa-
tion of the center of gravity since the conditions of Eq.
(13) are here normally replaced by the boundary condi-
tion that, irrespective of the total momentum, the wave
function must vanish for in6nitely large values of the
relative coordinates. The same conclusion would, of
course, be reached if the system of particles, considered
here, were confined to a region within the ring, small

compared to the radius R, so that the conditions of
Eq. (13) would be fulfilled as a trivial consequence of
the statement that any multiple of a solution of Eq.
(10) is likewise a solution. The relevance of these
conditions arises from the fact that the system may
coherently extend over the whole circumference of the
ring and thus exhibit a long-range order which is well

known to be essential for the explanation of Qux quan-
tization. ' Another formulation can be obtained from the
representation in which the momenta p/, of the indi-
vidual particles are diagonal by means of the equivalent
condition that the eigenvalues of each of them are
integer multiples of 5/R. The coordinate representation,
however, is more convenient for the purposes of this

paper and the further discussion is based upon the
corresponding equations (11) and (13).

Whereas the conditions expressed in Eq. (13) imply
a, general dependence of P,

' and E,' upon P, it is to be
noted that these conditions do not alter their form if P

~ C, N, Yang, Re@. Mod. Phys. 34, 694 (1962).
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is increased by an integer multiple of X6/R, thus leaving

P,
' and E,' likewise unaltered. It is therefore indicated

to write the integer e of Eq. (11) in the form
Z = Z exp( PE e I ) (23)

of integers, limited by Eq. (15). It is convenient to
introduce the notations

where v is an arbitrary integer and where, assuming E
to be even, p, is likewise an integer such that

—(&/2) &~& (&/2),

so that p can assume E different values. One thus
obtains from Eq. (11)

no~ing that

and that

s.=l Ze p( P—E', ,) j/Z',

(26)

and from Eq. (13)

P= (Xv+p) fi/R, (16)
With the further notation

P, '($i+27rR) = exp(27rip/X) P, '($i) . (17) Zi(u) =Qs„Q exp[ —Xy(v —u+ p/1V) 'j, (27)

The dependence of the quantities P,' and E,' upon P
thus refers only to the part of F in Eq. (16) which is
proportional to the integer p. To emphasize this circum-
stance, the previous notation will be replaced by P, ,

„'
and E,,„', where p, can assume any one of the X integer
values in the range indicated by Eq. (15), and where q
indicates all quantum numbers other than u and p, . The
total energy EI,, of the system, on the other hand,
depends generally on v as well as on q and p, , with the
former dependence arising from the erst part on the
right side of Eq. (9). This equation shall therefore be
rewritten in the form

one has then from Eq. (20)

Z=Z'Zi(u), (28)

P, (u) = —kz" lnz, (u). (29)

where the factor Z, (u) determines the flux dependence
of the partition function. Since the specific properties
of the system of particles affect only the values of
E,,„', the same holds for Z' and s„.

The free energy —kT lnZ is thus given by the sum
F'+I~'i(u), where F' is independent of u and where

where Eq. (16) has been used and where

—$2+(p u+p/iver) 2/(2~Ri) +E ~ (18) In order to obtain the flux-dependent part of the total
free energy one has to add to the contribution P& from
the particles the energy

u=2mRA (e/hc) (19) Fs ——fi'u'/2e'I. (30)

where

P= 1/kT,

y =O'P/(2mR') )

(2o)

(21)

(22)

and where the summation over v extends over all

integers, while the summation over p, refers to the range

represents the flux through the ring in units of hc/e.
The specific properties of the system affect only the
part E,,„' of the total energy. The bearing of this cir-
cumstance upon the partition function and, hence, upon
the free energy will be discussed in the following section.

III. PARTITION FUNCTION AND FREE ENERGY

Using Eq. (18), the partition function is given by

Z=Q Q exp[ —Ey(p —u+p/Ã)']Q exp( —PE', ;„),

stored in the magnetic field with the flux C =u(hc/e),
where I. represents the self-inductance of the ring.
Thermodynamically stable Aux trapping is therefore
determined by those values of 0. for which the sum

F(u) =Fi(u)+Pg(u) (31)

has a minimum. Whereas several such values exist for a
superconductor with, usually, a large number of them
extending over a wide range it is typical for the normal
state of a metal that the only minimum of F (u) occurs
for a=0.

Except for the magnitude of the purely geometrical
self-inductance L,, this criterion is based upon the
properties of Fi(u). In particular, stable flux trapping
requires a sufliciently strong variation of Fi(u) or
through Eq. (29) of Zi(u), defined in Eq. (27), in order
to prevent the dominance of the part P2(u) in, Eq. (31)
from resulting in no other stability than that of vanish-
ing Aux.
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The discussion of these properties is facilitated by
applying the Poisson formula

+00

g exp[ —K(ii-x)'] s„=1/N, (38)

2'„on p, may be considered, in this sense, as being char-
acteristic of the normal state of a metal.

One has then from Eq. (26)

=(~/K)'~' g exp[—(i')'/K+2Ãimx] (32)
and from Eq. (34)

a„= (1/N) g exp( 27ri—np/iV) . (39)

to the sum over v in Eq. (27), with the result

where

(33)

Zi(a) = (7r/1V&)"' g u„exp[—(iraqi)'/(Ny) +2'Kiln],

Since according to Eq. (15) the summation over p ex-
tends over E consecutive integers, it follows that u„= 1
if n is an integer multiple of lV of the form e=Sg and
that a„=0otherwise, with the result

Zi(n) = (m/Ny)"'
a.=Qs„exp( 2s—im p/N)

One obtains from Kq. (26)

(34)
X I 1+2 g exp[ —(~g)'1V/7] cos2m. gNn}, (40)

g=l

Cp= i, (35)

Z (cx) = (m-/Ny)'"I 1+2 Q g„
n=1

Xexp[ —(7rrc) '/N y] cos2m n'o. I . (37)

While the expressions for Z&(a), obtained above, are
quite general, specific properties of the system have to
be introduced in order to obtain more detailed in-
formation. This information is contained in the quanti-
ties s„and hence in the coefficients a, defined by
Eqs. (24) and (34), respectively, and some special cases
of particular interest will be first considered.

Iv. SPECIAL CASES

A. z„ Independent of p

This case arises if the eigenvalues E~ of the internal
energy, obtained from Eq. (10), do not depend upon
the total momentum I' so that the values E,,„' in Eq.
(24) are independent of p. As discussed in Sec. II this

property, encountered in the familiar separation of the
center of gravity, corresponds to the case where the
system exhibits no long-range order, although it extends
over the whole ring and the resulting independence of

and, in combination with Kq. (25), the more general
relation

(36)

It is evident from Eq. (33) that Zi(n) is a periodic
function of 0. with period unity and hence a periodic
function of the flux with period hc/e. In addition it
follows from the defining Kq. (27) that Z, (e) is real
and from symmetry reasons that it has to be an even
function of n. The coeKcients a„must therefore be real
numbers with u „=a„sothat from Kqs. (33) and (35)

obtained from Eq. (37). It is to be noted that the
general periodicity in a with period unity is here
accompanied by the far shorter period 1/1V considering
the large number iV of particles in a macroscopic system.
If any Aux quantization could occur under these circum-
stances it would imply the existence of the practically
va, nishing "fluxquantum" hc/1Ve.

Such a strange occurrence, however, would require
totally unrealistic conditions. Indeed, one has from
Eqs. (21) and (22)

B. z„=0for p/0
This case represents the extreme opposite of the

preceding case A. It would arise, for example, if the
system had the strict long-range order of a completely
condensed ideal Bose gas with the property that all
particles are found to have the same momentum p. In
fact, with the total momentum P=Np and with p
chosen as an integer multiple of fi/R, Eq. (16) can be
satisfied only for p, =0.

In view of Eq. (26) one then has

~a = ~w, o,

and therefore from Eq. (34)

(42)

(41)

so that at any realistic temperature of a macroscopic
system this number in the exponents of Eq. (40) is
very large and results through Eq. (29) in a variation of
Fi(a), which is far too small to compete in Eq. (31)
with that of F2(0) and, hence, to permit the stable
trapping of any finite Aux. It thus follows that the case
considered here leads under realistic conditions to the
characteristic absence of stable Aux trapping in the
normal state.



166 INFLUX QUANTIZATION AND DIMENSIONALITY

for all values of 22 so that one obtains from Eq. (37)

Zr(n) = (2r/1') 'I'
I 1+2 g expL —(2rg) 2/1Vy] cos22rgnI

Sl4 2 (~%0+~P,X/2),

and hence from Eq. (34)

a =-'2Ll+ exp( —im-22)],

(45)

so that a„=0 if e is odd and a„=1 if e is even. Writing
for the even values 22 = 2g, it thus follows from Eq. (37)
that

Zr(n) = (~/1VV) "'

X I 1+2 g exp[ —(22rg) 2/1Vyj cos42rgnI. (47)
g 1

The properties of this expression are similar to those
mentioned in the discussion of Eq. (44), with the
principal difference that the periodicity in 0. with unit
period is here accompanied by the period —,

' correspond-

with g instead of e used to denote the summation index.
In contrast to Eq. (40), found in the preceding case,

the periodicity in n with unit period is here not accom-
panied by any shorter period and implies the flux
quantum hc/e. Stable ffux trapping requires further that
I/1V& is not too large. This requirement will be further
discussed in Sec. V, but it should be remarked that,
under otherwise equal conditions, one deals here with a
characteristic magnitude which is X' times smaller than
that given in Eq. (41) of the preceding case. It will be
seen, in fact, that compared to Eq. (40) the order of
magnitude of the exponentials for macroscopic systems
is so radically changed as to greatly favor the conditions
for stable flux trapping.

C. z„=0 for p/0 and pWN/2,

In analogy to the previous example, this case arises if
the system with an even number N of particles exhibits
the property of 1V'/2 pairs which have all the same
momentum p. With the total momentum P=1Vp/2 of
these pairs it is permitted, in fact, to choose in Eq.
(16) either @=0or p=1V/2, noting that both choices are
compatible with Eq. (15) and that p has to be an
integer multiple of 6/R. This property is typical of the
long-range order which can be established in a system of
fermions since a common momentum of the individual
particle is here ruled out by the exclusion principle. '
Although still extreme and in some respects similar to
the preceding case, the case considered here is thus far
more closely related to the actual conditions of a super-
conductor.

Assigning the same value of s„ to both permissible
choices p=0 and p=lV/2, one obtains from Eq. (26)

ing to a reduction of the flux quantum to the observed
value hc/2e.

Instead of assuming s„/0 only for one or two values
of p as in the preceding cases 3 or C, respectively, the
results obtained could be readily generalized by ad™
mitting a larger number of equally spaced integers p,,
compatible with Eq. (15), and assigning the same value
of s„ to each of them. This would be suggested by the
property of conglomerates of a correspondingly larger
number of particles with the same momentum of each
single conglomerate. A further reduction of the flux
quantum, inversely proportional to the number of
admitted integers p, would be implied by this more
general assumption and the case A can be considered as
the limit which comprises all Ã possible values of p.

1Vy =1V6'/2222R2k T (48)

obtained from Eqs. (21) and (22).
An important result is directly obtained for Ãp«1.

It is essential, for this purpose, to notice that the coefh-
cients a„are generally limited by Eq. (36) . Irrespective
of any specific properties of the system, the sum over e
in Eq. (37) thus becomes negligibly small compared to
the constant term due to the rapid decrease of the
exponentials with decreasing 1V&. In view of Eq. (29),
an equally rapid decrease appears in Fr(n), so that the
variation of F2(n), given by Eq. (30), becomes easily
the dominant part of F(n) for any conceivable mag-
nitude of the self-inductance I.. It is safe, therefore, to
conclude quite generally that the condition Sp«1 is
sufficient to reach this point and, hence, to exclude
stable flux trapping.

Turning now to the case Ãy»1, it is no longer
sufficient to consider the general limitation of the
coefficients u„. Depending upon a more detailed in-
formation about these coefficients in accordance with
the underlying properties of the system, the function
Zr(n) can here be found to have widely different
features, ranging from a negligible to the most pro-
nounced type of variation.

As an example of the first type, it is seen in the special
case A of Sec. IV that the coefficients a„ in Eq. (37)
vanish except for very large values of n so that the
remaining exponentials can still be neglibly small even
though 1VY»I. This is also shown in Eq. (40) since the
much weaker simultaneous condition T/1V«1 is suffi-
cient to result in a negligible variation of Zq(n) .A most
pronounced variation, on the other hand, is exemplified

V. CONCLUSIONS FOR Ny&(1 AND Ny»1

The special cases of the preceding section illustrate
some typical features of the partition function in its
dependence upon the flux through the ring. Going back
to Eq. (37) it is possible, however, to a,rrive at con-
siderably more general conclusions which are primarily
based upon the order of magnitude of the quantity
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in t.he case B, where according to Eq. (43) all coeffi-
cients a„have their maximum value. The result for
Zi(cx) in Eq. (44) shows in fact that for 1Vy))1 the
exponentials do not appreciably decrease up to high
terms in the sum over g. In order to discuss the actual
dependence of Zi(n) and, hence, of Fi(n), it is more
convenient in this case to go back to the expression of
Eq. (27) with s„given by Kq. (42) . One thus obtains

since the linear term has to vanish for symmetry reasons
and hence

s„=C exp[ —1VB(zz/1V)']. (55)

The probability w„ is thus seen from Eq. (53) to be
proportional to exp[ —1V(y+8) (zz/1V)'] and one has

(56)

Zi(n) =Q exp[ —1'(v —n)']. (49)
where (p,'), represents the mean square of zz and

(F'). =A-"(zz')../R' (57)
For 1'»1 and

~

n
~
(,' the m-ain contribution to the

sum arises from v =0 so that one has here

Zi(cx) = exp( —1Vyn'), (5o)

Zi(0) =gs„exp[ —1Vy(zz/1V) ']. (52)

The quantity

w„=s„exp[—1'(zz/1V) ']/}gs„exp[—1'(zz/1V) ']}

and from Kqs. (29) and (48)

Fi (n) =(1VA'/2nzR') a'.

This value of Fi(a) can be interpreted as the total
kinetic energy which would be obta, ined if all E particles
moved with the same velocity An/mR and it can well

dominate the part Fz(n) in Eq. (31).While such a large
value of Fi(n) merely enhances the minimum of F(cx)
at a =0, it has to be noted, in view of Eq. (49), that the
same values of Zi(n) and Fi(n) as those given in Eq.
(50) and (51), respectively, are obtained if a is changed

by an integer. Other pronounced minima of F(n) thus
occur at integer values of o. and account in this case for
stable quantized flux trapping.

The preceding discussion of examples for the case
Ãy&)1 deals with two extreme opposites of a more
general property. This is best explained by considering
first the situation in the absence of a vector potential.
Considering the sum over z in Eq. (27) it is seen for
m=0 and with Ey»1 that all terms with v/0 are
negligible since according to Kq. (15)

~
zz/1V

~

&—'„
so that

the mean square of I' in the absence of a vector poten-
tial. It will be shown below that the value of (F'),
may be regarded as the decisive quantity required to
characterize the properties of the system.

For this purpose one has to assume that X8&)1 and
that s„remains negligibly small for values of p com-
parable to 1V, so that one can consider Eq. (55) to be
valid within the whole permitted range of p. In view of
Eq. (26) one then has

1/C =g exp[ —1V8 (zz/1V) '], (58)

and by regrouping the exponent in Eq. (27)

Zz(~) =CZ expI —[1'~/(v+~) ](~—~)'}

&& g expI 1V (p—yS) [(p/1V)+p(v n)/(—7+f)] }

(59)

With 7/1V(&1, 6/1V((1 for large 1V the sums over zz in
Eqs. (58) and (59) can be replaced by integrals, ex-
tending from —~ to +~.One thus obtains

Zi(~) = [~/(~+v) ]"'Z exp I
—[1'~/(7+~) ](~—~) '}.

(60)

By means of the Poisson equation (32), using further
Eqs. (56) and (57) to express 8 in terms of (F'), ,
and with y given by Eqs. (21) and (22), the last
equation can be rewritten in the form

Zi(u) = (zr/lory) "'

(53) &&(1+2 Z e p} ( g)'/[1V7(1 —P)]}cos2 g ) (61)
g=1

is to be interpreted as the probability that one Ands a
specific value of zz or, with v=0 in Eq. (16), that the
momentum of the system in the x direction has the
value F= Azz/R. In view of the sharp maximum at zz=0
of the exponential in Eq. (53) one can normally expect
tha, t w„ is negligibly small unless

~
zz

~
&&1V. Writing

s„= exp[1Vf(zz/1V) ],
one obtains for

~

zz/1V
~

(&1 by an expansion

f(p/1V) =f(0) —~(p/1V) ',

where

p = (F'), /(1Vzzzk T) . (62)

This result includes in the limit p =0 that of Eq. (44)
obtained in the special case 8 of Sec. IV. In fact, the
corresponding assumption of vanishing (F ), is implied
in Kq. (42) by admitting only the value hz=0 or equiv-
alently by going to the limit 8-+~ in Kq. (55).
Another limiting case of special significance arises for
p=1. The corresponding value (F'), =1VzzzkT is that
obtained from the classical equipartition theorem by
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assigning the value kT/2 to the mean kinetic energy of
the center of gravity in its motion along the x direction.
Equation (61) shows, however, that Zi(u) becomes
independent of o. as p increases towards unity. One is
thus led to the important conclusion that stable fiux
trapping is excluded even for Ãy)&1 as long as the
equipartition theorem is applicable.

It is true that the condition X8)&1 required for the
derivation of Eq. (61) does not strictly permit the
assumption p=1 since it implies 8=0. On the other
hand, it is seen from Eq. (55) that a vanishing value of

leads to the assumption of constant s„made in the
special case A of Sec. IV with the rigorous result of Eq.
(40) and with the consequence that Zi(n) is practically
constant if y/X«1. Since this condition was likewise
required in the derivation of Eq. (61) it follows tha, t
the content of this equation remains valid for p=1 so
that the preceding conclusion is entirely justified.

The intermediate case 0(p(1 still results in a pro-
nounced variation of Zi(n) as long as Xy(1—p)&)1.
This condition is satisfied even with p only slightly less
than unity since it was assumed that Xy&)1 and stable
flux trapping can thus be expected as soon as (P'), is
found to be a small fraction be1ow the equipartition
value XmkT. Following the same reasoning which led
to Eq. (51) one finds that the expression for Fi(a)
is modified by the factor (1—p) . The resulting fact that
Fi(n) vanishes in the limit p= 1 is again validated by
the arguments presented before and thus reaffirms the
exclusion of stable Aux trapping in this limit since it
leads through Eq. (31) to the single minimum of F(n)
at a=0.

The circumstance that the result of Eq. (61) repre-
sents a generalization of that obtained in Eq. (44) for
the special case B of Sec. IV rests upon the assumption,
implied in Eq. (55), that s„ is appreciable only for

~ p ~
&&Ã. In particular, it is this assumption which

prohibits the shorter period in n found in Eq. (47)
of case C. The analogous generalization of this equation
is achieved, on the other hand, if the sharp maximum of
s„around p, =0 is assumed to repeat itself around

~ p ~
=X/2. With the significance of p still given by Eq.

(62) this assumption similarly leads to the replacement
of 1Vy by Sy(1—p) in Eq. (47) and corresponds in the
same sense to a fractional pairing in which the pairing
of all particles was discussed in the special case C. In
view of the periodic character of Zi(n) it is to be noted
that (P'), represents not only the mean square of P
in the absence of a vector potential and, hence, for
o.=0, but also the mea, n-square Quctuation of E around
the set of values ~PS/R, obtained by choosing n as an
integer multiple of the period.

VI. DIMENSIONALITY

The results of the preceding section call for an
examination of the physical characteristics which
determine the magnitude of Sy. Since the radius R of

the ring is here of particular interest it is indicated to
rewrite Eq. (48) in the form

wi. th

R*=&VX'/(2ir R)

(63)

(64)

X = (7rP/mk T)"'. (65)

Given the density of the system and the cross section of
the ring, X is proportional to R so that R* represents a
definite characteristic radius. Besides the macroscopic
magnitude of the geometrical extensions one deals with
a magnitude of atomic size by expressing the density in
terms of the mean distance a between particles. In
view of the different order of these magnitudes it will be
seen tha, t the dimensionality of the system is of decisive
importance since it leads to widely different values of
R*. In order to distinguish between these values, an
index equal to the number of dimensions shall be
used below.

Considering first the case of a one-dimensional ring
one has here X=2m R/a, and from Eq. (64)

Ri*——X'/a. (66)

Kith m and u comparable to the mass of the electron
and the Bohr radius, respectively, and assuming the
rather low temperature T=1'K, one obtains

Rs*—10-' cm, (67)

and an even smaller value for higher temperatures.
Since normal radii are usually much larger, one has to
expect that R&)Ri~, and hence from Eq. (63) that one
deals with the condition XY(&1, discussed in the pre-
ceding section. Except for an abnormally small radius
and irrespective of the specific properties of the system
one is thus led to the exclusion of stable Qux trapping
in a one-dimensional ring.

Khile this conclusion refers to the case of a single
ring it would substantially remain valid for a ring of
bulk material composed of a large number g of identical
one-dimensional rings in a close-packed parallel bundle.
In fact, the free energy of such a system is simply e
times that of a single one-dimensional ring and the
same holds therefore for the part Fi(n) in Eq. (31).
Using Eqs. (29), (37), and (63), it can be shown that
the exclusion of stable Aux trapping calls here for no
more than the replacement of the condition R»R~* by
R»R~~lne. Assigning to each one-dimensional ring
a cross section of atomic dimensions and to the bulk
ring a cross section of linear dimensions comparable to
R~*, n is not found to be so large a,s to increase the
effective value of the characteristic radius by much
more than a factor 10.

Much larger values appear already for a two-dimen-



422 BLOCH 166

sional ring with macroscopic width d«R. Since N=
2' Rd/a' one has in this case

R2~ ——(d/a) Rg*. (68)

Even with d as small as 0.1 mm it is found that R2*-
106R~* so that the estimate of Eq. (67) leads to
R2*—10 m and to somewhat but not greatly larger
values for a bulk ring with a cross section of linear
dimensions comparable to d.

A further great increase is finally met in the most
realistic case of a three-dimensional ring with macro-
scopic radial width d~&&R and with height d2. In this
case X= 2m Rdqd2/a' and therefore

R3*= (dgd2/a') R~*. (69)

N, =n(pp) (&0)

of particles with momentum pq kk/R in the x——direction
so that one has quite generally

1v= ge(p~), (71)

(P)..= Zp" (p.), (72)

and

(P'). = mk T+pp[(3rI(pI—,)/Bpp j, (73)

where the last equation is in essence based upon the
conservation of momentum and can be deduced from
the results of Sec. III.'

' This can best be seen from Eq. (27) by keeping first a finite.
Kith p=(P/N) =(v+p/N) (5/R) from Eq. (16), p =n(5/E),
and with Ny given by Eq. (48) one obtains from the first
and second derivative of lnZ1(~): |,'{p—p.)2)A„—((p)A„—p.)2=
(mk T/N) (8 (P )A,/~P~), where (P )A„——(P )A,/N = (1/N) ZPI,nf, .
It also follows from Eqs. (1) and (19) that pI, appears in the
Hamiltonian and hence in ng, only in the combination pI, —p, so
that 8 (p)Ay/Bp = —(1/N) Zpz(Bnz/Bpz) . Going to the limit
n—+0 or p ~0, one has for symmetry reasons (p)Ay 0 and
therefore (p')A„= (P')A„/N = —(mkT/N') Zpj, (Bnq/Dpj, ) in agree-
ment with Eq. (73).

Choosing, for example, d~=d2=0. 1 mm, one obtains
R&*—10"Rz*. The estimate of Eq. (67) yields thus
R3*—104 km and even larger values for a more sizeable
cross section. In marked contrast to the one-dimen-
sional case these large values prohibit the condition
R»R3* to be realistically satisfied so that the exclusion
of stable Aux trapping for Ny«1 is here irrelevant. A
realistic situation implies instead the opposite condition
R((R3* or, from Eq. (63), Ep&)1, and it was shown in
the preceding section that stable Aux trapping hinges
here upon separate criteria.

In order to discuss the connection between these
criteria and the dimensionality of the system one has to
examine the value of (P'), , since it was seen under the
condition Ny»1 to be the essentially determining
quantity. It is indicated for this purpose to introduce
the mean number

A=pr5/(Rmk T) . (74)

Using again the mean distance u between particles one
has pr —5/a and hence from Kq. (74) with the notations
of Eqs. (65) and (66),

In order to permit the replacement of the sums by
integrals it is sufhcient to demand that d,«1 so that the
condition R»R&* leads to the equipartition value of
(P') and hence with p=1 to the exclusion of stable
Aux trapping. It is important to notice that this con-
clusion is based upon a generally valid estimate of the
Fermi momentum pr and that it therefore applies not
only to a Fermi gas in one dimension, although the
quantity Rz* was first introduced in the consideration
of the one-dimensional case.

The one-dimensional case is exceptional, however,
inasfar as the condition R»R~* is in this case equiv-
alent to Ny«1, so that it prohibits Aux trapping
without reference to any specific properties of the
system. In particular, the absence of long-range order
is not essential for this argument. Indeed, it is covered
by the special case A of Sec. IV and can be seen from
Eq. (40) to concern the preceding conclusion only
through the minor observation that y/X((1 is a con-
sequence of the condition Np«1. While the opposite
condition R«R~ or Ny&&1 is quite unrealistic one may
note that, in principle, it would lead to the opposite
conclusion. In fact, this condition not only establishes

~ F. Bloch, Phys, Rev. 137, A787 (1965).

Due to the relatively small increment 5/R of pq for
macroscopic values of R it is normally to be expected
that the difference between successive terms is suffi-

ciently small to permit the replacement of the sums
over k by integrals. Partial integration leads then from
Eq. (73) together with Kq. (71) to the same value
(P') =1Vmk T as that obtained from the application of
the equipartition theorem and thereby to the exclusion
of stable Aux trapping for p=1 which was discussed in
the preceding section. The analogous expectation of a
smoothly varying velocity distribution function was
shown earlier' to lead to a vanishing stable current.
While the preceding conclusion represents a con-
firmation of this result it will be seen below to likewise
bear upon the dimensionality.

As an adequate description of the normal state of a
metal, the case of a degenerate Fermi gas shall be first
considered. The most, rapid variation of the summands
in Kqs. (71), (72), and (73) occurs here when pl, is
close to the Fermi momentum pf and is essentially
determined by the variation of (p&' —pr2)/(2mkT).
With p~—pr the difference between successive values of
this quantity is
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the value of (P'), as the essential criterion but it also
implies 6»1, so that a strict evaluation of the sum in
Eq. (73) is required. It is therefore not to be expected
that (P'), has the value which is obtained from the
equipartition theorem and which would thus prohibit
stable Aux trapping. As an example, it can be shown
for an ideal Fermi gas that the condition 6»1 results in
a considerable reduction from the equipartion value and
thereby indicates the occurrence of stable Aux trapping. 4

The same conclusion holds for an ideal one-dimen-
sional Bose gas, and the arguments remain basically
unaltered even in the presence of interactions, so that
one may consider this conclusion to be likewise in-

dependent of the specific properties of one-dimensional
systems.

In view of its intermediate nature the two-dimen-
sional case shall not be further considered, and the
following discussion will deal with the essentially novel
features encountered in the case of three dimensions. It
was seen before that a realistic radius requires here the
condition R«R3* or Xy»1 to be satisfied so that the
difference between the normal and the superconductive
state has to be reflected in the evaluation of (P'). .
Since E&*is of very much lower order of magnitude than
R3*, the additional condition R»R~* remains equally
realistic, but, does not have the general relevance found
in the one-dimensional case. This condition was seen,
however, to be relevant to the fact that stable Aux

trapping cannot occur in the normal state of a metal
since the nature of rs(pk), characteristic of this state,
permits under the equivalent condition 6«1 the

' Kith an equal number E/2 of particles of opposite spin it is
indicated for this purpose to assume N/2 to be an odd integer.
The dominant contribution to the sum of Eq. (73) arises then
from

~
k

~
=E/4a ', and, using E-q. (62), yields p =My exp( fVp).

In view of the single sharp maximum of s„around [ p ~

=0, Zi(n)
is given herc by Eq. (61) or, since p is negligibly small for E7))1,
by Eq. (44). The minima of FI(a), obtained from Eq. (29) occur
therefore at integer values of a, indicating Aux quantization with
the quantum hc/e. The opposite case of integer N/2 is somewhat
more complicated since the maximum of s„is here centered around
~ p ~

=fV/2. In view of Eq. (34) each term in the sum of Eq. (61)
or (44) thus has to be multiplied with (—1)f7 so that thc minima
of FI(n) do not occur at integer values of a but at values halfway
between integers.

1 p= '/t'/'/X, — (76)

where X'=E—X" represents the number of particles
in the superconductive phase.

In the model of a condensed ideal Bose gas, this phase
is constituted by the particles with momentum p=0
and one has E'=1VLI —(T/T, )sl'$, where T, represents
the critical temperature of Einstein-Bose condensation.
In view of Kq. (61), Zt(cr) is then given by Eq. (44)
of the case B in Sec. IV with the only difference that S
is to be replaced by T', so that this model leads for
T(T, to stable Aux trapping with the Aux quantum
hc/e. The entirely analogous reasoning, applied to
electron pairing in a superconductor, calls for the re-
placement of X by 1P in Eq. (47) of case C except that
X' refers here to the number of paired electrons.
Correspondingly, one deals here with an exponential
variation of Ã' below the transition temperature, char-
acteristic for the finite pairing energy, and with the
observed value hc/(2e) of the flux quantum.

replacement of the sum in Eq. (73) by an integral and.
leads therefore to the equipartition value of (P'). .

The opposite condition d»1 is far too unrealistic,
on the other hand, to bear in any way upon the observed
stable Aux trapping by a three-dimensional super-
conductor. It was shown earlier' that the transition to
the superconductive state has to be accompanied by
characteristic sharp changes in the nature of the velocity
distribution function and is the analogous change in
the nature of N(ps), which no longer permits the re-

placement of the sum by an integral. Nevertheless, such
a replacement is permitted if one considers e(ps) to
consist of two parts corresponding to the two-phase
model of the superconductor and assumes the momen-
tum of the superconductive phase to vanish. The only
contribution to (P'), in Kq. (73) arises then from the
part of rt(ps) which refers to the normal phase. Upon
substitution of this part, to be denoted by ts" (ps), the
replacement by an integral is again permitted and one
obtains by partial integration (P'), =1P'rtskT, where
X"=ps I"(ps) represents the number of particles in
the normal phase. One has then from Kq. (62) p=
X"/X or


