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measured in kG. (The parameters for sodium were
given in Sec. ITI.)

The transmission measurements were made at
frequencies between 1.0 and 8.0 MHz at fields between
15 and 50 kG. In the standing-wave experiments the
frequency ranged between 0.5 and 50 kHz while the
field was varied between 4.3 and 16.7 kG. Thus Fig. 9
shows good agreement between theory and experiment
over a wide range of experimental conditions.?

V. CONCLUSIONS

In summary, experimental results obtained with
sodium and potassium closely agree with the pre-
dictions of the free-electron theory over a wide range of
experimental conditions. The form of the theoretical
correction to the nonlocal damping due to collision
processes agree well with experiment.

20 The nonlocal damping of helicon waves has been measured
using pulse techniques. The results of the pulsed experiments are
also in close agreement with the free-electron theory.
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The high degree of agreement is particularly gratify-
ing since the experiment gives a check on a rather
involved transport-theory calculation in which there
are no adjustable parameters. The Fermi momentum is
the only parameter which cannot be measured directly
by the experiments. However, the free-electron value
which we have used agrees with the value measured by
Shoenberg and Stiles? using the de Haas—van Alphen
effect within 0.59%,.!
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A one-dimensional model of interacting electrons is studied to determine whether such a system, in thermal
equilibrium, can exhibit flux quantization. The free energy and current of the system are calculated and
shown to be periodic functions of the flux enclosed in a ring-shaped sample with period %¢/e. The Maxwell
equations provide a second relation between the current and flux. It is found that at finite temperatures, the
equations for the current I and the flux ®5 have only the trivial solutionZ =®5 =0 in the limit of macroscopic
systems. Therefore, there is no flux quantization. The free energy is calculated by a generalization of the
method of Tomonaga. This method describes the Fermi system in terms of an equivalent set of bosons which
represent the collective modes of the Fermi gas. The major results of the generalization are the appearance of
trilinear terms in the equivalent boson Hamiltonian and effects of a vector potential.

1. INTRODUCTION

INCE the suggestion by Little! that properly

synthesized long organic polymers might be super-
conducting at room temperatures, there has been
renewed interest in the properties of one-dimensional
electron systems. Recently, Hohenberg? has rigorously
proved that a one-dimensional system cannot exhibit
off-diagonal long-range order (ODLRO),? a property
characteristic of superconductors in three dimensions.
However, the absence of ODLRO does not imply the
absence of other properties characteristic of super-
conductivity such as flux quantization and persistent

* Supported by the U.S. Office of Naval Research under Con-
tract No. NONR-225(75). .

T Present address: Department of Physics, Western Reserve
University, Cleveland, Ohio.

1W. A. Little, Phys. Rev. 134, A1416 (1964).

2P, C. Hohenberg, Phys. Rev. 158, 383 (1967).

3C, N. Yang, Rev. Mod. Phys. 34, 694 (1962).

currents as discussed in Sec. 4. The possibility of the
existence of flux quantization and persistent currents
in nonequilibrium situations has been investigated by
Little,* and Ambegaokar and Langer.’

It is the purpose of this paper to examine a one-
dimensional model of interacting electrons to determine
whether the system can exhibit flux quantization in
equilibrium.® The analysis is directed to the calculation
of the free energy of the system (Sec. 3), which is shown

4+W. A. Little, Phys. Rev. 156, 396 (1967).

5J. S. Langer and V. Ambegaokar, Phys. Rev. (to be pub-
lished).

6 Whereas “one-dimensional” means for Refs. 4 and 5 that the
transverse dimensions of the system are small compared to the
temperature-dependent correlation length and penetration depth,
for this paper it will be taken to mean that those states which
correspond to transverse electron motion contribute negligibly to
the partition function. In general, this imposes the more severe
condition that the transverse extension be smaller or of the order
of the Fermi wavelength,
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to be a period function of the magnetic flux through a
ring-shaped sample with period kc/e. From this result
an expression for the current as a periodic function of
the flux can be obtained. Combining this result with
the Maxwell equation relating the current and flux, one
can determine whether there exist stable nonvanishing
solutions of these equations, indicating the existence
of flux quantization and persistent currents in equilib-
rium. In the thermodynamic limit, it is found that no
such solutions exist for finite temperatures.

The method used to obtain the free energy of the
system is that of “quantized sound waves” introduced
by Bloch’ in discussing certain properties of the de-
generate ideal Fermi gas and extended, under certain
restrictions, by Tomonaga® to the case of the interacting
Fermi gas. This method, which emphasizes the role
of the electron density fluctuations, is particularly
appropriate in light of Ferrell’s remarks® which em-
phasize the importance of these fluctuations in a one-
dimensional system. The basic idea of the method is
to bring the low-lying states of the fermion system
into a one-to-one correspondence with the states of a
system of harmonic oscillators representing the density
fluctuations which propagate in the Fermi gas. The
original fermion operators are thus replaced by the
boson operators pertaining to the system of oscillators.
Instead of starting from Tomonaga’s boson Hamil-
tonian, we formulate the procedure anew in Sec. 2
and obtain the following extensions to Tomonaga’s
procedure: (1) The kinetic-energy operator contains
terms which are trilinear as well as terms which are
bilinear in the boson operators; (2) the effects of a
magnetic field are included.

2. GENERAL FORMULATION OF THE MODEL

Commutation Relations

We consider a system of N fermions of spin-% con-
strained to a line. In order that it may sustain a closed
current, the system shall be bent into a ring of radius
R. The second-quantized field operators and their
Hermitian conjugates are, in terms of plane-wave
amplitudes,

¥, (x) = (2rR)2 Y exp (inx/R) cn.0,
W, *(x) = (2rR)~12 Y exp(—inx/R) ca ¥,

where « is a length measured along the ring, # is an
integer, the spin quantum number ¢ equals =1, and
Cn,e™, Cn,e are fermion creation and destruction operators
obeying the anticommutation rules

(2.1)

{Cn,,,, Cu’,a'*} =6n,n’60,0’) {Cn.a, Cn’,v’} =O~

7F. Bloch, Helv. Phys. Acta 7, 385 (1934).
8 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 5, 544 (1950).
9 R. A. Ferrell, Phys. Rev. Letters 13, 330 (1964).
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The expansion of the density operator

p(x) =D W *(x) W, (x)

is, similarly, p(x) = (27R)™ D _n.s pn.s €xp(inx/R),

Pn,a=P—n,a*= Z Cl,a*CH-n,a' (2-2)
i

There is need later of more general operators p,( f1),
which are defined by

ou(f2) =2 puo(J) =2, ;f:a,a*cm,q, (2.3)

with coefficients f; which depend in an arbitrary man-
ner on the summation index /. In the special case
fi=1 for all I, p,,(1) is simply pn, defined in Eq.
(2.2), and the latter notation will be used. Following
Tomonaga’s procedure, the operator p, .( fi) is decom-
posed into

Pn,o'(fl) =Pn.a+(fl)+Pn.v~(fl)’ (24)

pn,a+( fl) = Z flcl.a*CH—n.a; (2'5)
1>—n/2

pn,o'_( fl) = Z flcl,a*cl+n T (2-6)

I<—n[2

Using Eq. (2.1) the commutators of the above opera-
tors can be obtained directly. These commutators
simplify greatly if one considers only a restricted set
of states of the Fermi system in which all single-particle
levels with momentum between —#AR%* and AR w*
are fully occupied. The momentum #AR™!n* must be
much less than the Fermi momentum %R 'ny. For
temperatures £7'<<er and interactions which are neither
too strong nor of too short range, we expect the statis-
tically important states to be contained within this
subspace .S, and we shall henceforth restrict ourselves
to such states. The conditions under which the above
assumption should be valid are discussed by Tomonaga
and, more rigorously, by Gutfreund and Schick.® It
is shown by the latter that the assumption is valid for
sufficiently weak attractive interactions upon which
the theory of superconductivity in three dimensions
is normally based.

The following commutators, which are not identities
but which are meant to be valid only if applied as
operators upon the subset .S of wave functions, are
obtained directly from Egs. (2.1) to (2.6) and the
properties of the subspace S; provided that | # |, | 7’ |<
2n*/3,

Lonsos P or (f1) 1=00 0 Pnin o ( frin—11),  (2.7)
Lonsts puro™ (f0) 1=[pno™ Pt (f) ]=0,  (2.8)
Lonots pur o ( f0) =00 o' Lonint ot ( firn—11)
+6n, - Fu(f)], (2.9)
Lon.o™s pnr o™ (f)) 1= 00,0 Lonins o ( frsmn—11)
—bu—wFa(f)], (2.10)

10 H. Gutfreund and M. Schick (to be published).
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where
Fn(fl): E fl+n"" Z fz, n>0
0>1>—n/2 n[2>1>0
=— Z Srn— Z fi n<0.

~n[2>12>0 0>I>n/2

Setting f;=1 for all / in the above, one recovers the
Tomonaga relations

[Pn,v+, Pn',u'"]=0;

Conoty pur,or]=nbn - /85,07 (2.11)

It is convenient to introduce the normalized boson
operators

n =1, +,  forn>0,

o= (—n)"p,,~,  forn<o0, (2.12)
@nF =1, T, for n>0,
tng*=(—n) M, =, forn<0. (2.13)

From Eq. (2.11) it can be seen that these operators
obey the usual boson commutation relations

[an,a; an'.v’*] =0y ,n’atr,a’}
[an oy Qn’ ,v’] = 01

for |n|, |n |<2n*/3. As previously mentioned, the
definition of the subspace S requires that #n*<ny.
Except for this condition, the value of #»* and, hence,
the extent of the core of occupied states does not affect
the results obtained below. The corresponding restric-
tion to values of #<<ny will have to be noted in the
following considerations.

(2.14)

Vacuum States

Consider the vacuum state ¥, of the operators a,,q,
that is, the state for which @,0=0. It can be seen
from the definition of the operators p,,.f=py.=(1),
Egs. (2.5) and (2.6), that the noninteracting ground
state in which all single-particle levels with momentum
% | n|/R<Any/R are occupied satisfies this condition.
However, if the momentum of all particles with spin
o are increased by 7iv,/R, the resulting state will also
satisfy this condition except for a few values of 7z of
order 2(my—v,). Provided that the integers » and
v_3, which are not necessarily positive or equal, are
much less than 7, in magnitude, these values of 7 are
larger than 2#*/3. For such large values of #, the
commutation relations of Egs. (2.7)-(2.10) no longer
hold so that such values of 7 are to be excluded. With
this proviso, the states representing ‘“shifted Fermi
seas” are also vacuum states. Assuming for convenience
that there are an equal odd number of particles with
spin ¢=+41 and o= —1, we are led to consider the set
of vacuum states o (P, »,) with all single-particle levels
between —mny+», and ny+v, occupied by particles
of spin o. These states shall be distinguished by their
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eigenvalues of the momentum operator P and of the
operators pg,t=p,*(1) which count the number of
particles with spin ¢ and positive or negative momen-
tum. Thus,

an,v‘I’O(P, V.,) =0,
Pyo(P, vs) =hRpo(D) (P, vs)

=Py(P, v,), (2.15)
where
P=NhRY(n+v.)/2,
PO,a+ O(Py Vv) = ("M+V0+1)¢0(P7 Vv)) (216)
po.c Yo( P, vs) = (ar—ve)$o(P, v,), (2.17)
and

N=22ny+1).

The same considerations which lead to Eq. (2.15)
also imply the more general equation, which will prove
useful,

for n>0
for n<0.

pn,0+(fl)¢0<Py VU) ZO:

pua” ()Y (P, vs) =0, (2.18)

Boson Representation of the Kinetic Energy

By means of a more general procedure than that used
by Tomonaga, it will be shown here that, within the
subspace S defined previously, it is possible to express
the kinetic-energy operator

Hyg =12 (2mR2)po (1) (2.19)

in terms of the operators p,,*. For this purpose, it is
shown in the Appendix that the manifold of all many-
particle states in the subspace S can be represented
by a complete set of wave functions:

V(P ) =c [T T’ (@ns®) ¥ 4o(P, v,), (2.20)

where ¢ is a normalization constant, the prime on the
product means 750, and the subscript 7 stands for a
particular set of integers N,,. Each state is an eigen-
state of the operators P and po.*. Indeed, from the
fact that po,* commutes with all a,.* as seen from
Egs. (2.11) and (2.13), and from the properties of
the vacuum states, formulated in Eqs. (2.16) and
(2.17), one obtains

po,y"' m(P,; Va) = (nM+Va+1)‘I/m(P,y V-r))
pO,v_ﬁbm(P,: Vv) = (nM_Vv)‘l/m<P/y V,) .

Based upon the fact that the wave functions ¢ form a
complete set in S, it can be shown, using Eq. (2.13),
that any two operators, O and O’, which satisfy the
conditions

[Pn s O] = [pn oty O,]:
OllbO(P’ Vﬂ‘) =0,¢0(P; Vd):

(2.21)

(2.22)
(2.23)

alln, o

all P, v,
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are identical within the subspace .S in the sense that
all matrix elements of O and O’ taken between states
in this subspace are equal. In seeking a boson repre-
sentation of the operator O’ =py(/?), therefore, one has
to find an operator function O of the quantities p,,.*
such that

[Pn o O] =2npn .= (I+3n),

where Egs. (2.3)-(2.10) have been used to evaluate
the commutator [p,,.%, po(#) ], and

O (P, vo) =[5Nna*+8na N~ (v +v_1%) Wo(P, vs),
(2.25)

(2.24)

where the expression in the bracket has been obtained
by evaluating po(#)¢o(P, v,). It will be convenient to
obtain first a boson representation O, .+ of the operators
O’ =pn .t (I+3n) which appear in Eq. (2.24). Proceed-
ing as above, the operators O, ,£ must satisfy

[Pn.ai, On’,v’i] =70¢,5' (Pn—}—n',vi:‘:%an.-n') )
[Pn .czF, O .v’i] = O’

where Egs. (2.8)—(2.10) have been used to evaluate
[Pn,vi; Pn’ .a’i(l_*‘%”,) ]) and

On’.o'ﬂ:\l/()(Py Va') =Pn’,v'i(l+%nl)‘!/0(Py Vﬂ) =O)

from Eq. (2.18). By means of the commutation rela-
tions Eq. (2.11) and Eq. (2.18), it can be directly
verified that the operators

On’ .a’:‘: = i% ( Z P- r,u’ipr+n',a’:h:FPn',a’d:) (2~26)
r

n'20

satisfy all these conditions and are therefore the boson
representation of the operators puE(l43n’). It
should be noted that the momentum operator P is

P=tR Y [po.t (1) +poo— (D],

so that a boson representation of this operator is simply

ﬁ=ﬁR—-1 Z (00,¢++00,¢—)-

Setting #’=0 in Eq. (2.26), replacing the operators
po..= wherever they occur by their eigenvalues as given
in Eq. (2.21), and introducing the normalized boson
operators of Egs. (2.12) and (2.13), one obtains

P=hR[AN (mtva)+ 2, 2 lar*ar,], (2.27)
4 l

where the prime on the sum means /0. This expres-
sion for the momentum operator agrees with that of
Tomonaga for the particular states he considered. These
states have equal numbers of particles with positive
and negative momentum for both values of o. According
to Egs. (2.16) and (2.17) they are characterized by

V1=Vaa= 0.
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Returning to the problem of obtaining a boson
representation for po(/2), we substitute the boson
representation of p,.*(l4+3n), given by Eq. (2.26),
into Eq. (2.24) and obtain

Lon.ot, O]==£n( E PreEPrin, e F Pno™) . (2.28)

To complete the task of expressing po(/?) in terms of
boson operators, one has to find an operator which
satisfies both Egs. (2.28) and (2.25). Using again the
relations Eq. (2.11), it can be directly verified that
Eq. (2.28) is satisfied by choosing

0= Z Z %(p—l,0+Pl+l1.tr+P—q,v++P—l,v~Pl+q.¢—p—q .a—)
o lgq

'—% Z Z (p——l,a+pl,a+—pl,a'—.p—-l,v—‘)+Oly
4 1

where O; is a constant plus any operator which com-
mutes with all p, ,*. This expression can be simplified
by replacing the operators py,,£ wherever they appear
by their eigenvalues, as given in Eq. (2.21), and in-
troducing the normalized boson operators of Egs.
(2.12) and (2.13). The quantity O, is then determined
by requiring that the operator O satisfy Eq. (2.25).
Introducing the quantities

7=8es/N, (2.29)
where the Fermi energy e is given by
er =hnp?/ 2mRPHIN?/32mR? (2.30)
and
m= 1) l> 0
=-1, <0

one obtains for Hxg=po(?)%?/2mR? the boson repre-
sentation valid in the subspace S:

Hyxu=3Ner+r(vi4v_i) + 20 3 'r[14+4N "]
4 i

X|1| a0 01,0+ Hy, (2.31)
Hy=2rN" 30 3 3 [lg(l+9) 1¥2(01,6*00.0*Grr g
>0

e I>0 ¢

+a1*0 g a1 q,+He), (2.32)

where H.c. means Hermitian conjugate.

Ignoring all states characterized by »,70 and neglect-
ing Hr, one recovers Tomonaga’s bilinear Hamiltonian.
It will be shown in Sec. 3 that it is permissible to ignore
the states with »,50 provided that there is no magnetic
field. The contribution of such states to the free energy
is only of order log/V, which is negligible compared to
other terms of order NV in the limit of large systems.
However, as shown in Sec. 2, it is necessary to include
in the statistical ensemble states characterized by all
values of v, in order to obtain the correct magnetic flux
dependence of thermodynamic quantities,
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The neglect of Hr is equivalent to Tomonaga’s
approximation of the single-particle energy spectrum
by the linear relation e, |7 |. This approximation
is valid provided that the excited electrons of the system
have energies sufficiently close to the Fermi energy
er. The states in the subspace .S are characterized by
such excitations so that the trilinear terms can be
viewed as a small correction to the bilinear part of the
Hamiltonian. This approximation can be checked
directly in the case of the ideal Fermi gas for which
the free energy is

2 " 4 6
Fo(T) =%Nep [1__?10.2 (H) — et <]f_]_> +0 <1€I> ]

€ €r €F

The free energy as calculated from Tomonaga’s bilinear
Hamiltonian agrees with the first two terms of the above
expression as noted by Wenzel,"* while a straightfor-
ward application of perturbation theory shows that
the lowest-order contribution of Hr to the free energy
is precisely the third term of the above expression.??
Thus the relative order of magnitude of the contribu-
tions of the trilinear and bilinear terms in this case is
(kT /er)®. As the Tomonaga model is only applicable if
(kT/er)<<1, the correction is small as expected. In
addition to corrections to all thermodynamic quantities,
the trilinear terms provide a coupling between the
collective modes and, hence, a damping of individual
boson excitations which is reflected, for example, in
the imaginary part of the dielectric response function.

Hy=iN(N—0)Jo+ 2 T | 1| —=2N D Tk 2 2 | | avo*ar.+HY,
l l o l

H1'=%‘ Z Z, ]l I l [ (al,va—l,¢+al,oa—i.«a+al,a*al.—v+H-C'),
T l

where

Jl=]_1= (ZWR)_']
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Two-Particle Interactions

Having obtained a boson representation of the free-
particle Hamiltonian, we proceed to obtain a similar
representation of the interaction Hamiltonian which
describes both electron-phonon and electron-electron
interactions. Although the electron-phonon interaction
is readily described in terms of bosons, as shown by
several authors,”® it will be assumed for convenience
that this interaction can be replaced by an effective
electron-electron interaction in the manner of Frohlich’s
canonical transformation.® As is well known, the
effective interaction is nonlocal and is attractive for
some values of the momenta of the two electrons. Since
it is the attractive nature of the interaction which is
of paramount importance for superconductivity, and
not the nonlocality, no essential features of the total
interparticle interaction are lost if the fermions are
assumed to interact through a two-particle spin-inde-
pendent local interaction. In a homogeneous space, the
potential is a function only of the relative distance
between particles so that the interaction Hamiltonian
has the form

zz,:%f[p(x)p(xw(g - Ddxdx’—%/p(x)](O)dx.

Substituting the expansion of p(x) in plane-wave
amplitudes into the above and using Egs. (2.4), (2.12),
and (2.13) to express the result in terms of the normal-
ized boson operators, one obtains

(2.33)

(2.34)

TR

exp (ilx/ R)J (x) dx.

—rR

It is to be noted that VJ; is an intensive quantity. Combining the above with Eq. (2.31) one obtains for the total

Hamiltonian

H=Hgg+H;=Hp+Hy,

where the bilinear part

Hp=C(J)+ritv®)+ 2 T | 1|+ 2 r(14+4N"Yu+-Tr ) | 1] aroar.+Hi,
l g 1

C(J) =3Nep+IN(N—1)Jo—iN ; J,

(2.35)

(2.36)

and the trilinear part Hy is given in Eq. (2.32). It is in keeping with the discussion of the trilinear part of the
Hamiltonian Hy to diagonalize the bilinear part Hgp and to treat Hy as a perturbation. The bilinear Hamiltonian

Hp is brought into the diagonal form

Hy(S, D) =C(J)+2r(S*+D2) + 2 7{[Qu(D, J1) +4N-1Sn,] | 1| AFA+[Qe(D, J)) +4N-1Sy,] | 1| B*B,
1

11 G, Wentzel, Phys. Rev. 83, 168 (1951).
12 M, Schick, Ph.D. thesis, Stanford University (unpublished).

+3[Qa(D, 7)) +Qs(D, 1) =27 | 1]} (2.37)

18 S, Engelsberg and B. B. Varga, Phys. Rev. 136, A1582 (1964), and references therein.

4 H, Frohlich, Proc. Roy. Soc. (London) A215, 291 (1952).
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by the canonical transformation
T 4 [ R@, D) R@a, —D)  —R(—Qu, —D) —R(—~a, D) [ as
By R(Qs, D) R, —D)  —R(—Qs, —D) —R(—2s,D) || a1
A || —R(=0nD) —R(—04 -D)  R@s, —D) R@y, D) || art | (239
| —B_*| | ~R(—Qs,D) —R(—Qs, —D)  R(Qs, —D) R@s D) || s |

where />0 and the dependence of 24 on / has been suppressed. Concerning the notations used here, the quantities
S, D are defined by

S=%(n+va), D=%(v1—r_1). (2.39)

From Eq. (2.21) it can be seen that a state characterized by S0 has unequal numbers of particles with positive
and negative momenta. In a state characterized by D0, the number of particles with positive momentum and

spin o =1 is not equal to the number of particles with positive momentum and spin ¢= —1.
As »; and »_; are independent integers, .S and D are either both integers or both half-odd integers. The dimension-

less quantities Q4 (D, J1), Qz(D, J;) are defined by

Qa,p(D, J)={(4N71D)>+ (1427 ;r ) L2 (4N7D)2 (1427 ") + (J ) 212} 1z,

(2.40)

A limiting form of the above which will prove particularly useful is

Q4 (0, Jl) = (1+4]1T'—1) 1/2,

Q5(0, 7)) =1. (2.41)

Finally, the coefficients in the transformation of Eq. (2.37) are given by

R(Q, D) = (Q+4N-1D—1) (Q—4N-D~41) (Q+4N-D+1) /M (Q, D?),
M(Q, D?) =22{Q[ (22— 14-16N—2D?)*+64N-2D2(1— 16N—2D#) T} 12,

and are real. The operators 4; and B, satisfy the com-
mutation relations
[4., Av*¥]=[B, By*]=0b1r,

and all other commutators are zero.
Expressed in terms of these operators, the momen-
tum operator of Eq. (2.27) becomes

P=AR[NS+ > (A*A+B*B)l].
L

As a special case of the above equations, it will be
assumed that D=0, J,;#0 since it will be shown in
Sec. 3 that only the contributions of states characterized
by D=0 to the partition function need be considered
in the thermodynamic limit. Setting D=0, one obtains
from Egs. (2.38)-(2.43)

Ay =2""[coshb;(a;,1+a;,—1) +sinhb;(a_; ¥ +a_ 1, 1*) ],
B;=2""2(a;,—a1,1), (2.44)
for all /, where

6,=% In(14+4J771). (2.45)

This transformation may be written in the explicitly
unitary form

Al= Uaz,lUT,
A~l*= Ua_l,_l*U“,
Bz= —Ual,_lUT,

B_*=Ua_1*Ut, 1>0

(2.42)
(2.43)

where U=exp(.S;) exp(S1), and
Sy=3m 2 (a1t +a_i*a1—H.ec.),

>0

Sp=% 2 0 (ara+a1,-1) (arata_y) —Hee.].
>0

From the ground-state wave function for the non-
interacting system (0, 0), one obtains the correspond-
ing wave function for the interacting system ¢4’ (0, 0) =
Uyo(0, 0). By symmetry arguments, these states are
characterized by P, »,=0, or D=S=0.

Introduction of Vector Potential

We now consider a cylindrically symmetric magnetic
field to be present with axis of symmetry perpendicular
to the plane of the ring. Because of the infinitesimal
width of the ring, the vector potential may be considered
to be constant across it. Therefore the free-particle
Hamiltonian is

Hxg(a) =h?(2mR?)—1 Z (I—a)%1.%c1e
lo

= Hxu(0) —halP/mR+Nk2a?/2mR?,

where a is the magnetic flux &5 in units of kc¢/e. Sub-
stituting the boson representations of Hxg(0) and P
from Egs. (2.31) and (2.27), one finds that Hxg(o)
can be obtained from Hxg(0) by the replacement
S—S—a. In fact, this replacement is sufficient for the
modification of the total Hamiltonian since H; is
unaffected by the presence of a vector potential. Thus
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the diagonalized bilinear Hamiltonian in the presence
of a magnetic field is simply Hp(S—a, D) with Hp
given by Eq. (2.37).

Partition Function

In view of the discussion of the trilinear part of the
Hamiltonian Hr, it is permissible to retain only the
bilinear part and hence to use for the partition function

Z(a) =exp—LF(a) =Tr exp[ —BHp(S—a, D) ],

where F(a) is the free energy of the fermions, Tr
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signifies trace, and 8= (k7). This may be written,
with the aid of Eq. (2.37), as

Z(a)= Y, exp—B{27[(S—a)*+D*]+5[(S—a)?, D?]}

4;8,D

+hf§:’D exp—B{2r[ (S—a)2+D*]+5[ (S—a)?, D*]},
(2.46)

where »_;; denotes a summation over all integers
> 4; denotes a summation over all half-odd integers,
and

FL(S—a)?, DX]=C(J)+%r 2/ [Qua(D, J))+Qs(D, J)) —2] | 1|

l

+6 ZZ' (In{1—exp—Br[Qu (D, J)) +4N(S—a)n,] | 1 |}

+In{l—exp—Br[Qs(D, J1) +4N1(S—a)ni] [ [})

It is to be noted that the summands of Eq. (2.46)
contain .S and « only in the combination (S—a) and
are even functions of this combination. Due to the
fact that states characterized by all values of the
parameter S=%(»~+v_1) have been included in the
ensemble, it follows that Z(a) is an even function
of a for the simultaneous replacement a——«, and
S——.5 leaves Z(a) unchanged; Z(a) is a periodic
function of a with unit period, for S increases in both
sums of Eq. (2.46) by integer steps so that the replace-
ment a—a+1, S—S+1 leaves Z (o) unchanged. It is
important to note that these two properties of the
partition function which are equivalent to Theorem 3
of Byers and Yang'"® are not, in this case, related to the
existence of a Meissner effect as in the situation dis-
cussed by Byers and Yang. Rather, these properties
follow immediately from the assumption of cylindrical
symmetry and negligible ring thickness; they are mani-
fested irrespective of whether the system is supercon-
ducting or normal. What distinguishes the former from
the latter is the magnitude of the periodic variations
with flux. In the normal state these variations are
negligibly small, while in the superconducting state
they are appreciable. A criterion for distinguishing
between these two cases is presented in Sec. 3.

3. RESULTS OF THE MODEL

Ground-State Energy and Current

The behavior pertaining to the absolute zero of tem-
perature is reached if the temperature is so low that
thermal excitations of all oscillators can be ignored.
From the expression for the partition function, Egs.
(2.46) and (2.47), one sees that this requires S>>1,
or, from Eq. (2.29), kT<Ker/N, which is unrealistic

15 N. Byers and C. N. Yang, Phys. Rev. Letters 7, 46 (1961).

(2.47)

for macroscopic systems. Nevertheless it is of interest
to consider this state. The factor exp{—287[(S—a)2+
D%]} in the partition function eliminates all contribu-
tions to the sums over D and S except the contribution
of the ground state which is characterized by D=0,
S=S5(a). The quantity S(a) is defined as the integer
nearest a. Using Egs. (2.29), (2.36), and (2.41) one
obtains for the ground-state energy

Ly(a) =New{3+5(N—1) (Jo/er)
—1 37 (Jo/ew) +W () +16N2[S(a) —a T}, (3.1)

where

W(J)=4N-2 Y [(1+NJ./ 2er) 2 =17 | mn | (3.2)

is the contribution of the zero-point energy of the 4
mode oscillators in units of Ner. It should be noted
that the quantities NJ,/2e must, for attractive inter-
actions, be less than unity in magnitude in order that
the ground-state energy be real. This implies that the
square root in Eq. (3.2) can be expanded in powers of
the interaction.’® The result of Eq. (3.1), obtained by
ignoring the trilinear terms in the boson Hamiltonian,
must be expected to agree with that obtained by carry-
ing out to all orders a perturbation method which
consistently approximates the electron spectrum by
Tomonaga’s linear relation e, <7 |7 |. If the applica-
bility criteria of Tomonaga or Gutfreund and Schick
are satisfied, the fact that the ground-state energy
is an analytic function of the interaction strength is a
confirmation, in this model, of Hohenberg’s result that
there is no ODLRO in the one-dimensional system. The
existence of ODLRO leads to an expression for E, which

16 This is also the case for electron-phonon interactions. See
Engelsberg and Varga (Ref. 13).
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is not analytic in the interaction strength as in the Bar-
deen-Cooper-Schrieffer” theory of superconductivity.

For repulsive interactions, the ground-state energy
is always real and the strength of the Fourier com-
ponents are not necessarily restricted to NJ,/2er<1
in order that the formalism be valid. Thus the square
root in Eq. (3.2) can no longer, in general, be expanded
in a power series and the usual Rayleigh-Schrodinger
perturbation series will fail to converge. A thorough
comparison of the Tomonaga model and perturbation
procedures is given by Engelsberg and Varga.®

The current in the ground state is obtained from

Iy(e) = —(e/27h) [dE,(a) /de],
with the result
I, (C‘) = ZIamax[a_ S(a) ],

where

ET<erN™Y,  (3.3)

I,mex=ehN /4nmR2. (34)
Equation (2.30) has been used to obtain this result.

Free Energy and Current

The free energy and current of the system will now
be obtained for more realistic temperatures in the range
1>>kT/ez>N-1. An approximation for the partition
function which retains the essential periodic dependence
on « can be obtained by expanding the exponent of the
summand of Eq. (2.46) about its extremum value. This
occurs for D=S—a=0, and one needs to retain only
quadratic terms in a power series in D and S—a. The
summand is, then, approximately

exp—BI5(0, 0)+2:[C:()) D+ Ca() (S—a)T},  (3.5)
where
_ L L(S—e), D7)
Gi(J)=1+(27) D petnd
_ . 5L(S—e)?, D7)
G())=14(2r)" G(S—a)z D=S——a=0.

The value of (0, 0) is obtained from Egs. (2.36),
(2.41), and (2.47),

5(0,0) =Nep{3+3(N—1) (Jo/er) —% 2 (Ju/er)

+W () — (x*/24) (kT /er)*[1+ ¥ () T},
where W (J) is given by Eq. (3.2) and where
Y (J) = — (48Ber/N72)

X > In{1—exp[ —Br24(0, J,)n]}.

n>0

(3.6)

For the special case J,=0 for all #, one obtains
¥ (0) =1 since the sum may be replaced by an integral

( 17 T, Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 1175
1957).
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in the temperature range being considered. The neglect
of higher powers of D and (S—a) in the exponent
can be justified by carrying out the expansion to fourth
order and verifying that the corrections are negligible.
The functionals C,(J) and Cy(J) are of order unity and
must be positive. It can be shown!? that when the
formalism of Sec. 2 is valid according to Tomonaga’s
applicability criterion, these functionals are indeed
positive.

With the approximation of Eq. (3.5) for the sum-
mand of Eq. (2.46), the partition function becomes a
sum over Gaussian functions. On replacing the half-odd
integral values of D and S, which appear in the second
term of Eq. (2.45), by S=I—%, D=m—}%, where /
and m are integers, all four sums in the partition func-
tion are of the form

; exp[——K(l—a)ﬂ,
with K equal to 28rCi(J) or 287Cy(J) and @ equal to
0, a, %, or a+3. Since C1(J), Co(J) are of order unity
and since it is assumed that 87<1, one has K«<1. It is
convenient therefore to make use of the Poisson sum
formula’

i exp[—K (I—a)?]= (x/K)'"2

l=—00

X[142 D {exp(—n2/K) } cos2mna].
n=1
Keeping only the term with #=1 on the right, which
is sufficient for our purposes, and using this expression
to approximate the sums in the partition function, one
obtains

Z(a)~{exp[—p5(0, 0) J}2[x/28-C: () ]2
X[ /287Co(7) I
X (1+4 {exp[—n?/2B87C5(J) ]} cos2ma), (3.7)

where C31(J) =Ci1(J)4+Cs1(J), and is of order
unity. Since 7=8ezN7}, from Eq. (2.29), it can be seen
that the term [w/287C1(J) ], originating from the sum
over D, contributes to the free energy a term of order
In which is negligible compared to other terms of
order &V in the thermodynamic limit. The only extensive
contribution to the free energy from the sum over D
is contained in the term F(0, 0) which is simply the
contribution of the states in the ensemble characterized
by D=0. Thus the statement made in Sec. 2 that the
contribution of all states with D0 to the partition
function can be ignored is verified. Further, if =0, a
similar argument shows that only the contribution of
states with .§=0 need be considered. The contribution
of states with S50 is only important when a magnetic
field is present and the response of the system to that
field is of interest.

18 H. T. Davis, The Summation of Series (Principia Press, Inc.,
San Antonio, Tex., 1962), p. 234.
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F16. 1. Schematic plot of current I versus «, the flux measured
in units of 2#7ic/e. The intercepts of the two curves I («) and ga
represent solutions of Egs. (3.10) and (3.12), while the intercepts
of 7,(a) and ga represent solutions of Egs. (3.3) and (3.12). In
both cases, the filled circles correspond to stable solutions while
the open circles correspond to unstable ones.

The free energy obtained from Eq. (3.7) is
F(a)=—f1InZ(a)~F(0,0) —4kT
X {exp[ —w*NkT/16exCs5(J) 1} cos2me, (3.8)

where flux-independent contributions of order InV
have been ignored and where the approximation
In(1+4x)~« for small x has been used. The current is

I(e) =—(e/2xh)[dF (@) /de] (3.9)
or
I(a) = — I sin27wer, I>>ET />N, (3.10)
where
Imax =] max(xNET /2er) exp| —a*NkT/16exCs(J) ],
(3.11)

and I,m2* is given in Eq. (3.4).
Current and Free-Energy Minima

In addition to the relations of Egs. (3.3) and (3.10)
between the current I and the flux ®p="hca/e, there is
also the electromagnetic relation, valid in the absence
of an external field,

‘I’B =C£I
or
I=qa, (3.12)
where
g=2wh/eL, (3.13)

and where £ is the self-inductance of the system. It is
easy to verify with the aid of Eq. (3.9) that the total
free energy of the system I'r(ar), given by

Fr(a) =F(a) +3£1%(a),

has an extremum with respect to variations in a when
Eq. (3.12) is satisfied. The relations of Egs. (3.3)
and (3.12) or Egs. (3.10) and (3.12) represent two
equations to determine I and the corresponding flux
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hea/e. If these equations have stable nonzero solutions
for the current, the total free energy of the system has
relative minima at these values of the current. The
periodic functions I,(a) of Eq. (3.3) and I(a) of
Eq. (3.10) are plotted schematically along with the
straight line ga of Eq. (3.12) in Fig. 1. The stable
solutions of the simultaneous equations, which corre-
spond to a minimum of Fr(«), are indicated by dots.
The corresponding values of o and 7 indicate flux
quantization and persistent currents. The solutions
denoted by circles are unstable and can be ignored.

It is clear from Fig. 1 that there are no solutions of
the equations for values of the flux such that Imax/g<
| @|. In particular, there are no nonzero solutions at
all if Im2x/g<%. Since the self-inductance of a single
loop of radius R and thickness 27, is approximately

£N(4WR/CZ) In(—R/er) ) R>>7'0)

one obtains for the ratio I,m*x/q, appropriate for
kT/ep<KN7Y from Egs. (3.4) and (3.13),

Imex/g=(e2/mc?) (N/2nR) In(R/2r,).

Since the coefficient of the logarithm is much less
than unity for reasonable densities, the ratio I,m*x/q
is small compared to the value 3 so that the total free
energy exhibits no minimum except for vanishing
current. Because I™#x Eq. (3.11) is smaller than
I,max; this result is also obtained for higher temperatures.

The results are qualitatively different, however, if,
instead of a single ring, a cylinder, consisting of many
such rings stacked closely one upon the other, is con-
sidered. In this case one finds

I /q=(e*/2mc*) (N/R) (R/70).

This ratio can exceed the value § even for relatively

small systems, and the total free energy will, in general,
exhibit a considerable number of relative minima at
nonzero values of the current and flux. The values of
the latter, obtained from Egs. (3.3) and (3.12), are

a=S(a)/[1+(g/21,m) ]. (3.14)

In the thermodynamic limit, V, R—w, N/R, », con-
stant, the ratio I;m**/q increases without limit. The
total free energy exhibits an infinite number of relative
minima, which occur, according to Eq. (3.14), at
integer values of a. Thus this system exhibits thermo-
dynamically stable persistent currents and flux quan-
tization in units of /c/e for temperatures k7/ep<<N-1
which are, however, unrealistic for macroscopic systems.

For temperatures k7T/e>>N~1 the ratio Imex/g,
obtained from Eq. (3.11), is

Imex/q=(I,™x/q) (wNET/2er)
Xexp[ —n*NkT/16erC3(J)].

As NET/er>>1 by assumption and C3(J) is of order
unity, one will normally find /™*/q much less than
so that the total free energy will only exhibit a mini-
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mum for vanishing current. In particular this is the
case in the thermodynamic limit for any geometry
since I™2x/q tends exponentially towards zero for any
finite temperature with increasing N. In this limit
then, the one-dimensional system does not exhibit
thermodynamically stable persistent currents or flux
quantization.

4. RELATION BETWEEN SUPERCONDUCTING
PROPERTIES

In light of the above result, it is of interest to examine
the relations between the following three properties
generally associated with superconductivity:

(1) existence of ODLRO;
(2) existence of flux quantization in equilibrium;
(3) existence of persistent currents.

The relationships between these properties is such that
(2) follows from (1) and (3) from (2). The fact that
the existence of ODLRO implies the existence of flux
quantization has been established by Yang® and by
Bloch.'® However, the example of the one-dimensional
Fermi gas shows that the converse is not true. This
system cannot exhibit ODLRO as shown by Hohenberg?
but can, at extremely low temperatures and in particular
geometries, exhibit flux quantization as shown in Sec.
3. While it is obvious that the existence of flux quantiza-
tion in equilibrium implies the existence of persistent
currents, the converse is again not true, since it is
possible that currents can persist for long times for
reasons other than thermodynamic stability. This possi-
bility has been examined by Little,* and by Ambegoakar
and Langer.’
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APPENDIX: COMPLETENESS OF BOSON STATES

Consider the wave functions
Un(P,ve) =¢ [T TI" (ano™) ¥oeo(P,v,) (A1)

defined in Eq. (2.20). Provided that the boson occupa-
tion numbers NV, . are not too large, this state is within
the subspace S. In the spirit of the Tomonaga method,
we will assume that all statistically important states
are in the subspace S and will, with that assumption,
investigate the completeness of the states y,,. This will
be done by comparing the number of wave functions
Ym(P, v,), characterized by a given momentum P
and quantum numbers »,, with the number of the usual
wave functions ¢, (P, »,), specified by fermion particle
and hole occupation numbers, of the same momentum

19 F. Bloch, Phys. Rev. 137, A787 (1965).
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P and quantum numbers »,. As the set of wave functions
em(P, v;) are orthogonal and complete, the orthogonal
set of functions of Eq. (A1) will be complete if these
numbers are equal.

From Eq. (2.27) the momentum P of the state
Un (P, vg) is

P=hR[EN (n+v_s)+PystPo1—P_y—P_ ],

where
Pro=2 INy1,,

>0
and where the integers N.;. for all / comprise the
particular set of integers which characterize the state
¥m. Suppose that the four momenta, P, ,, P_, have the
particular values 7, s, ¢, u, so that

P=hREN (vitv_) +r+s—t—ul. (A2)

Then, if C(r) is defined as the number of configurations
of the integers NV4;,, such that

Z lN:Hm:r)

>0

r>0

and
C(r) =0, r<0

the number of different states for which P,,, P_,
have these same values is C(r) C(s) C(£) C(u). But the
positive values of 7, s, £, u are subject only to Eq. (A2),
so that the total number of states characterized by the
quantum numbers P, v, is given by

Zt C(r)C(s)C()C(u). (A3)
The generating function Gz(x) defined by
Ge(®)=2 C(na, |=x|<1 (A4)
>0

is well known from number theory where C(#) is desig-
nated as the number of unrestricted partitions of the
number 7. The generating function is

Ge(x)=]] (1—a). (A5)
r=I1
The number of states ¥, (P, v,) is now known in
principle. We will now count the fermion states in a
similar manner.
We define the fermion particle and hole occupation
numbers 7;,,, #;,,” appropriate to a state ¢, (P, »,) by

Mo =Ni_fq, l>f=nM+V,
=1-my,", [2120 (A6)
e=1—n1,,4", 0>1> —g=—ny+v,
=Nigga —g>1.

The value #;,, which is zero or 1, is the eigenvalue of
1,6 c1,» operating on the state ¢, (P, v,). The index m
stands for a particular set of values of #;, for all J.
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Equal numbers of particles and holes imply the relations

[:_0‘, nr.vl = § n——r.al,; (A7)
PIRIREED DY A (A8)

>0 720

It should be noted that the momenta of “holes”
cannot exceed values of the order 7y as seen from
Eq. (A6), so that a limit on the sums on the right side
of Egs. (A7) and (A8) should appear. However, again
taking the view that those states which are most prob-
able statistically will not have holes of such large
momenta, one may set these upper limits to infinity.
The momentum P of a state ¢, (P, v,) is given by

P=nRIN (ntv_1) +Pia+Pr o —P )/ —P_ 4],

where

P+,a, = Z lnl,a'l-*_ Z ln—-l,:r”

>0 120
and
P—.V, = Z ln—l.a',"_ Z lnl,v”-
>0 120

The counting proceeds as before. We define C'(r) as
the number of sets of numbers #;,’, #;,,”’, which are
zero or 1, such that Egs. (A7) and (A8) are satisfied,
and such that
D g+ Iny =,
1>0

>0

>0

and

C'(r)=0, 7<0. (A9)

Then the number of wave functions ¢, (P, v,) is given
by Eq. (A3) with all numbers C replaced by C’. There-
fore, if C(r) =C’(r), the number of boson and fermion
states are equal and the boson states are complete. We
will show that this is the case by constructing the
generating function
Gr(x)=2_ C'(r)w,
r20
and showing that it is identical to Gz (x). We construct
Gr(x) as follows: The number of sets of integers 7/,
for which the equation Zl>olnl,,’=t is satisfied, is
readily seen to be equal to the coefficient of #* in the
expansion of the function

gr' (%) =g (1+a1).

Similarly the number of sets of numbers #_;,,” for which

|z |<1 (A10)
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the equation Y ;eln_y,"” =g is satisfied is the coefficient
of x, in the expansion of

g (@) =1 (1+a).

$=0

Therefore the total number of sets of numbers 7;,/,
n_1,,'—such that Eq. (A9) is satisfied but not neces-
sarily Egs. (A7) and (A8)—is the coefficient of x”
in the expansion of gr'(x) gr' (x). The generating func-
tion Gr(x) is now seen to be given by

Gr(x) =(2m)! /2" do 11:11 [1+exp(ip) 2]

0

XII [1+exp(—ig)a].
8=0

The integration over ¢ selects only those terms in the
product with equal numbers of particle and hole con-
tributions so that Egs. (A7) and (A8), as well as
(A9), are satisfied. By multiplying the products to-
gether and using the fact that Gr(x) is real, the above
expression can be written

2r fes)
Gr(x) =71 / de cose[cose || (14-2a% cos2p+a2) 7.
0 =1
The integration is immediately accomplished on using
the identity

cose | [ (14-2x% cos2p+a2t)

=1
=Gp(x)x1/8 i 7@ cos(2s+1) o,
s=0

where

p(s) =3(s+2)%

and where Gg(x) is given in Eq. (AS). This identity is
derived by equating the definition of the second theta
function of Jacobi® 6.(¢, ¢) to its infinite product
representation, setting ¢=x«2 and rearranging. The
integration yields

Gr(x) =Gp(x).

This completes the proof that the set of functions
¥m (P, v,) are complete in the subspace S.

2 E, T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, Cambridge, England,
1963), 4th ed., pp. 464, 470, and 472.



