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The nonlocal damping of helicon waves propagating in the simple metals is discussed. An approximate
dispersion relation is presented which includes the effects of both normal collision damping and nonlocal
damping. Two types of experiments designed to measure the damping in sodium and potassium are described.
The first type involves measurements of the standing-wave resonances in thin-plate sodium samples. This
technique is useful in the regime ¢/ <5, where g is the helicon wave vector and / is the carrier mean free path.
The second type involves transmission experiments using both sodium and potassium. These experiments
span the range 4 ¢/ <30. The experimental results are in close agreement with the theoretical predictions

based on the free-electron model.

I. INTRODUCTION

HE nonlocal damping of plasma waves was first

studied by Landau in 1946'; since then, the dis-
cussion has been extended to other types of plasma
excitations.?2 We wish to report the observation of the
nonlocal damping of helicon waves in the alkali metals
at liquid-helium temperatures. Experiment and theory
are in close agreement and provide another example of
the use of solid-state plasmas to investigate phenomena
more commonly associated with gaseous plasmas.

In this paper the term nonlocal damping refers to the
collisionless attenuation due to the coherent interaction
between the wave and those carriers which are drifting
along the external magnetic field B, at velocities near
the phase velocity of the helicon wave. Since the
helicon phase velocity is much less than the Fermi
velocity (Vphase/ VrermiRz107%), only electrons very near
the belly of the Fermi surface contribute to the damp-
ing. This is in contrast to Doppler shifted cyclotron
resonance (DSCR) which involves electrons whose
velocity component along the external magnetic field
is near the Fermi velocity.? Furthermore, DSCR occurs
for helicon propagation in any direction relative to By,
while the type of nonlocal damping discussed here
exists only if the angle between the helicon wave vector
and B, is nonzero. An extensive bibliography of DSCR
as well as other topics related to helicon propagation is
given by Bowers and Steele.* The present discussion is
limited to the case of a spherical Fermi surface. The
theory of the damping for a nonspherical Fermi surface
has been developed by Walpole and McWhorter.5
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II. THEORY

A semiquantitative model of the trapping of particles
by longitudinal plasma waves has been given by Jack-
son.® His discussion can be easily adapted to the case
of helicon propagation in a collisionless plasma. This
model will be briefly outlined before the more formal
treatment is discussed. The fields of a helicon wave
propagating along the external magnetic field By are
essentially transverse to the direction of propagation.
Therefore, particles moving along B, do not experience
forces in the direction of their motion. However, if the
helicon is propagating at some nonzero angle ¢ to B
there are components of the helicon fields along By and
hence in the direction of the particle motion. These
fields give rise to forces which are able to trap particles
moving at a velocity near the phase velocity of the
wave. As pointed out by Buchsbaum and Platzman,” the
most important forces arise from the helicon’s magnetic
field. The component of the helicon’s magnetic field
along By alternately adds to and subtracts from the ex-
ternal field, hence the local magnetic field in the mate-
rial oscillates in magnitude as one moves along a line
parallel to By (such a line is, in fact, nearly a guiding
center for a charged particle in the material). There-
fore, as the particles drift along the field, they experi-
ence regions of alternately increasing and decreasing
magnetic field. These “ridges” in the magnetic field
act as magnetic mirrors which tend to restrict the
particle motion along the field. If a particle becomes
trapped by the wave, in general there is an exchange of
energy between the wave and the particle. Particles
which are initially moving along B, at a velocity less
than V,/cos¢ (V, is the helicon phase velocity) absorb
energy from the wave. More rapidly moving particles
deliver energy to the wave. Under conditions of thermal
equilibrium, there are more particles moving slower
than the wave, hence there is a net transfer of energy
to the particle system resulting in the attenuation of
the wave.

6 J. D. Jackson, J. Nucl. Energy Pt. C 1, 171 (1960).
( 7985)]. Buchsbaum and P. M. Platzman, Phys. Rev. 154, 395
1967).
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The magnitude of the damping can be found by
integrating the energy transfer as a function of particle
velocity over the distribution function for the particles.

This simple theory, which does not include ordinary
collisions, is discussed from a more formal point of view
by Kaner and Skobov.® Their result is essentially the
same as that obtained from the simple kinetic model. If
normal collisions are included, the theoretical analysis
becomes complicated because normal collisions destroy
the coherence between the particles and the wave. The
reduced coherence results in a decrease in the nonlocal
damping.

The nonlocal attenuation of helicon waves, including
the effects of collisions, can be treated formally by
deriving the helicon dispersion relation using the non-
local conductivity tensor.” One finds the following
approximate dispersion relation”0;
3r qVF

—Eli) 2co [1—{—1'( 1 — f(q.l)sin% ):I
©= Mo s WeTCOS 16 w, S(g:d)sing ) |
(1)

R is the Hall constant, ¢ the helicon wave vector, w,
the cyclotron frequency, 7 the reciprocal of the collision
frequency, and V the Fermi velocity. The second term
in the imaginary part of Eq. (1) represents the nonlocal
damping and is zero for propagation along By. The
function f(g.l) reflects the reduction in the nonlocal
damping due to collisions. For ¢,/=0, f is equal to
zero; in the absence of collisions f=1. The functional
form of f is"

f(x) = (16/37) { — (22) 7'+ F (x)
+[x/6H () JLG(x) — 11},

where
F(x) =2tan "0 — (x— tana) [ (4/2®)+ (2/x4) ]+ (2/3x),
G(x) =14 (3/2%) — (3/2x) [1+ (1/2?) Jtanx,
H(x) =1—(1/x)tan .

It is to be emphasized that Eq. (1) is only an approxi-
mate dispersion relation. A careful discussion of the
limits of its validity is given in Ref. 10.

In the next sections the experiments designed to
check Eq. (1) are described. Two different experi-
mental techniques were used. The first involved the
observation of the standing-wave modes of a thin
plate; in order to achieve wavelengths which are smaller
than the electron mean free path (¢/>1), one excites
harmonics of the fundamental resonance. The second

8 E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 45,
610 (1963) [English transl.: Soviet Phys.—JETP 18, 419 (1964) 1.

9 M. H. Cohen, M. J. Harrison, and A. W. Harrison, Phys.
Rev. 17, 937 (1960).

}‘10 .(Ii) R. Houck, Ph.D. thesis, Cornell University, 1967 (unpub-
lished).

11 The notation used here is similar to that of Platzman and
Buchsbaum.
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technique involved the transmission of helicon waves
through a thin plate; small wavelengths are achieved
in this case by increasing the frequency of the im-
pressed signal. Preliminary experiments have pre-
viously been described elsewhere.10:12-14

III. STANDING-WAVE EXPERIMENTS

Standing-wave helicon resonances can be excited in
samples of many geometries.'® These resonances depend
on the dimensions of the samples, and roughly corre-
spond to a half-integer number of helicon wavelengths
“fitting” the various dimensions of the sample. By
measuring the frequency and quality factors of these
resonances as a function of magnetic field, information
can be obtained about the Hall coefficient and resistivity
of the material. Although these dimensional resonances
are easy to observe in many geometries, an exact theory
of the mode structure is well established only for the
case of the infinife thin plate. However, in practice, the
resonances of a finite thin plate whose thickness is less
than about 109, of its width are well described by the
theory for the infinite thin plate.

The theoretical analysis of the mode structure of an
infinite thin plate was first discussed by Chambers and
Jones.'® Their theory predicts the following relations
between the amplitude % and quality factor Q of the
resonances:

Q=1(14)'",  u=RBi/p,

where R and p are the Hall coefficient and resistivity of
the bulk material.

Using the same approximations Penz! has extended
the Chambers and Jones theory to the case of an
arbitrary resistivity tensor. In the limit of high con-
ductivity (p12>>pn1) he finds

hoc Qe [(pr2par) %/ (pratpa2) ],

where ¢ is parallel to the (3) axis. This reduces to
It e { (wercosg) ~'+ (37/16) (qVr/w) f(¢.d) sin’p},  (2)

which is exactly the ratio between the real and im-
aginary parts of the dispersion relation, Eq. (1). Thus
the nonlocal part of the dispersion relation can be
studied by measuring the resonant amplitude as a
function of angle ¢. By observing the high-order
resonances (#>1), the dependence upon qup/w. and ¢

hoeu,

22 C, C. Grimes, Bull. Am. Phys. Soc. 11, 570 (1965).

17, R. Houck and R. Bowers, Bull. Am. Phys. Soc. 11, 256
(1965) ; Atomic Energy Commission Report No. NYO-2150-15
(unpublished).

( 14 (73) C. Grimes and A. Libchaber Bull. Am. Phys. Soc. 12, 771

1967).

B F. E. Rose, Ph.D. thesis, Cornell University, 1965 (unpub-
lished).

16 R, G. Chambers and B. K. Jones, Proc. Roy. Soc. (London)
A270, 417 (1962).

7P, A. Penz, Ph.D. thesis 1967 (unpublished and Materials
Science Center, Cornell University Report No. 440, 1966 (un-
published).
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can be checked. If a particular resonance is observed
for a variety of magnetic fields, the dependence upon
gvr/w. can be separated from the ¢ dependence. The
amplitude dependence of the resonances is discussed
in detail in a later section.

A. Experimental Technique

The standing-wave resonances were observed using
the conventional cross coil experiment in which the
thin-plate sample is surrounded by two orthogonal
coils. The resonances are excited by a constant-current
variable-frequency signal applied to one coil and appear
as a voltage induced in the second coil.!® The conven-
tional arrangement was modified to allow variation of
the angle between the sample normal and B,.

The signal generated in the pickup coil was typically
100 pV. It was amplified and the detected amplitude
was plotted as a function of excitation frequency on an
X-Y recorder. Both modulus and phase-sensitive
detection were used and yielded essentially the same
results.

All samples used in the standing-wave experiments
were pressed polycrystalline sodium plates. They were
10 mm on a side and ranged between 3 and 2 mm in
thickness. (Disk-shaped samples 10 mm in diameter
were also used.) The samples were prepared by pressing
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F16. 1. Standing-wave helicon resonances in the local limit as a
function of ¢. The local theory predicts a linear relation between
the resonant amplitude and resonant frequency. The straight line
is a line through the origin.

( B ) E. Rose, M. T. Taylor, and R. Bowers, Phys. Rev. 127, 1122
1962).
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Fic. 2. Standing-wave helicon resonances under conditions of
nonlocal conductivity. The straight line passes through the origin.
At 50 the resonant amplitude is less than that predicted by the
local theory. This extra decrease in amplitude is due to nonlocal
damping.

a block of oil covered sodium between two stainless
steel plates using “Saran Wrap” as a buffer between
the stainless steel and the sodium. After pressing, the
samples were cut to size with a razor blade.

The sodium had residual resistance ratios between
room temperature and 4.2°K of 5000 to 8000. It is
helpful to remember that the w,/By=1 for the purest
material if B, is measured in kG. The mean free path /
is approximately 0.1 mm.

B. Experimental Results

Figure 1 shows the dependence on ¢ of the n=1
resonance (one-half wavelength equals the sample
thickness) observed for a $X10X 10 mm sodium plate;
under these experimental conditions ¢/<1, so that
nonlocal effects can be neglected. Figure 2 shows
similar data for the »=35 resonance. For these reso-
nances ¢gi~4.5 and nonlocal effects are important.

For any angle ¢ the helicon wave vector is essentially
perpendicular to the sample face. This is a consequence
of the symmetry imposed by the boundaries of the
sample. Therefore,

q=nr/d,

where d is the sample thickness. # is an integer and is
equal to the number of half-wavelengths spanning d.
The corresponding resonant frequencies are given by

wr (1) = (RBy/ o) (nr/d)*cose.
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Fic. 3. Resonant frequency as a function of cos¢. According to
the local theory, the resonant frequency is proportional to cose.
The nonlocal correction to the resonant frequency is small and
varies slowly with ¢. The resonant frequencies for two resonances
shown very nearly fit the expected cos¢ dependence.

Figure 3 shows a plot of wg as a function of ¢ for two
resonances, the #=1 resonance of Fig. 1 and the n=35
resonance of Fig. 2. It is evident that the resonant
frequencies have an accurate cos ¢ dependence in both
cases. The resonant peaks of the »=3 resonance have a
cos ¢ dependence, even though nonlocal conditions
clearly exist (qvr/w,=0.2, g=4.5). This is in agreement
with theory; the nonlocal corrections to the real part of
the dispersion relation are small for qup/w.<0.5. The
first nonzero correction to the real part of the dispersion
relation varies as (qur/w.)? and is only weakly depen-
dent on ¢.° (For ¢vp/w,=0.2 this correction is of the
order of 0.8%.)

If there are no nonlocal corrections to the dispersion
relation, Eq. (2) predicts

B, € UCOSP = w,TCOSP.

Notice also that there is a linear relation between
wr(n) and the resonant amplitude only if nonlocal
damping is absent.

hz & wCOSP < wp.

In Fig. 1 it is clear that this linear relationship is
obeyed, indicating that the nonlocal correction to the
amplitude is small for the =1 resonance.

The amplitudes of the resonances in Fig. 2 are seen
to deviate markedly from the straight line, indicating
that there is more damping at ¢>0 than would be
predicted by a simple extrapolation of the collision
damping observed at ¢=0. This additional attenuation
is due to nonlocal damping.
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A direct measure of the nonlocal damping is given by

A which is the difference between the peak height at

angle ¢ and the height of the straight line (see Fig. 2).

Equation (2) gives the following relation between A

and f(g.0):

A/hy | 4= (37/16) glf (¢.l) sin*pcose,

where A/h;, is evaluated at angle ¢. The angular de-
pendence of A/A; for the resonances of Fig. 2 is shown
in Fig. 4. If f(¢.l) were independent of ¢, A/ky would
depend linearly upon sin%» cos¢, the slope being
determined by ¢l. However, as ¢ increases, ¢,/ and f
decrease. For the data of Fig. 2 the theory predicts that
f(4.5 cos ¢) will decrease by approximately 8% between
¢=0 and ¢=30°. The experimental points agree well
with the solid curve which is the theoretical curve for
gl=4.5. The free-electron parameters of sodium were
used for the data reduction®

Kr=0.923 X101 m™
| R| =23.6X1071C/m?;
hence,
qup/w~1.1112(10/B)3%  for

(where » is measured in MHz and B, is in kG). ¢/ is
given by

qur/w.<0.5

1= (qup/we) wer = (qup/we) @,

where # is determined from the Q of the resonance.
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Fi1c. 4. The deviation of the resonant amplitude from the pre-
diction of the simple theory. The data plotted are from the curves
shown in Fig. 2. The theoretical curve assumes gl =4.5.
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In all cases the Q used to calculate ¢/ for a particular
resonance is the quality factor of that resonance at
¢=0.

As shown above, it is possible to obtain an experi-
mental value for ¢/ f(¢.l) from plots of the type shown
in Fig. 2. Thus one can compare the experimentally
measured nonlocal damping with ¢/ determined from
the local characteristics [Q(¢=0)] of the resonance
and the constants of the material (Kz and | R]|).
Figure 5 shows a plot of ¢/f(¢.l) as a function of ¢./
for the standing-wave experiments. The solid curve is
the prediction of the detailed theory which includes the
effects of ordinary collisions. The dashed line is the
prediction of the simple theory. The results closely agree
with the predictions of the free-electron theory for
¢l<5. However, the method cannot be used with
confidence for larger ¢/ because the high-order reso-
nances required to reach ¢/>5 begin to overlap causing
complicated shifts of the zero line. Of course, thinner
samples could be used in an attempt to study the large
gl region using the low-order resonances (n=1, 3, 5)
which are well separated. However, under these
circumstances, the electron mean free path is of the
order of the sample thickness and complications due to
size effects become important. It is possible to circum-
vent this problem and study the high ¢/ regime by
making use of propagation experiments. The results of
these experiments are described in the next section.

IV. TRANSMISSION EXPERIMENTS

As pointed out in the last section, the standing-wave
resonance method is not useful when ¢/>35 because of
the complicated overlapping of neighboring resonances.
In order to investigate the characteristics of the non-
local damping at larger ¢/, a series of transmission ex-
periments was undertaken. The magnitude of ¢ is
increased by raising the frequency of the impressed

Observed Non-Local
Damping as o
Function of q,£

Q.2 f (q,2)

qt

T16. 5. Nonlocal damping as a function of ¢.l. The coefficient of
the sin%p term in the damping is plotted as a function of ¢.l. The
straightfline is the prediction of the Kaner and Skobov theory.
The curve is the result of the more detailed kinetic theory. The
experimental points represent the results of measurements on
different sodium samples.
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F16. 6. The transmission fringe pattern. The iringe pattern
results from the interference between the signal which ‘“leaks”
around the sample and the signal due to the transmitted helicon
wave. The upper curve corresponds to ¢=0. The lower curve,
which has been displaced for clarity, corresponds to ¢=16.4°
The reduced amplitude of the lower curve is due to nonlocal
damping.

signal. In the present experiment, the amplitude of
the transmitted signal is measured as the angle between
g and B, is varied. In this respect, these experiments
differ from previous measurements which were con-
cerned with the frequency-field relation of changes in
the transmitted signal.

A. Experimental Technique

In the transmission experiments, the excitation and
pick coils are on either side of the thin-plate sample and
are carefully shielded from one another to reduce direct
coupling (leakage).® Provision was made to adjust the
angle between the sample normal and By. The total
voltage appearing across the receiver coil is the sum of
contributions from the helicon signal and the leakage
signal. The interference of these signals gives rise to a
fringe pattern. Figure 6 shows a photocopy of the
fringe pattern observed for a 2)X12X14 mm sodium
plate at 4.0 MHz. The upper and lower curves cor-
respond to ¢ =0 and ¢=16.4°, respectively. The curves
have been displaced vertically for clarity.

The thickness of the sample d, excitation frequency
v, and magnetic field By are chosen such that the helicon
signal is strongly attenuated by a single traversal of the

¥ C, C. Grimes and S. J. Buchsbaum, Phys. Rev. Letters 12,
357 (1964).
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sample. Therefore the contribution from multiple re-
flections of the helicon wave inside the sample can be
ignored compared to the direct transmission.

The contribution due to the transmitted helicon wave

is of the form
As=assin(wi+6).

Both the amplitude and phase of this component
depend upon the sample thickness and the properties
of the helicon wave.

The direct pickup or leakage signal is independent of
changes in B, and ¢ and is of the form

A= a;sinwt.
The detection of the sum of these voltages gives
Amms® (014 a2c080) {143 as/ (a1+azcos8) -+ - 1.

If 412 10a,, then, to a good approximation, the ampli-
tude of the envelope of the detected signal is pro-
portional to the amplitude of the transmitted helicon
signal @,. The phase of the modulation is determined by
the phase delay introduced by the helicon.

Assuming a plane wave normally incident on an
infinite thin lossy dielectric slab, the transmitted
amplitude @, is given by

as=aoT%exp(—qid).

¢; is the imaginary part of ¢, d is the thickness of the
slab, and T is the transmission coefficient at the two
surfaces. From Eq. (1) this becomes

ay=aoT?exp{—3%(d/\) [ (1/cos**¢)
X (wer) 74 (qur/we) f(g:l) (sin®p/cosg) J}.  (3)

For a refractive index n>>1, one finds 7"« 5'/2, For the
helicon case at constant frequency this reduces to

T2« cos'/%p.

However, the angular dependence of the transmitted
amplitude is dominated by the angular dependence of
g; in the exponent. The angular dependence of I%
seldom effects the value of ¢;d derived from the ob-
served amplitude by more than 1%,

B. Data Analysis

Almost all of the pertinent information can be ob-
tained from two curves of the type shown in Fig. 6.
Only one additional measurement, an independent
determination of the collision damping, is necessary.

The analysis of the data can be divided into two
steps: the determination of the sample thickness and
angle ¢ from the over-all aspects of the fringe pattern
and the analysis of the angle and field dependence of
the damping. These two parts are discussed separately.

1. Over-All Aspects of the Fringe Pattern

Consider first the curve corresponding to ¢=0. The
spacing between the various peaks is not constant but is

J. R. HOUCK AND R.
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in fact a function of the number of helicon wavelengths
spanning the sample. Successive peaks in the direction
of decreasing field correspond to d/A=N increasing
by 1. The fields of two adjacent peaks are related by

(N+1)/N=Byx/Bys1.

In this way one can directly determine d/A, the quantity
entering into Eq. (3). Thus, no mechanical measure-
ment of the sample thickness is necessary.

Returning to Fig. 6, notice also that the peaks shift
in position as the sample is rotated. In fact, for the data
shown, the shift in the phase was more than 360°. As
¢ was increased from zero, peak A4 shifted uniformly to
A’. This shift in position is proportional to cos ¢ and
allows one to accurately determine ¢. The value of ¢
derived in this way typically agrees with the mechan-
ically determined value to within 0.3°.

2. The Dependence of the Damping on Angle
and Magnetic Field

From the ratio of the envelopes of the curves of the
type shown in Fig. 6, the increase in damping at ¢70
can be determined. If R is the ratio of the envelope
amplitudes at some field By, then

R=(To/T)%xp[—3(d/\) { (1—1/cos**¢)
X (wer) 7+ (qor/we) f(q:) (sin’¢p) /cosp} ], (4)

where g and d/\ on the right side refer to their respective
values at ¢=0. The dependence of Eq. (4) on ¢, B, ¢,
and 7 is rather involved and will be discussed in some
detail.

(a) Angular Dependence. A small angle expansion of
the angular-dependent functions in Eq. (4) yields

1= (1/cost) = 3¢+ -+,
3 (sin'g/cos)p =3 gt .

The leading term in both expansions involves ¢?
and the coefficients of ¢* terms are of similar magnitude.
Even at ¢=20°, the functions differ by only 2%, For
this reason it is nearly impossible to separate the local
and nonlocal terms of Eq. (4) on the basis of their
angular dependence. However, the collision term can be
determined independently by using a sufficiently low
excitation frequency (and ¢=0). At reduced fre-
quency and the highest magnetic fields, clearly defined
standing-wave resonances were observed. From these
resonances () and hence w.r can be determined. In this
way the attenuation due to collision processes can be
measured without the necessity of making an absolute
determination of the transmitted power. The value of
wer obtained is used in the calculation of ¢/ as described
earlier.

Figure 7 shows a plot of log R as a function of
sin%p/cos¢. The measurements were made at 2.0 MHz
with By=36.7 kG. It is evident that the increase in
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damping due to rotation agrees well with the angular
dependence predicted by the theory.

(b) Magnetic Field Dependence. The magnetic field
enters the nonlocal part of Eq. (4) through w. and ¢

in the form
(¢%/we)f(g:t) .

For modest variations in B and for ¢/> 10, the variation
of f(g.l) can be ignored. Using the local dispersion
relation and assuming constant frequency one has

¢*/wo<1/B?,
while the damping due to collision varies as
g/wex1/B32,

Thus for moderate variations in B (30-50kG) the local
and nonlocal terms scale by roughly the same amount.
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F16. 7. Relative amplitude of transmitted signal as a function
of angle. The log of the ratio of the fringe envelopes at By=36.7kG
is plotted as a function of sin’$/cos¢. The nonlocal theory predicts
a nearly linear relationship for ¢./>>1.

The important point to remember is that while both the
angular and field dependence of the two terms are
similar, the increase in attenuation upon rotation is
roughly 10 times too large to be explained solely on the
basis of collision damping. A plot of log R as a function
of 1/B%is shown in Fig. 8. The points represent measure-
ments made at various frequencies using a 2-mm sodium
plate. The points very nearly fit a straight line through
the origin, as predicted by the free-electron theory.
From the slope of curves similar to those in Fig. 8, an
experimental value for the exponent in Eq. (4) can be
determined. The effects of collision damping are sub-
tracted out; so that the remainder is a measure of the
nonlocal damping. The ratio of the observed damping
divided by the damping predicted by the simple theory
[ f(g:}) =1] is shown as a function of ¢, in Fig. 9. The
open circles are the results of transmission experiments
using sodium. The solid circles are the standing-wave
results of Fig. 5. The triangles represent the results of
measurements made using potassium samples, The
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F1c 8. Nonlocal damping as a function of magnetic field. The
log of the ratio of the fringe envelopes is plotted as a function of
1/B? for $=16.4°. The free-electron theory predicts a linear
dependence.

value of qur/w. for potassium differs from that of sodium
by nearly a factor of 2 under the same experimental
conditions. The free-electron parameters of potassium
are?

Kpr (potassium) =0.746< 10"*m™!,

R (potassium) = —44.5X 10""'m3/C.
Therefore
qvr/w. (potassium) =»'/2(10/B,)3/20.654,

where » is the excitation frequency in MHz and By is
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F16. 9. Collected results of the nonlocal damping studies. The
observed nonlocal damping is plotted as a function of ¢l. The
curve is the prediction of the free-electron theory.
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measured in kG. (The parameters for sodium were
given in Sec. ITI.)

The transmission measurements were made at
frequencies between 1.0 and 8.0 MHz at fields between
15 and 50 kG. In the standing-wave experiments the
frequency ranged between 0.5 and 50 kHz while the
field was varied between 4.3 and 16.7 kG. Thus Fig. 9
shows good agreement between theory and experiment
over a wide range of experimental conditions.?

V. CONCLUSIONS

In summary, experimental results obtained with
sodium and potassium closely agree with the pre-
dictions of the free-electron theory over a wide range of
experimental conditions. The form of the theoretical
correction to the nonlocal damping due to collision
processes agree well with experiment.

20 The nonlocal damping of helicon waves has been measured
using pulse techniques. The results of the pulsed experiments are
also in close agreement with the free-electron theory.
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The high degree of agreement is particularly gratify-
ing since the experiment gives a check on a rather
involved transport-theory calculation in which there
are no adjustable parameters. The Fermi momentum is
the only parameter which cannot be measured directly
by the experiments. However, the free-electron value
which we have used agrees with the value measured by
Shoenberg and Stiles? using the de Haas—van Alphen
effect within 0.59%,.!
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A one-dimensional model of interacting electrons is studied to determine whether such a system, in thermal
equilibrium, can exhibit flux quantization. The free energy and current of the system are calculated and
shown to be periodic functions of the flux enclosed in a ring-shaped sample with period %¢/e. The Maxwell
equations provide a second relation between the current and flux. It is found that at finite temperatures, the
equations for the current I and the flux ®5 have only the trivial solutionZ =®5 =0 in the limit of macroscopic
systems. Therefore, there is no flux quantization. The free energy is calculated by a generalization of the
method of Tomonaga. This method describes the Fermi system in terms of an equivalent set of bosons which
represent the collective modes of the Fermi gas. The major results of the generalization are the appearance of
trilinear terms in the equivalent boson Hamiltonian and effects of a vector potential.

1. INTRODUCTION

INCE the suggestion by Little! that properly

synthesized long organic polymers might be super-
conducting at room temperatures, there has been
renewed interest in the properties of one-dimensional
electron systems. Recently, Hohenberg? has rigorously
proved that a one-dimensional system cannot exhibit
off-diagonal long-range order (ODLRO),? a property
characteristic of superconductors in three dimensions.
However, the absence of ODLRO does not imply the
absence of other properties characteristic of super-
conductivity such as flux quantization and persistent
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currents as discussed in Sec. 4. The possibility of the
existence of flux quantization and persistent currents
in nonequilibrium situations has been investigated by
Little,* and Ambegaokar and Langer.’

It is the purpose of this paper to examine a one-
dimensional model of interacting electrons to determine
whether the system can exhibit flux quantization in
equilibrium.® The analysis is directed to the calculation
of the free energy of the system (Sec. 3), which is shown

4+W. A. Little, Phys. Rev. 156, 396 (1967).

5J. S. Langer and V. Ambegaokar, Phys. Rev. (to be pub-
lished).

6 Whereas “one-dimensional” means for Refs. 4 and 5 that the
transverse dimensions of the system are small compared to the
temperature-dependent correlation length and penetration depth,
for this paper it will be taken to mean that those states which
correspond to transverse electron motion contribute negligibly to
the partition function. In general, this imposes the more severe
condition that the transverse extension be smaller or of the order
of the Fermi wavelength,



