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The superconducting energy gap and the transition temperature of a small grain of superconductor are
larger than the corresponding quantities for bulk material. This results because the small dimensions cause
a discrete, rather than continuous, spectrum of one-electron energy levels. This effect becomes important
when the volume of the grain is comparable with, or smaller than, the characteristic volume ) g~&0, where
Xg is the Fermi wavelength and )0 the T=0 Pippard coherence distance of the bulk material. As grain size
is lowered, the ratio of T=O energy gap to Boltzmann's constant times transition temperature gradually
increases from the weak-coupling limit (3.528) to the strong-coupling limit (4.0) .

I. INTRODUCTION
" 'T has been found experimentally' ' that certain
J „superconductors, when composed of grains of a
suitable size (in the range 50—500 A), have transition
temperatures T, appreciably higher than that of the
corresponding bulk material. One explanation for this
has been in terms of Ginzburg's theory' of surface-
enhanced superconductivity. The Brookhaven group'
postulated that this was due to oxides at the surfaces
of the grains. The RCA group4 has pointed out that
the earlier work" suggests that oxide is not necessary
to get enhancement, only the presence of grain bound-
aries. The writer~ has shown that Josephson tunneling'
between adjacent grains can contribute to the effective
electron-electron attraction, and thus may cause
enhancement.

In this paper, we wish to consider the contribution
of size of grain to the enhancement of superconductivity.
Thus we shall consider only an individual grain, and
answer the question of how the transition temperature
and superconducting energy gap change as the size of
the grain is lowered. This problem has already been
considered by Abeles et al, ,

' although no details have
been published. In agreement with the present paper,
they concluded that the size effect could lead to
enhancement of the magnitude observed. Nevertheless,
they rejected the size effect, for reasons which do not
seem compelling to the writer. '

' W. Buckel and R. Hilsch, Z. Physik 138, 109 (1954).' I. S. Khukhareva, Zh. Eksperim. i Teor. Fiz. 43, 11/3 (1962)
LEnglish transl. : Soviet Phys. —JETP 16, 828 (1963}j.

'O. F. Kammerer and M. Strongin, Phys. Letters 17, 224
(1965);M. Strongin, A. Paskin, O. F.Kammerer, and M. Garber,
Phys. Rev. Letters 14, 362 (1965).

4 B.Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Letters
17) 632 (1966).

'R. W. Cohen, B. Abeles, and G. S. Weibarth, Phys. Rev.
I.etters, 18, 336 (1967); J. H. P. Watson, Phys. Rev. 148, 223
(1966).

6 V. L. Ginzburg, Phys. Letters 13, 101 (1964) .
7 R. H. Parmenter, Phys. Rev. 154, 353 (1967}.
8 B.D. Josephson, Advan. Phys. 14, 419 (1965).
'Abeles et al. rejected the model since it led to normal-state

resistivity three orders of magnitude larger than that observed.
In fact, pinholes or bridges in the barriers separating adjacent
grains can drastically lower the resistivity without appreciably
modifying the isolation of an individual grain (in terms of the
quantization of the one-electron levels of the grain„which, as we
shall see, is what can cause enhancement of superconductivity in
isolated grains) .
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It is instructive to consider the analogous problem
of enhancement in a geometrically perfect thin 61m.
Blatt and Thompson" have shown that the super-
conducting energy gap is an oscillatory function of
61m thickness, the period being the Fermi wavelength
Xg. In addition, there is a steady increase of energy gap
with decreasing 61m thickness. One would expect the
oscillatory effect to be washed out as one went to a
more realistic model of the film, where the thickness
might vary from place to place, over many multiples
of A&. The steady increase with decreasing mean Qlm
thickness would be expected to persist, however. This
is just the behavior we will hnd for the superconducting
grain, after having deliberately averaged out the oscil-
latory behavior associated with changes of grain size

by a Fermi wavelength.
Because of the small size of the superconductor,

integrals over k space appearing in the BCS theory of
superconductivity" become discrete sums over k space
in the present theory. These sums are evaluated by
means of the Poisson sum formula. "This replacement
of integrals by sums makes the weak-coupling theory
of superconductivity tend toward the strong-coupling
limit. " The quantity (2ep/k&T, ), ratio of the energy
gap at T'=0 to Boltzmann's constant times the tran-
sition temperature, increases from the weak-coupling
value of 3.528 toward the strong-coupling value of 4.
Although we will follow BCS in treating the effective
electron-electron interaction as instantaneous and non-
local, it should be borne in mind that this approxi-
mation serves only to simulate what is really a local
but time-retarded interaction. For either form of inter-
action, one ends up with integrations over energy
(rather than integrations over k space) . The size effect
in superconductivity manifests itself by converting a

J. M. Blatt and C. J. Thompson, Phys. Rev. Letters 10, 332
{1963);C. J. Thompson and J. M. Blatt, Phys. Letters 5, 6
(1963}."J.Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957)."See, e.g., R. Courant and D. Hilbert, Methods of 3IIathematical
Physics (Interscience Publishers, Inc. , New York, 1953), Vol. I,
p. /7.

"D. J. Thouless, Phys. Rev. 117, 1256 (1960). It should be
emphasized that, by "strong-coupling limit, " here we mean the
case where the one-electron effective mass becomes very large, not
the limit where the electron-phonon interaction becomes large
(also referred to in the literature by the same phrase}.
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coetimuols one-electron energy spectrum into a discrete
spectrum. This means, however, that the normal-state
mean free path for inelastic scattering must be large
compared with the grain size, otherwise the discrete
one-electron spectrum will be broadened until it looks
continuous like that of a bulk sample. "It is in super-
conductors with a strong electron-phonon interaction
that this restriction will be most severe.

II. MATHEMATICAL ANALYSIS

In the interest of simplicity of exposition, we choose
the shape of our superconducting grain to be cubic,
with cube edge c. The 6nal results to be obtained are
independent of this assumption. We wish to evaluate
the free energy of our superconducting grain in a
manner analogous to that of the BCS theory. In so
doing, we will encounter sums of the form gr1o(k).
In every case, q (k) will turn out to be a spherically
symmetric function of k that is appreciable in size
only in the immediate vicinity of the Fermi surface in
k space. The sum is over all values of k satisfying
periodic boundary conditions on the surface of the
grain. Thus there is a volume (2~/a)' of k space for
each such allowed k vector. We shall rewrite such sums
as

gp(k) = (a/2s. )sg p(k) exp[ —i(v k)ajd'k, (1)

where
V = 1gPg+ lvPy+ 1gPz, (2)

i„being a unit vector along the pth coordinate axis,
and v„being any integer, positive, negative, or zero.
Equation (1) can be considered a threefold application
of the Poisson sum formula. "Alternatively, it can be
thought of as a transformation from a sum over direct-
lattice points vu to the corresponding sum over recip-
rocal-lattice points k. (This latter point of view allows
us to handle an arbitrarily shaped grain. ) In the limit
of a macroscopic sized grain (a~~), all the terms in
the v sum are negligible except one, that for v=O. In
other words, sums can be replaced by corresponding
integrals, as was done in the BCS theory. As grain
size is reduced, the finite-v terms in Eq. (1) represent
the correction to the BCS result.

We have already mentioned the fact that p(k) is
appreciable in size only very close to the Fermi surface.
This has the following important consequence. Each
term on the right-hand side of (1) will be proportional
to a sinusoidal function of vkga, where v is the magni-
tude of the vector v. Aside from the v=0 term, all
terms will have sinusoidal phases that change very
rapidly as a function of grain size u. For example, for
v = 1 the phase changes by 2m as the grain size changes
by the Fermi wavelength Xi,» ——2z./k&. Since P,~ is a few

"Note that the mean free path for elastic scattering (due to
boundary scattering, for example) need not be large, since such
scattering doesn't broaden the energy spectrum.

Angstroms, whereas we shall be concerned with values
of a tens or hundreds of Angstroms, it seems reasonable
to assume that this very rapid variation with change in
size is an artifact of the perfectly geometric (here cubic)
grain, and that with a more realistically (and less sym-
metrically) shaped grain such variations are washed
out. We therefore average the various k sums, as they
appear in the free energy density associated with the
superconducting grain, with respect to this rapid change
in phase.

Writing F for this density, we have, following BCS
notation,

a'P =4 Q es[ fj,+he(1 —2')]
k)kp

—ZV»'[h~(1 —hi)hr'(1 he') ji"(1—2')(1—2f~ )
kk~

+2kii T+P fs lnfk+ (1—fs) ln(1 fq)]— (3)

= (~r/2~) ' «k[ fk+hk(1 2f~) ]d'k,—(4)

(2kiiTQ[ f~ lnfi+ (1—fs) ln(1 —f~) ])A

= (a/2s)'2ksT [fs 1nfe+(1 —fq) ln(1 —fs)]d'k (5).
As far the kinetic energy and entropy are concerned,
there is no change from the BCS case (no size effect),
the right-hand sides of (4) and (5), when divided by
a', being exactly what was used in the BCS expression
for F.

"The BCS form of free energy, as given in Eq. (3), relies on
many-electron wave functions which are not eigenfunctions of
total electron number. This might conceivably lead to difBculties
with small systems having few conduction electrons. The above
form of free energy can be obtained from a theory using wave
functions which are eigenfunctions of electron number /see K.
Nakaraura, Progr. Theoret. Phys. (Kyoto) 21, 713 (1959)g.
A crucial step in such a theory is the saddle-point method of
analytically summing certain cluster expansions. A detailed exam-
ination of the assumptions made in carrying out the saddle-point
method /see R. H. Parmenter, Phys. Rev. 132, 2490 (1963)g
shows that the method breaks down when there are only a few one-
electron energy levels in the energy range over which the pairing
interaction operates.

On. the left-hand side of (3), we have a'P, rather than
F alone, since we are defining F as a free energy density,
while the right-hand side is the free energy of a grain.
The 6rst sum on the right-hand side is the one-electron
(or kinetic) energy, the second sum is the attractive
electron-electron interaction energy, the third sum is
the negative of the entropy times temperature. ' With
suitable choices of q (k), the first and third sums take
on the form of pk1o(k) and therefore can be rewritten
as v sums in the manner of Eq. (1).However, as soon
as we average over phases, all terms except v=0 dis-
appear, and

(4 Q ee[fr+4(1 —2') ])A,
k&kp
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In contrast, there is a size effect in the interaction
energy, as a consequence of the fact that here there is
a Prodmci of two k sums. We invoke the BCS approxi-
mation for the interaction constant

v» v/——re, loki Iok I &h,
otherwise. (6)

The factor (2 ' in V/ao results from normalization of
the one-electron orbitals in the cube of volume a'.
Thus V is the corresponding quantity in a sample of
unit volume, in agreement with BCS notation. The
interaction energy can now be written

—QVkk Lhk(1 —hk) hk (1—hk ) ]'"(1—2fk) (1—2fk )
kkI

= —o'VI:Zx(ov) 5', (7)

is an even function of ok, when we multiply (11) by (12)
and integrate with respect to ~y, only the jp term on
the right-hand side of (11) will contribute. Thus

sink prt fLCO &jr i
x(r) =

I &v(0) dok cos
her ) 0 fi,~p)

X L«k/(ok2+«k2) 2125 tanhL2'p(ok2+«k2) F12]. (13)
We see that x(vo) contains the factor

sin(kvva) = sin(22rv(2/Xv),

which oscillates rapidly as a function of a, since c))Xp.
As with the other terms in the free energy, we now
average (7) with respect to these rapid oscillations,
with the result

(Q Vkk Lhk(1 —hk) hk (1—hk ) ]'('(1—2fk) (1—2fk ) )A.

where we define

~(r) =(2~)- D, (1—h.)] (1—2f,)
)ek[ &4)

X exp( —ik r)d'k. (8)

y(r) is the antiparallel-spin electron-electron correla-
tion function of the BCS theory. In other words, the
joint probability (per unit volume squared) that an
electron of spin-up occurs at r and an electron of
spin-down at r' is"

t ~(r r') =(~o/2)'+
I x(r —r') I', (~)

Np being the conduction-electron density. Since

Lhk(1 —hP) ]"'(1—2fI,)

is a spherically symmetric function of k, it folIows that
y(r) is a spherically symmetric function of r.

Since the integrand of (8) is restricted to the region
of k space close to the Fermi surface, we can write the
one-electron energy ej„measured with respect to the
Fermi energy, as

ok- Av&(k kv—), for —
I

k kv
I
«kv. —(10)

Integrating, in (8), the factor (22r) 'd'k exp( —ilr r)
over angles in k space, we get

42r(22r)
—'jo(kr) k'dk

=I jo(kvr) cos(okr/fkvv) —jk(kvr) sin(okr/hvv) 51V(0)dok,

where jp and jj are the spherical Bessel functions, and
iV(0) is the density of one-electron states per unit
energy, for a given spin, per unit volume of super-
conductor. Since

Lhk (1—hk) ]'I'(1—2fk)

=I «k/2(ok2+«k2)'125 tanhI -2'p(ok'+«) ~ ] (12)
'6 See, e.g., L. N. Cooper, R. L. Mills, and A M. Sessler, Phys.

Rev. 114, 1377 (1959).

=ao(22r) —' d'kd'k' VA,p""
),p), ),A:r) &fi„

XLhk(1 —hk) hk (1—hk ) 5'1'(1—2fk) (1—2fk ), (14)

where we have defined the eGective interaction

CpVC EyiV 0
Vkk""=—V 1+g', cos cos . (15)

(kvv(2) FNv Ovv

The prime on the v sum indicates that the v =0 term is
missing. The scalar v in the summand is the magnitude
of the vector v over which we are summing. This sum
represents the correction to the BCS result. We see
that the size effect modifies the free energy density
only in that it influences the effective interaction V&A,"".

We choose the variational parameter

hk—= 2L1—ok(ok'+«k') "'] (16)

such that it minimizes F. This leads to the integral
equation

«k=iV(0) V»"« tanhl=2'p(. k, +«.. ) I ]
X I «ki/(oki +«ki ) ]doki (17).

We wish to solve (17) for «k at k=kv(ok=0). As an
approximation, we shall treat epI„- as independent of k'

in the integrand on the right-hand side of (17), approxi-
mating ~p& by its value at the Fermi surface. Thus we
get

fLrk2

L7lT(0) V]—2= tanhL22P(22+o 2) (i2]
(o2+ 2 2) I/2

"-(. )

X tanhL22P(o +o ')]I d /( +o«o)'I'5 (18)

Because of the cosine factor, large values of ~ do not
contribute appreciably to the second integral, so that
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we have made no appreciable error in replacing ~, the
correct upper limit, by inanity.

It can be shown that when a is comparable with, or
greater than, the Pippard coherence distance $3, then
the primed v series of (18) converges very rapidly.
Because of the common factor

(kva)
—'= (Xv/22ra)2,

however, the total sum is negligibly small, compared
with [$(0)V] ' at such values of a. It is only when a
is made much smaller than p3 (but still much larger
than Xv) that the primed v sum becomes comparable
with the other terms of (18). Under such conditions,
the series converges, but very slowly. We therefore
replace g„' by the corresponding integral f42rv2dv.

Strictly speaking, we should set the lower limit of this
integral so that the integration volume does not
include a sphere of unit volume centered on the origin.
This corresponds to the v=0 term not being present
in g„'. However, it can be checked that negligible
error is made by setting the lower limit of f42rv2dv

equal to zero. Thus

%to d6
pT (0) V]—1 —

tanh[ 12p (22+ 232) 1/2]
(22+2 2) 1/2
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FIG. 1. (7 jT, ) versus (u!I) (see Ref. 17).

——2ko exp[ —1/X(0) V]. (23)

superconductor. Here we are using the terminology ep

to denote the BCS value of ep at T=O,

de SPY

(22+ ')'" hi/
cos

(19)X tanhp22p(2+2 )'/ ]
where

u 1n/2 = -222r (L,//3) 3,

Ep tp~

Now (20) can be rewritten as

(24)

Equation (19) is the desired final form of integral
equation that allows us to determine the dependence
of energy gap 2' and transition temperature T, upon
grain size a. We are especially fortunate in being able
to evaluate analytically the necessary integrals in the
two limiting cases T=O and T=T,. At T=O, we have

Sco (Pp 2

[1V(0) V] '= +2r 'i—
(22+ 232) 1/2

k /2

dv cos

represents the enhancement factor of the energy gap
at T=O.

At T=T. where 23 ——0, Eq. (19) becomes

Flr3/

[/V(0) V] '= —tanh(-', P,2)+2r '(Xv//2)2
p

dc eve
X dv —cos tanh(-', P,e)

0 e SSP

= ln(-', P,5o)) +y+ in(4/2r) +2r—'(11v/a) '

dv ln coth —,'m.

}n ~ I dpi' = ln(22P, ka)) +y+ ln(4/2r) +2r—'(Xv//3) '

c~VS' ~ ~+y ~y
(26)

I.et us define a characteristic length

where y=0.5772 is Euler's constant. Let

r2' = (T /T, ) (27)

where
I—(y 2p )1/3

&3
——(Svv/2r33„)

(21) represent the enhancement factor of the transition
temperature T. over that of the bulk superconductor
T, . Equation (26) can be rewritten as

is the T=O Pippard coherence distance for the bulk n' ln/2' = -'22r (I.//2) 3(C/4), (28)
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FIG. 2. (2eo/ksT, ) versus (T,/T, „).

where
C=—(2eo /kiiT, ) =2rre 'r=3.528 (29)

is the BCS value of the ratio of energy gap at T=0 to
Boltzmann's constant times transition temperature.

Note that (28) would be identical with (24) if it
were not for the highly significant factor C/4. The
energy gap at T=O increases slightly more rapidly
than does the transition temperature as the grain size
is lowered. Whereas at very large a, the energy-gap-
transition-temperature ratio is 3.528, at small a it
increases toward 4. This is a direct consequence of
Eqs. (24) and (28). But an energy-gap —transition-
temperature ratio of 4 is characteristic of a strong-
coupling superconductor. "The process of reducing the
grain size in effect converts a weak-coupling super-
conductor into a strong-coupling superconductor.

When plotting in reduced coordinates the curves of
energy gap versus temperature, one finds that the
weak-coupling and strong-coupling cases lead to nearly
identical curves. " This suggests that the same may
hold true for the intermediate-coupling case being
considered here. If so, one would not need to solve
Eq. (19) at intermediate temperatures; one could infer
the gap at a given temperature and grain size from
(24) and (28) combined with the "universal" curve
of reduced energy gap versus reduced temperature.

A plot of rr'=(T, /T, „) versus (a/L) is shown in
Fig. 1. At c=I, '1, is approximately double T, . For
u& I, T, is roughly inversely proportional to the
volume of the grain size. For a) I., T, approaches T,
with approximately exponential dependence on the

inverse of the grain volume. 'r A plot of (2eo/knT, )
versus 0.' is shown in Fig. 2. It can be seen that
(2eo/ksT, ) increases from the weak-coupjing value of
3.528 toward the strong-coupling value of 4.

One of the most interesting results of the present
calculation'8 is the prediction that the size effect on
the transition temperature becomes important when
the grain volume becomes comparable with

~s =4'&o. (30)

'~ I is just the grain size where the mean spacing (at the Fermi
level) between one-electron energy levels becomes comparable
with the bulk superconducting energy gap. Furthermore, for
smaller grain sizes, the energy gap increases in step with the in-
creasing spacing between one-electron levels.

"A calculation of size-eBect enhancement of superconductivity
has recently been carried out by E. A. Shapoval, Zh. Eksperim. i
Teor Fis. , Pis'.ma v Redaktsiyu 5, 57 (1967) /English transl. :
Soviet Phys. —JETP Letters 5, 45 (1967)g. Shapovai's enhance-
ment, which sets in only at grain sizes much smaller than I.,
depends on an interaction enhancement due to one-electron waye-
function renormalization. The normalization is affected by the
fact that the one-electron orbitals damp out near the bounding
surface of the grain (within distances comparable to Xg).' B. Abeles, R. W. Cohen, and %. R. Stowell, Phys. Rev.
Letters 18, 902 (1967).

As an example, in aluminum I—62 A. Such a critical
size seems qualitatively consistent with the experi-
mental results for aluminum. 4

It is possible to modify the present theory in order
to get a qualitative estimate of the quenching of size-
effect enhancement as the coupling between grains is
increased. This is especially easy in the case a(1.,
where the enhancement of free energy is inversely
proportional to grain volume a'. Consider the case of a
barrier transmissivity t, appreciable in size but not too
close to unity. This corresponds roughly to the situation
where there is a double grain volume during a fraction t
of the time. Thus we should use an effective grain size

(a) given by

(a)—'=a '(1—t)+ ,'a 't-—
(a)' =a'(1 ——,'t) —'

When a and (a) are both less than I., T, for finite 1 will
be less than T, for zero t by a factor (1——,'t).

In a very interesting recent letter, " Abeles et ul.
ruled out the mechanism of size-effect enhancement in
their granular aluminum films because of the strength
of the coupling between grains. For their 6lms of
maximum transmissivity, X=62 X, a=40 L, t =0 4,so.
that (a) =43 A. This shows that appreciable size-effect
enhancement is still to be expected in these films.


