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The theory of the effect of a dynamic Jahn —Teller effect on the electron-paramagnetic-resonance spectrum
of a 'E state is developed from the limit of weak Jahn —Teller coupling taking account only of linear coupling.
The principal changes produced in the EPR spectrum of the vibronic ground state may be represented
simply by introducing appropriate reduction factors into the spin Hamiltonian which describes the splitting
of the electronic E state by a magnetic Geld, strain, or hyperfine interaction. These reduction factors acct
the anisotropic part of the spin Hamiltonian but not the isotropic part; they are diminished from unity by the
Jahn-Teller coupling; and they are analogous to the reduction factors introduced earlier in the theory of a
triplet state. The theory is used to discuss Hochli's data for Sc'+ in CaF& and SrF2 and Co6man's data for
Cu'+ in MgO. While the latter case is consistent with either a moderately strong linear Jahn —Teller coupling
or with the tunneling model, the present theory applied to Sc'+ in CaF2 and SrF2 indicates that in these cases
the Jahn —Teller coupling is quite weak.

I. INTRODUCTION

~1VER since the discovery' ' of the first unambig-
& uous experimental manifestation of the Jahn-

Teller effect, ' in the electron-paramagnetic-resonance
(EPR) spectrum of Cu'+ in ZnSiFs 6HsO, there has
been continuing interest' in Jahn-Teller effects of ions
having an orbital doublet ground state (belonging to
the irreducible representation E of the symmetry group
of the cube) in cubic or near-cubic symmetry, par-
ticularly as revealed in EPR studies. Numerous obser-
vations of such effects have now been reported, par-
ticularly for Cu'+ and Ni+ in various host crystals.
The typical observation in the cases studied has been
of a static Jahn-Teller effect below a temperature
typically in the range 10 to 30'K; the KPR spectrum
is then the superposition of three axial spectra, each
corresponding to a distorted defect with one of the
cube axes as its axis of symmetry. At temperatures
somewhat above this temperature the spectrum ex-
hibits a dynamic Jahn-Teller effect characterized by a
single isotropic spectrum with its g factor and hyperfine
interaction given approximately by the average of the
corresponding parameters of the three low-temperature
spectra. The nature of the con6gurational instability
that leads to the stable configurations characterizing
the low-temperature spectrum has been explored the-
oretically with considerable thoroughness by a number
of writers' ' beginning with Van Vleck and later Opik
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and Pryce, ' and most completely by Liehr. ' The static
Jahn-Teller effect for an orbital doublet state is ac-
cordingly now quite well understood, at least in terms
of phenomenological parameters. The study of dynamic
Jahn-Teller effects for the orbital doublet state, of
course, had its inception in Abragam and Pryce's ex-
planation' of Bleaney and ingram's observations, ' but
it has received its principal theoretical development at
the hands of MoKtt and his co-workers, " "Longuet-
Higgins et al ""O' Brien' and others' '3 Although
this theory has accounted for many of the complex
features of the spectra observed experimentally, the
dynamic effects are still not very well understood in
general, and even the detailed nature of the transition
to the high-temperature isotropic spectrum remains to a
large extent unclear.

Recently what promises to be a major breakthrough
for the understanding of dynamic Jahn-Teller effects
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in the orbital doublet state has occurred in the dis-
covery by CoRman" (Cu'+ in Mgo) and Hochli"
(Sc'+ in CaF2 and SrF2) of a new type of low-tempera-
ture EPR spectrum showing dynamic e6ects resulting
from the zero-point ionic motion. Instead of the three
superimposed axial spectra characteristic of a static
Jahn-Teller eRect, CoRman and Hochli found a single
low-temperature spectrum exhibiting the cubic aniso-
tropy expected for a 'E(Fs) ground state in full cubic
symmetry. Co6man and Hochli independently inter-
preted their spectra as indicating that appreciable tun-
neling was occurring between the three tetragonally
distorted configurations of the static Jahn-Teller ef-
fect, so tha, t as described by Bersuker"" and also by
O' Brien, "the ground state of the system is split by the
tunneling into a doublet ('E) ground state and a singlet
('Ai or 'A2) excited state. CoRman found no trace at
1.2'K of the isotropic spectrum expected for the singlet
state, so that he concluded this state was not populated
appreciably at this temperature, while Hochli inter-
preted his data to give an estimate for this tunneling
splitting as ~10 cm ' for CaF2. Sc'+ and ~8 cm ' for
SrF2'. Sc'+

The purpose of this paper is to develop the theory
for an alternative interpretation of spectra such as
those found by CoAman and Hochli, in terms of a
model diferent from that used by Bersuker and
O' Brien. Both Bersuker' " and O' Brien' presupposed
that the Jahn-Teller coupling was strong, so that for
their work to be applicable one must be near the
limiting case of the static Jahn-Teller eRect; tunneling
between the three distorted configurations, due to a
small but 6nite vibrational overlap, then leads to a
small energy separation (Bersuker's "inversion split-
ting") between the doublet ground state and singlet
excited state. However, it is well known from the work
of MofIitt and his co-workers" "and that of Longuet-
Higgins et al.""that the vibronic ground state is also
an orbital doublet belonging to E for a weak or moder-
ately strong Jahn-Teller coupling. One would therefore
expect for this case a low-temperature EPR spectrum
of the same sort as that obtained on the tunneling
model, but we would like to know how the parameters
of the spectrum then relate to the strength of the Jahn-
Teller coupling, and how they compare quantitatively
with those given by the tunneling model. The theory
of the EPR spectrum appropriate to a weak or moder-
a.tely strong Jahn-Teller coupling will accordingly be
presented in this paper.

The present theory, as we will see, bridges the gap
between static crystal-6eld theory with zero Jahn-
Teller coupling and the strong-coupling theory of
Bersuker and O' Brien. It shows clearly therefore how
what Coffman" has described as a "third type of Jahn-

~ R. E. CoGman, Phys. Letters 19, 475 {1965);21, 381 {1966);
and {unpublished) .

~ U. T. Hochli and T. L. Estle, Phys. Rev. Letters 18, 128
{1967);U. T. Hochli, Phys. Rev. 162, 262 {1967),

Teller KPR spectrum" for a 'E state arises as a mani-
festation of the typical behavior expected of a system
exhibiting dynamic Jahn-Teller eRects. Moreover, the
theory developed from the limit of weak Jahn-Teller
coupling has a basic simplicity which is much less evi-
dent when the theory is viewed from the strong-
coupling limit. Finally, this approach has many fea-
tures in common with the author's previous treatment"
of dynamic Jahn-Teller effects for an orbital triplet
state, so that a common conceptual basis for interpre-
tation of dynamic effects for doublet and triplet states
is thereby established. In particular, we shall show that
the Jahn-Teller coupling modifies the electronic param-
eters of the spin Hamiltonian of the doub]et state by
introducing reduction factors precisely analogous to the
orbital reduction factors which were shown previously"
to describe the effect of Jahn-Teller coupling in par-
tially quenching the spin —orbit interaction, the orbital
part of the g factor, etc. , in a triplet state.

%'e sha11 limit the analysis of this paper to the case
of linear Jahn-Teller coupling —that is, to terms in the
vibronic Hamiltonian corresponding to a splitting of
the. electronic degeneracy linear in the distortion. Our
theory then amounts to an application of the theory of
the dynamic Jahn-Teller eRect for the doublet state
developed by MoRitt et cl." "and Longuet-Higgins et

a/. '4" to the calculation of the EPR spectrum. Indeed,
the reduction factors necessary for the present theory
have in fact already been calculated numerically by
Child and Longuet-Higgins" as part of a tabulation of
matrix elements needed in connection with their theory
of the infrared and Raman spectra of a molecule in an
orbital doublet sta, te. Furthermore, Krupka and Silsbee"
have previously made a similar application of the work
of Longuet-Higgins et el." to an interpretation of dy-
namic Jahn-Teller eRects in the EPR spectrum of the
'E ground state of the R center (C3„symmetry) in
KCl, and they have also pointed out that the Jahn-
Teller coupling modi6es the spin Hamiltonian by the
introduction of appropriate reduction factors. Never-
theless, despite these close connections with previous
work, the results obtained in this paper have not pre-
viously been related in their present generality to an
interpretation of the EPR spectrum.

A practical reason for the development of the present
theory is that evidence is accumulating that a number
of transition-metal ions having -an orbital doublet
ground state in cubic or tetrahedral symmetry may
have only a weak or moderately strong Jahn-Teller
coupling, so that the present theory would then be di-

rectly applicable to these ions. In particular, Hochli"
found. in applying Bersuker's tunneling theory to
Sc'+ (3d') in CaF~ and SrF& (eightfold coordination)
that he obtained a value of at least 0.20 for the vibra-
tional overlap between the different distorted Jahn-
Teller configurations. Such a,n overlap is remarkably

".I'. S. Ham, Phys. Rev. 138, A1727 {1965).
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large if the Jahn-Teller coupling is indeed strong enough
for simple tunneling theory to be applicable, and, in-

deed, if we use the present theory to attempt an in-
terpretation of Hochli's data, then, as we shall show,
the Jahn-Teller coupling we deduce on this basis is
quite weak. In other work, Low and Rosenthal27 have
recently investigated Ti'+ in CaF2 by EPR, and they
have found no static Jahn-Teller effect for T as low as
1.4'K. Furthermore, studies by Slack et al.""of the
optical spectrum (near- and far-infrared) of Fe'+ in
tetrahedral coordination in ZnS, CdTe, and MgA1204
revealed that the '8 ground state showed the (second-
order) spin —orbit splitting expected on the basis of
cryst:al-Geld theory, with no evidence for any pro-
nounced. Jahn-Teller effect. Although we shall not be
concerned in detail with a 'E state in this paper, many
of our results are appropriate to this case as well, and
this evidence that Jahn-Teller effects are weak for the
E state of Fe'+ in tetrahedral coordination suggests that
the same may be true for Sc'+ and Ti'+ if they can be
studied in such coordination.

As already noted, the treatment in this paper is
limited to linear Jahn-Teller coupling. This coupling
should be more important than higher-order effects if
the Jahn-Teller coupling is weak or only moderately
strong, and in any case it is of interest to know what
effects the linear coupling has by itself on the EPR
spectrum. However, as Van Vleck originally showed,
the linear coupling leads to an infinity of equivalent
distortions, and one requires higher-order effects' —"to
single out the three stable distorted con6gurations that
characterize the static Jahn-Teller effect. Thus, the
present theory is not applicable in detail in the limit of
strong Jahn-Teller coupling, where the case of a static
Jahn-Teller effect is approached, although we shall ex-
hibit some important consequences of O'Brien's theory
in this limit which serve to establish limits of applica-
bility of the respective theories.

In Sec. II is presented the basic theory needed to
describe the effect of Jahn-Teller coupling on the param-
eters that determine the KPR spectrum. The detailed
mathematical analysis of the vibronic Hamiltonian for
the electronic E state is, however, placed in the Ap-
pendix. Although this analysis is equivalent in many
respects to that given earlier, " "the formulation given
here is more convenient than what is given elsewhere
for an understanding of the present problem. In Sec.
III the relationship of our results to parameters in the
strong-coupling theories of O' Brien" and Bersuker'~ "is
described

In Secs. IV, V, and VI the conclusions of the general
theory are then applied to the g factor, the hyperfine
interaction, and the effect of applied strain. Sections

%. Low and A. Rosenthal, Bull. Am. Phys. Soc. 11, 906
(~966).

28 G. A. Slack, F. S. Ham, and R. M. Chrenko, Phys. Rev. 1$2,
376 (1966).

~ 6. A. Slack, S. Roberts, and F.' S. Ham, Phys. Rev. 155, 1l'0
(&967).

VII and VIII consider the effects of random strain and
relaxation, since both of these a.re responsible for very
important modifications of the EPR spectrum of a 'E
state. The paper concludes with a discussion of the
applicability of this theory to available experimental
data.

II. BASIC THEORY

The vibronic Hamiltonian" ""
K=KoS+ &LQe U'e+Q. U'.],

with

~.=a+(1&2.)L~+~, +"-(e+e.)j, (»
describes the linear Jahn-Teller coupling of an orbital
doublet electronic state Qe, P,) belonging to the 2-

dimensional irreducible representation E of the rotation
group 0 of the cube (or of the tetrahedral group Tq)
with a pair of vibrational modes (Qe, Q, ) also belonging
to E." Here Pg, P, are the momenta conjugate to
Qe, Q, ; p is the effective mass of the mode and a& its
angular frequency; Eo is the energy of the degenerate
electronic state in the symmetrical configuration; and
V is the coupling coeKcient for linear Jahn-Teller
coupling. Throughout the paper we shall make use of
four Hermitian electronic operators denoted by d, Utt,

U„and A2 which are de6ned to have matrix elements
between the states fe, P, given, respectively, by the unit
matrix and

0)

0 +1)
( 0 +1)

0)

(0
0)

Lrows and columns are labeled in the order 8, e, so that
for example Qe )

Ue ] Pe) equals —1; note that apart
from the sign of Ue, the matrices (3) are simply the
Pauli matrices].

The exact eigenstates and eigenvalues of K in Eq. (1)
may not be obtained by analytic means because U&

and U, do not commute and therefore may not be
diagonalized simultaneously (in contrast to the simpler

"The subscripts 0 and e are used throughout the paper to label
the two partners (Pg, &„Qti, Q, ; I'g, I', ; UIt, U, ; etc.) belonging to
the irreducible representation 8 (symmetry group 0 or T&) and
transforming respectively as Ls —

& (z2+ym) j and (V3/2) (x —y )
where x, y, s, denote Cartesian coordinates with respect to the
cubic (fourfold) axes.

"The formal theory of this paper is equally appropriate to the
case of an orbital doublet in trigonal symmetry, and our results
may be applied directly to this case as well. However, for de6-
niteness, we shall consider explicitly only the cubic case in this
paper. For the form of the spin Hamiltonian in the trigonal case,
see the paper of Krupka and Silsbee (Ref. 23).
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FIG. i. Potential-energy surfaces E~(Qe, Q,) for the vibronic
problem of the orbital doublet with linear Jahn-Teller coupling
(after MoKtt and Thorson, Ref, 13}.The surfaces have rotational
symmetry about the energy axis.

case of the triplet"'6 coupled to Qe, Q, ) . If, however, we

set Qy= p cos8 and Q, =p sin8, the electronic sta, tes' ""
which diagonalize the potential-energy part of K for
fixed values of Qg, Q, are

( cos-', 8) t sin-', 8)
4-(u, 8) =I I, 4+(o, 8) =I

I
(4)

(—sin-,'8) (cosi28)

(where this notation denotes, for example, that f =
P& cos—,'8—f, sin-,'8) corresponding, respectively, to the
(potential) energies

&+(Qs, Q.) = &a+Vv+2~~'u'. (5)

Since Kq. (5), plotted as a function of Q~, Q„has rota-
tional symmetry about the origin, we obtain the well-

known potential-energy surfaces' " for this vibronic
problem as given in Fig. 1, for which the con6gurations
of minimum energy on the lower sheet are all the points
on the circle p=

I
V I/geo'. This minimum defines what

we term the Jahn-Teller energy E»,
E»——V'/2@co',

which is the amount by which the potential energy is
lowered when the system is distorted from the sym-
metrical configuration to a point at the bottom of the
trough.

The Hamiltonian of Eq. (1) has full cubic symmetry
(under simultaneous transformation of bo/h electronic
and vibrational operators), so that the exa.ct eigen-
states of 3C must belong to the irreducible representa-
tions of the symmetry group of the original symmetrical
configuration and must have the corresponding degen-
eracies. In particular, the ground state of K in Eq. (1)
is a vibronic doublet belonging to E, whatever the
value of V."'4 Thus, so long as excited vibronic states
are far away in energy from the ground state relative to
the size of any perturbation that we may apply, the
properties of this vibronic ground state are formally
identical, so far as symmetry considerations are con-

cerned, with those of the original electronic orbital
doublet state in a fixed environment of cubic symmetry
when Jahn-Teller effects are ignored. We may expect,
however, that the Jahn-Teller coupling will change the
value of the parameters that enter the description of
the ground sta, te, just as has been shown previously"
to be the case in the dynamic Jahn-Teller effect of an
orbital triplet, and it is the relationship of such param-
eters to those for the original electronic state which we
now wish to examine.

The direct effec of external perturbations (we con-
sider specific cases in the following parts of the paper),
and of interactions involving other dynamic operators
(e.g., electronic and nuclear spin), on the electronic
orbital doublet (f&, f,) may be represented in a general
way by adding to Eq. (1) an operator

'U =Gi8+G2A2+Gs Ue+G, G,. (7)

Here the G's are functions of the components of the
external perturbations (magnetic field, strain, etc.) and
of the other operators'-'; G& is symmetric under cubic
transformations of these components, G2 belongs to
the irreducible representation A2, and Gg and G, trans-
form as partners belonging to E. Thus U, as given by
Eq. (7), describes the effect that external perturbations,
etc. , would have in shifting or splitting the electronic
energy for the static, perfectly cubic environment when
Jahn-Teller effects are ignored.

W'e now denote by%', ~, %„the two components of the
vibronic ground state of K in Kq. (1), and we define
two real parameters q and p in terms of the matrix
elements of Ug, U„and A2 within this ground state as
follows":

8= —&+. I
U

I +. )

= &0„
I

Ue I+„)
(8a)

p=i&+, I
A I+"). (8b)

H then we let U,e, U„, A,2 denote operators having
matrix elements between +,y, 0'„ identical to those of
U&, U„A2 between fq, f, as given by Eq. (3) Li.e.,
&+,g I U, g I +,e) = —1, etc.j, then in accord with Eq. (8)
the matrix elements of 'U from Kq. (7) within this
vibronic ground state a,re identical with those of

'U, =Gid+PG2A, ,+q (GpU, g+G, U„) . (9)

Matrix elements of the symmetric term G& are unaf-
fected by the Jahn-Teller coupling, but those of the
terms in G2 and in Ge, G, are reduced by the factors p
and q, respectively. The parameters p and q are there-
fore reduction factors analogous to those which par-

"We assume in this paper that the G's are not functions of the
vibrational operators Q8, Q„although a generalization to this
case could easily be made.

~ The relations among the matrix elements indicated in Kq. (8)
are the consequence of the cubic symmetry and the Wigner-
Eckart theorem.
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tially quench the spin —orbit interaction, orbital Zeeman
interaction, strain coupling, etc. , in the dynamic
Jahn-Teller effect of an orbital triplet. " For small
V (Ezr« fgog), p and q are found by perturbation
theory LAppendix I, Kq. (A9) j to be given by

0.8

0.6

p = 1—(2V2/gg5ggs) +0 ( Vg)

= 1—(4EgT/egg) + ~ ~ ~, (10a)
04

r„r /grrr) '"]

q=1—(V2/gg5org) +0(V')
= 1—(2EgT/fur) + ~, (10b)

while for large V (Egz» rior) p and q are given simply,
as shown in Appendix I, by

(11a)

(11b)

q= 2 (1+p)

is generally valid whatever the value of V so long as
only linear Jahn-Teller coupling is considered. An
extrapolation of Kq. (10) consistent with Kqs. (11)
and (12) is given'4 by

p~exp ( 4EgT/fuu), —

Moreover, as shown in Kq. (A18) of Appendix I, the
relation

(12)

0.2

0.0
O.OI O. I I.O IO.O

state belonging to the symmetric representation (At)
of 0 and the other to A2. The energy of this state above
the ground state is given by LAppendix I, Kq. (A5) ]

At=fi(o (V2/gg(o—2) =fust 1—(2EgT/5(v) J (15)

E3~ l tlhl

FIG. 2. Reduction factors p and q for the 28 ground/state of the
orbital doublet with linear Jahn-Teller coupling, as a function of
the ratio of the Jahn-Teller energy FJ& to the mode energy Aced.

The solid curves show the approximate expressions given by Eqs.
(13a) and (13b) of the text which extend the perturbation results
obtained for weak Jahn-Teller coupling. The points are exact
values from the calculations of Child and Longuet-Higgins
(Ref. 15).The dashed curve is the expression given by Kq. (14)
of the text, which is 6tted approximately to the calculated points
over the range 0.1&fr'gT/hrg&3. 0.

2L1+.exp( 4EzT/irgar)] (13b) for Egr« f'tgg, and by LAppendix I, Kq. (A23) j
However, numerical calculations from which values of

p and q for intermediate values of EgT/d'or may be ob-
tained have been performed by Child and Longuet-
Higgins. ""The values for p and q obtained from their
tables are given in Fig. 2, where the expressions given
in Kq. (13) are also plotted. These expressions, while
correct for sufficient}y small values of EzT/fuv, are ap-
preciably in error for EzT/}to&&0.1. As shown in Fig. 2

a formula approximately reproducing the calcu]ated
points for 0.1 &EgT/}ter &3.0 is

p= expt' —(1.974) (Egr/fur)" t]. (14)

The first excited state of the Hamiltonian of Kq. (1)
is an "accidentally"" degenerate doublet with one

'4 The formula in Eq. (13b) has been noted previously t Ref. 28,
Kq. (4.24) J, without derivation, in connection with the second-
order spin-orbit splitting of 'E for Fe'+.

~ The value for our parameter p is given by that of the matrix
element d(e2, ~) for F2=0 tabulated in Table A4 by Child and
Longuet-Higgins (lief. 15). Our EqT/~ is equal to the parameter
they call D.

'g This "accidental" degeneracy } all the eigenstates of Eq. (1)
are in fact doublets (Refs. 14, 15)]is a result of the fact that 3Cin
Eq. (1) has additional symmetries beyond those imposed by the
cubic symmetry of the original problem. This extra symmetry is
the cause of the rotational symmetry in Fig. 1, and it is removed by
adding to Kq. (1) the terms of cubic symmetry } the quadratic
Jahn-Teller terms Vg[Ug(Q, 2 —Qgg)+2U, (QgQ, ) }r or the third-
order term VgQg(3Q, 2-Qgg)] which warp the bottom of the
potential-energy trough in Fig. 1 to give three equivalent minima.
The addition of such terms therefore splits those eigenstates of
Eq. (1) which span AI and A2, but not those like the ground state
which belong to E.

Dt =5(d (fgor/2 EgT)

when EgT&)urger. These limiting expressions (15) and
(16) are plotted in Fig. 3, where they are compared
with numerical results obtained by Longuet-Higgins
eI, a/. '4

In addition to the direct effect of the perturbation
'U of Kq. (7) on the ground state, as given by 'U, in

Kq. (9), there is a second-order effect of 'U on the
ground state analogous to the second-order effects
found in the case of the triplet. "Such a second-order
effect has also been considered by Krupka and Silsbee"
for the particular case of the E. center. On grounds of
symmetry, this must in general take the form (for
simplicity we ignore terms involving G2)

(2) —o(G 2+G 2) g+$L(G 2 G 2) f/

+ (GgG, +G,Gg) Ug, j+ci(G,Gg GgG, ) Agg—, (17)

and of course the term in A,2 drops out if GII, 6, com-
mute. For the case B»((ko, we obtain by perturbation
theory, from the matrix elements of Kq. (A8) of Ap-
pendix I, that to order V', b= c=0 and

a= —2V2/gg52or'= —(4/fuv) (EgT/5(g) . (18)

For EgT)&fr~ we obtain instead, from the matrix ele-
ments of Kqs. (A19) and (A20). b=0 and

a= —c~—1/462~ —(1/2fkg) (Egr/egg), (19)
where we have used At as given by Kq. (16), and
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Accordingly, within the vibronic E ground state result-
ing from the tunneling splitting in either O'Brien's
theory or that of Bersuker, q is obtained in accordance
with Eq. (8R) from the appropriate matrix element of
&cos8 with respect to the vibrational part of the
ground-state wave function. We 6nd in this way for
O'Brien's theory" (where V(0, so that we are con-
cerned with P+) that

(21)
Fzo. 3. Excitation energy AI of the 6rst excited vibronic state

for linear Jahn-Teller coupling, in units of the mode energy Acr,
as a function of the ratio of the Jahn-Teller energy: Egr to A~.
The curves show the limiting behavior given by Kqs. (15) and
(16} of the text, while the points are. exact values from the cal-
culations of Longuet-Higgins et al. (Ref. 14}.

in terms of the para, meters introduced by O' Brien in

her Eq. (24). We find similarly that her cl corresponds
to the parameter 1I appearing in Eq. (A20) of our theory
by

I 1l
I

1. The vanishing of b is the consequence of the
"accidental" degeneracy of the excited doublet (AI, A2),
and b would be 6nite if this degeneracy were removed. "

III. RELATION TO STRONG-COUPLING
THEORIES

The theories of Bersuker'~'9 and O'Brien'6 for dy-
namic Jahn-Teller effects in the EPR spectrum of an
orbital doublet presuppose a strong Jahn-Teller cou-

pling, so that the ground state and low-lying excited
states are accurately given by linear combinations of
states of the form of Eq. (A22a) (for V) 0) or of Eq.
(A22b) (for V(0). In other words, the low-energy
vibronic states are Born-Oppenheimer multiples of the
electronic state associated with the lower potential
energy surface in Fig. 1, that is of P as given by Eq.
(4) if V&0 or of f+ if V(0. As a result of the warping
of the trough in Fig. 1 because of higher-order terms"
in the Hamiltonian, these vibronic wave functions are
not given simply by one term with a single value of

I
e

I

Rs 111 Eq. (A22); Ilcvcltllclcss R pR1'RIIlctcl' clltcls tllcsc
theories which corresponds to our reduction factor q

(the parameter corresponding to p is zero). We want

here to make this correspondence explicit and to show

that the strong-coupling theory leads to a different con-

clusion from our theory concerning the values which q
can assume. This difference oGers a basis for an experi-
mental determination as to which theory is more nearly
applicable in a given case.

If a vibronic state is a multiple either of P+ or f,
we are concerned only with the following electronic
matrix elements:

Lbecause of the warping the degeneracy of AI and A&

is ]ifted in her case, so that cl does not simultaneously
relate to the matrix elements of Eq. (A19), which
only for linear Jahn-Teller coupling involve the same
parameter 11 as Eq. (A20) j.

An explicit evaluation of c& from O'Brien's theory'6
leads to the result that c2&—'„as we will show, with
c~= —,

' when the warping vanishes, in agreement thus
with our result (lib) for strong linear Jahn-Teller
coupling. O'Brien's theory thus gives us the result that

for strong Jahn-Teller coupling when there is appreci-
able warping of the potential trough, in contrast to our
conclusion that

)PAL'6

2 (24)

for linear coupling alone. These contrasting results
serve therefoi. e to provide a criterion as to whether a
theory of strong coupling with warping or one with
weak to moderate Jahn-Teller coupling is the more ap-
propriate in a given case.

The proof of Kq. (23) from O'Brien's theory follows

from the explicit form of the most general ground-state
wave function which is consistent with an arbitrary
warping of a deep trough in the lower-energy surface of
Fig. 1. As shown by O'Brien, '6'the 8'dependence of the
vibrational wave function multiplying f+ in the
ground-state vibronic wave function +„(her

I
E&) is

given by

I +g, & alt& cos~1~+R5/2 cos~e+al/2 cosstt

+Sup cos s 8+' ' (25)

Q iUgif )=—cos8,

Q I
V, If )= —sin8

(20a)

(20b)

which agrees with the symmetry consideratioris given
in connection with Kq. (A14) in Appendix I. The p

dcpcndcncc of 4& ls assumed to bc' glvcn by a Iadlal
function, localized in the bottom'of the potential
trough, which is approximately the same for all the
terms in Kq. (25). Then from the angular average 'of
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cos8 with respect to 4„ in accord with Eqs. (Sa) and
(20a) we obtain .the result

g 2 (ol/2 +2/25/2'/2+2+11/2/212/2+ ' ' ') ~ (26)

The normalization condition for the a„s is given. by

(/21/2 +oh/2 +/27/2 +//11/2 +' ' ') 1 (2/)

Bccausc of thc lncquallty

the result, Eq. (23), follows immediately from Eqs.
(26) and (2/).

Bersuker's theory"" of the effect of tunneling be-
tween the distorted configurations of the static Jahn-
Teller CGect makes the tacit assumption that the vibra-
tional wave function assoriated with each of the three
wells is suKciently well localized in its well that in
evaluating matrix elements of cos8 we may replace the
average of cos8 in each weH by jts value cos80 at the
value of 8 corresponding to the bottom of the well. In
other words, the electronic wave function entering the
vibronic wave function for a given weH is taken to bc
the fixed linear combination of f2 and f, appropriate to
80, and this combination is considered to be inde-

pendent of variations in 8 within the well. The vibra-
tional overlap integral y between the different we]ls is
then taken into account as the origin of the tunneling
splitting or "inversion splitting" that leaves the doublet
E as the vibronic ground state. As HOchli has shown, '5

Bersuker's theory then leads to a value of q for the
ground state given by (y((1)

q= 2L&+ (3/2) ~3.

However, since y is positive we see that Eq. (29) con-
Qicts with the result of O'Brien's theory that q must
in general be less than -', for the strong-coupling case.
This discrepancy shows therefore that although the
overlap between the diferent con6gurations acts to in-
crease 1t as shown by Eq. (29), the spread in 8 within
each w'ell produces an off-setting reduction iri q which
is omitted in Bersuker s theory and which always domi-
nates the efIect of overlap. Evidence for the importance
of this spread in 0 has already been found experi-
mentally in Hayes and Wilkens' study'7 of static Jahn-
Teller CGects. for Ni+ in Lip and Nap, where the data
indicate that (cos8) must be taken to be 0.8 for the
distorted con6guration for which cos8o= j..o. The jm-
portance of taking into account this spread in 8 in
changing the admixture of the electronic wave func-
tions from that appropriate to 80 was emphasized by
O'Brienm in her theoretical treatment.

IV. g FACTOR

Since the orbital angular-momentum operator has no
nonzero matrix elements within an E state, the linear

3~ W. Hayes and J. Kilkcns, Proc. Roy. Soc. I',London) A281,
340 (1964).

effect of a magnetic Geld on a '~+'E electronic state
must take the form of Eq. (/) with G2 ——0 and

Gl=gl/3(S H),

G//= g2P/S. II, 2(S—,II +S„II„)j,
G.= g2P (v3/2) (S,II,—S„II„),

where AS is the spin operator and p= (gll/2772q). gn
particular, - for the, 'E electronic ground state of a d'
electron con6guration in four- or eightfold coordina-
tion, or a.d' con6guration in sixfold coordination, we
have from crystal-Geld theory'

g, = —(4X/6), (31)
where g,o= 2.0023, 5=10

I Dg I
is the cubic field split-

ting between 'E and the excited state 'T2 derived from
the 2D term of the free ion, and ) is the parameter such,
that )1(L.S) describes the spin —orbit interaction for 'D.
Taking account of linear Jahn-Teller coupling, then, we
obtain, according to Eq. (9), the Hamiltonian for the
Zeeman interaction in the 'E vibronic ground state
(which belongs to the representation Fs of the double
gloup correspond1ng 'to 0 ol' Tg):

xgi/= g,/3(s H)~+(/Ig2P/2) I EBs,II, (8'H) )Ugs—
+V3 (S,H, S„IIy) U2, I—.

(32)

The terms in g2 have thus been diminished by the Jahn-
Teller coupling by the reduction factor q, but thc term
in gl is left unchanged.

The eigenvalues of X,// in Eq. (32), and thus the g
factors for comparison with experiment, are easily ob-
tained in the usual case for which

I g2 I((g1, for arbitrary
orientation of H. Talung [to be a'unit vector along H
having components t „1„,f, and keeping only the part
of the g2 term in Eq. (32) which is diagonal in Sr, we
may then write Eq. (32) as

3C~ g+SrII//+(/Ig, PII——Sr/2) D31.,2 1)U„—
+~~(f*' f') fI .) —(33)

The two-by-two secular equation that one must solve
is thus the same for both spin states S~——+-,', except
for an over-all sign change, and the vibronic states that
diagonalize Eq. (33) are the same for Sr ——+-2, . The g
factors for the experimental resonance frequencies thus
collcspond to spin tlansltions for' a glvcn vlblonlc state

'STo simplify our presentation of the eBects of Jahn-Teller
coupling, in this paper we shall ignore all other eGects . (e.g.,
covalent bonding) which vill change the g shifts, etc., from the
predictions of simple crystal-6eld theory. These other contribu-
tions should of course be taken into account, .via the appropriate
orbital reduction factors for the spin-orbit interaction, orbital
7eeman interaction, etc., when the theoretical formulas are com-
pared vrith experimental results.
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and are therefore given by

(34)

This result agrees in its angular variation with the ex-
pression given originally by Abragam and Pryce' and
more recently by Coffman'4 and by Hochli. -"

V. HYPERFQTTE INTERACTION

The hyperfine interaction with the central nucleus
has the same form within an E state as the interaction
with a magnetic field: the G's entering Eq. (7) are
obtained from Eq. (30) by substituting the components
of the nuclear spin I for those of H and replacing

gtP, gsP by hyPer6ne Parameters Ai and As. For the
'E ground state of a d' or d' configuration, we obtain
from crystal-field theory, to second order in perturba-
tion theory,

Ai ———P[x+ (4'h/6) ],
As ———P[6$+ (4X/6) + (9X/6) $]. (35)

The hyperfine splitting of the KPR spectrum is then
obtained by combining the Hamiltonians oi Eqs. (32)
and (37). So long» g»&~ g, ~, ~

Ai ~&&~ A, ~,
"we may

find the resonance frequencies for arbitrary orientation

(f) of H by using as in Eq. (33) only those terms that
are diagonal in 5'~ and in the eigenvalue m of I~. We
obtain for the resonance frequencies under these condi-
tions

hv = (giPH+Aim) &q(gsPII+Asm)

X[1—3(f' 't '+f' '0 '+f' '|' ') ]"' (38)

» A. Abragam and M. H. 1.Pryce, Proc. Roy. Soc. A205, 135
(&9s&).

~ The condition } A& }» As
~

is not well satisfied for Sc'+ in
CaF2 and SrF2 (Ref. 25}; Kq. (38) may then not be accurate
except for H in $100], for which orientation the formula is exact
for any values gI, g2, AI, A2 (apart from second-order corrections of
order A~/hv).

Here we have represented the hyperfine interaction
within the 'D term by'

Xr('D) =PI (L I) —«(S.I)+/[6(S I)

——,'(L S) (L I) —s(L I) (L S)]}, (36)

where P=2y PP«(r '), $=+(2/21), and y is the nu-

clear g factor, p«. the nuclear magneton, (r ') the one-

electron average of r ', and I~: the parameter characteriz-
ing the contact hyperfine interaction. Taking account of
linear Jahn-Teller coupling, we have then for the Hamil-

tonian for the hyperfine interaction in the 'E vibronic
ground state, just as in Eq. (32),

3Cgr=Ai(S I)d+(qA, /2) I[3S,I,—(S I)]Ups

+v3 (S,I. SsI„)Ug, }. (37)—

Vr. APPLIED STRAIN

The splitting of the electronic (orbital) state in uni-
form strain, when we neglect the Jahn-Teller effect, is
described by

where

and

aC, = V,[esUs+ e,U,],

eg egz ~ e. ey

e,= (v3/2) (e„—e»),

e;,= ,'[(Bu,/Bx,—)+ (flu;/Bx, )]

(39)

(40)

(41)

is a component of the strain tensor. When we take ac-
count of the Jahn-Teller coupling, the strain splitting
of the vibronic ground state is then given, according to
Eq. (9), by

Kg, ——qVs[esU, s+e, Ug,] (42)

The ground state is thus split by the tetragonal com-
ponents of the strain, but the strain coe%cient that is
directly measured experimentally is V&'= q V&.

There is a close connection between the strain coef-
ficient Vs and the linear Jahn-Teller coupling coefficient
V in the Hamiltonian (1), which we may use to obtain
an approximate estimate for the Jahn-Teller energy L'zr
from the measured value of V2'. The relation between
the amplitudes Qs, Q, of the vibra, tional coordinates for
the E distortion mode of the nearest-neighbor set of
ions and a uniform strain given by ez, e, is derived in

Appendix II. If we assume that the eGect of strain in
splitting the electronic state in accord with Eq. (39) is
primarily due to this distortion of the nearest-neighbor

The Jahn-Teller coupling also quenches by t,he same
factor q that part of the superhyperfine interaction
with neighboring ions which enters the Hamiltonian as
the coefIicient of Ug and U„while the isotropic part
proportional to 8 is una6'ected.

[ItIote added se proof. It should be noted in general
(M. C. M. O'Brien, private communication) that Eqs.
(34) and (38) do not describe accurately the angular
variation of the exact g factors or hyperfine splittings
when H is near [111],because in deriving these equa-
tions we have neglected the terms in the Hamiltonian
which are off-diagonal in 5~ and I~. Retaining these
terms leads to small but nonzero corrections to the

g factors and hyperfine splittings when H is along
[111],whereas the anisotropic terms in Eq. (34) and
(38) are zero in this orientation. However, for H near
[111],the resonance spectrum should be quite sensitive
to effects of random strain and of relaxation, so that a
complete description of the angular variation of the
spectrum as H passes through the [111]orientation
ca,n be quite complicated. ]



ions, "we then obtain the foBowing relation between t/

and V2 Lthe corresponding value of the mass p in Eq.
(1) is then p= M, as shown in Appendix II, where M is

the mass of a single nearest-neighbor ion and E. the
nearest-neighbor distance j:

Sixfold cubic coordination:

V=VSV2/2R.

Eightfold cubic coordination:

V= 3V2/4E

Fourfold tetrahedral coordination:

V= 3V2/(2v2E) . (43c)

Trigonal strain, described by the strain components
&,„„&,„,e,„(which transform as 2'2), produces no direct
splitting of the electronic E state, but in combination
with the spin —orbit interaction and the cubic crystal-
6eld splitting it does produce a sma, ll linear splitting
when spin is taken into account. For the 'E state de-
rived from 'D, if electronic matrix elements of trigonal
strain within 'D (e.g., between 'E and 'T2) are given

by those of the operator

V {trig) = {V3/2&3) t&s,„(L,L„+L»L,)

+ey, (L„L +L L„)+e, (L,L +L L,) j, (44)

we find from second-order perturbation theory that the
linear eAect of such strain within 'E is given by

X,&'& = (2XVs/6) ( S,e„.+Sye„+S,e.,y) Ag. (45)

This perturbation has the form of the G~A~ term in

Eq. (7), so that its effect on the vibronic ground state
is given by

3C„&'&= p(2& V3/6) (S,e„,+S„e„+S,e „)A,2 (46)

according to Eq. (9) . The linear splitting of the ground
state due to trigonal strain is thus diminished by Jahn-
Teller coupling by the reduction factor P.

Similarly, the trigonal strain produces a small change
in the Zeeman interaction within 'E given by

XsH&2& = (2PVS/A) (H.e„,+H, &...+H,e.„)A„(47)
which follows if the spin —orbit interaction X(L.S) is

replaced in the derivation of Eq. {45) by the orbital
Zeeman interaction p(L H). The effect of this pertur-
bation on the vibronic ground state is accordingly
given by

KgsI&&2&= P(2PV3/6) (H ey +Hye„+H e „)A 2. (48)

4' To simplify the problem of an E state of an ion in a crystal to
that described by the Hamiltonian of Eq. I,'1), we must assume
not only that the single distortion mode Qe, Q, of the nearest-
neighbor ions provides the dominant coupling, but also that
Qz, Q, are normal modes with an appropriate angular frequency m.
This is of course not actually true. A satisfactory analysis of this
vibronic problem for a continuum of phonon modes, each coupled
to the electronic state, has not yet been given.

These expressions (45) and (47) for the special case of
an axial distortion along the [111$axis (&:„,=e„=e,„)
are identical in form with the spin —orbit and Zeeman
interaction terms in the spin Hamiltonian used by
Krupka and Silsbee'3 in. their analysis of the effect of
the Jahn-Teller effect for the I&.'center in KC1.

which has eigenvalues

L&~(Sr', m) =g&PHSr'+A& Sr'm

aq{P,'(g,PHSr-'+A, Sr'm) (3f, —1)+V,&,y
+L(v3/2) {g2pHSr'+A2Sr'm) (t,' 1') +—;Vs]'I'

There are two pairs of possible transitions among the
levels of Eq. (50) for a given value of m, and the rela-
tive intensity of these transitions is determined by the
magnitude of the terms involving strain in Eq. (49)
relative to that of the anisotropic Zeeman and hyper-
6ne terms. If the strains are suSciently small so that

I
V

I (&, '+e,')'&2((-',
I g pH+2 m

I

&&LI—3(f'f '+f'0 '+f 't ') j&12, (51)

the eigenstates are determined by the Zeeman and
hyper6ne interactions, and the transitions induced by
the microwave 6eld are the pair

E+(+-', , m)+-+E (—-'„m),

F (+-,', m)&-+E+{—-'„m), (52)

with resonance frequencies given approximately by Eq.
(38) . Expanding Eq. (50) in powers of V2, we find that
the strain displacements of these resonance frequencies
are proportional to V22/I g2pH+A2m I

times the square
of the strain. If the strains are random, the EPR lines
should be broadened asymmetrically, the lines with

VIL EFFECT OF RANDOM STRAIN ON EPR.

Small random strains in the crystal can alter the
resonance spectrum of the 'E state substantially from
what is expected from Eq. (38). Since such changes
may be important experimentally, we shall consider
them now. Ke ignore trigonal strain, which has a small
e6ect compared to tetragonal strain because of the
factor X/6 in Eq. (45) .

For a local strain characterized by ey, e, in Eq. (40),
the Hamiltonian for the vibronic ground state is ob-
tained by combining Eqs. (32), {37), and (42). As-
sum»g g&» I g2I, I

~& I&&l ~2 I
as done previously, so that

only terms diagonal in Sr and Ir need be kept (and also
neglecting the corrections of order 2&2/hv), we obtain

~0=(g&PH Sr+~~SrIr) &J

+&I{[2 (g2pH Sr+~2SrIr) (3f'.' 1)+V,—e&&jUg,

+P(~/»(g. PHSr+~. SrIr) (~' f')+-V".~fI„I,



I g,pH+A&m I
the largest being broadened by strain

thc least, . On thc other hand lf strain is sUfflclcntly
large (or alternatively if H is so close to alignmeiit
along a L111]axis or

I g2PH+A2m I
so small for a par-

ticular m) that the in'equality (51) is reversed, the
eigenstates are determined by the strain and the tran-
sitions induced are the pair

E+(+,', m) ~E-~ ( ——,'-, m),

E, (+-', , m) ~F ( ,', m) . —— (53)

The resonance frequencies are now given to erst order
in the anisotropic terms by

hv~(m) = (giPH+Aim) +,'q(goPH—+Aim)

XP. (3i-. 1)+-.,~~(f.' f,')]-("+o:)-'" (54)

If the strains are random, the line centers should be
given by the isotropic resonance frequencies

hv(m) =giPH+Aim, (55)

cosy =eo/(eoo+eo) '", sing =e /(coo+@,') '~',

cos~ 1 (3f. 2 1) I
I 3(f of. o+t. 2f 2+f 2f 2)]—1/2

»n =V~(f,' t.,') I1 3-(f.'f,'+—f,'l-.'+f.'f.')?'",
then the resonance frequencies given by Eq. (54) may
be expressed as

hv+(m) = (g,PH+A, m) arl(g, PH+A, m)

&& LI 3(f*'i«'+f '—t'+f'. 't"') ]"cos (v —~)

If the strains are random, the angle p assumes at
random values in the range 0&p&2m. . The strain-
broadened lines corresponding to hv+(m) and hv (m)
then coincide, and the shape function of the resulting
line has the form g(x) =(1/s. ) I

y' —(x—xo)']—"' for

which coincide with those given by Eq. (38) when H
is along L1117.However, the hnes should now be sub-
stantially broadened, with hg of order

~g=~ I g+(A /PH)III 3(f.'f-.'+f„'f.'+f.'f.')]'".
(56)

Ke note that the CGect of random strain in broadening
the lines vanishes when H is along L111].Moreover,
sufEiciently rapid relaxation between the states
E+(Sr, m) will ehminate the strain broadening by re-

placing the lines at hv+(m) in Eq. (54) for a given strain

by the motionally averaged isotropic line with fre-
quency given by Eq. (55) (see Sec. VIII) . Finally, for
intermediate values of strain, both pairs of transitions
(52) and (53) may simultaneously be present in the
EPR spectrum.
/Note added i' proof. If we define angles q and o.
through the relations

I
&—&o I

&
I y I

and g(&) =O for
I

&—&o
I
&

I y I
The edges

of the line are therefore sharp, and they coincide with
the resonance frequencies given by Eq. (38). The case
of strong but random residual strain thus leads to a
spectrum exhibiting absorption peaks which coincide
with those expected in the complete absence of strain,
and this spectrum will be insensitive to applied stress
until the resulting strain becomes comparable to the
residual strain. It is probably. this spectrum, rather
than the no-strain spectrum, which was observed by
both Coffman and Hochli. ]

VIG. RELAXATION

Rapid relaxation processes, resulting from the strong
coupling of a 'E state to lattice phonons because of the
orbitaj degeneracy of the state, may lead to a motion-
ally averaged EPR spectrum. 'S'ince the resulting iso-
tropic spectrum may be expected to appear at quite
low temperatures in place of the anisotropic spectrum
described in Secs. IV and V, we shall now obtain an
expression for the relaxation tim'e for this process.

'

The KPR spectrum found in Secs. IV and V'and in
either limit of the inequality (51) in Sec. VII arises
from transitions between states which have opposite
spin S~' ——&-,' but the same vibronic wave function.
There are. two such vibronic states given by the two
linear combinations of 0',g, +„which diagonalize the
combined Hamiltonian of Eqs. (33) and (37), or al-
ternatively the strain Hamiltonian of Eq. (42) for a
given static strain. These two states may be coupled
directly, for a given spin state, by lattice strain, as we
have seen in Secs. VI and VII, and therefore transitions
between these states may be induced directly by lattice
phonons via the strain coupling. When the relaxation
time 7- for such transitions becomes shorter than
(2si1v ) ' corresponding to the frequency diffeience
hv„between the resonance frequencies for these two
vibroriic states as given by Eq. (38) or (54), a mo-
tionally averaged - spectrum given by the isotropic
resonance condition of Eq. (55) replaces the aniso-
tropic spectrum. The relaxation process that we shall
consider to estimate 7- at low temperatures is that
caused by Raman processes. Direct processes in which a
single phonon is absorbed or emitted in the transition
should not be important for motional narrowing of the
EPR spectrum, because the energy separation of the
two states involved in the transition is very small, of
order q(g~PH+A2m) or alternatively 2gVo(eo'+e, o) '~'.

To estimate the Raman relaxation time for transi-
tions between these two vibronic states, we use the
long-wavelength approximation in order to describe
the coupling to a phonon by means of Eq. (42) in
terms of the local strain produced by the phonon. The
resulting transition rate I' per unit time from one state
to the other is found by a straightforward calculation
(the lattice is assumed elastically isotropic) to be given
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at low temperatures (T((Debye temperature) by

where k is Boltzmann's constant, p the density, and

e~ and vl. the velocities of transverse and longitudinal
sound waves propagating along $100]. The relaxation
time v for this process is then given by

r = 1/2E. (5g)

The isotroplc spectIum produced by 1Rpld I'elRxatlon

in the 'E ground state and given by Eq. (55) unfor-

tunately coincides with the spectrum expected for the
excited 'Ai and 'A2 states which should be appreciably
populated when kT d j. Thus, unless one has an esti-
mate for the excitation energy d, ~ and finds experi-
mentally that the isotropic spectrum becomes strong
while yet kT«h~, one cannot safely ascribe the iso-

tropic spectrum to relaxation eGects without a detailed
study of the temperature dependence of intensities,
linewidths, etc. , in any given case. This ambiguity con-

cerning the nature of the transition to an isotropic
spectrum of course also occurs in connection with the
transition to the high-temperature spectrum for an ion
which exhibits a static Jahn-Teller effect at low tem-

perature. Although this transition has been much
studied, ' "'0 a full clarification of it has not yet been
made in any of the cases in which it has been observed.

IX. 9ISCUSSION

We have seen that, as the strength of the Jahn-Teller
coupling increases starting from zero, the properties of
the ground state vary continuously through the regime
of the dynamic Jahn-Teller effect. The vibronic ground
state remains. a 'E(F~) state, and its splitting under
various perturbations is identical, except in magnitude,
with the splitting of the 'E electronic state when Jahn-
Teller effects are ignored. Of course, when the Jahn. -

Teller coupling becomes very strong the first excited
vibronic state approaches more and more closely to
the ground state, and when this excitation energy 5~
is comparable to the strength of a perturbation this ex-

cited state must be induded explicitly in the analysis
of what should be observed, say, in an EPR experi-
ment. The limiting case when the excited state ap-
proaches degeneracy with the ground state (and higher-
order e6ects split the accidental degeneracy of the
'A~, 'A~ excited state) is, of course, the case that has
been analyzed previously in terms of a static Jahn-
Teller effect with three equivalent distortions, and the
dynamic case for which Ai. is small but not zero is the
one considered in detail by O' Brien. '6 However, so long
as h~ is large compared to the various perturbations, we

see that we need only be concerned. with the behavior
of a 'E ground state alone, and that its behavior js
formally identical to that of a 'E eleCtronic state in
simple crystal-fie1d .theory.

The magnitude of the response of the 'E ground state
to various perturbations is affected by the Jahn-Teller
coupling, as we have seen, and this change may be
described very conveniently by introducing appropriate
reduction factors in the formal theory of the electronic
'E state. These factors have the value unity for no
Jahn-Teller coupling and are diminished as the strength
of the Jahn-Teller coupling increases. The factor q has
a limiting value of -', for a strong linear Jahn-Teller cou-
pling and is appropriate to all perturbations such Rs ap-
plied tetragonal strain Rnd the Rnisotloplc parts of the g
factor and hyperhne interaction which transform, as g
(at least to those that are not explicit functions of the
distortion) . The factor P has a 1lmitlng value zero and
is appropriate to perturbations transforming as 3„
such as those arising from eBects of trigonal strain.
Symmetric perturbations such as the isotropic parts
of the g factor and hyperfine interactions are, how-
ever, quite unaffected by the Jahn-Teller coupling.
These reduction factors are the precise analog of
those shown previously" to be introduced by a Jahn-
Teller effect in the behavior of a triplet state, and they
have a similar origin in the reduced overlap of the vi-
brational parts of the wave functions associated with
di6erent electronic wave functions in the various vi-
bronic states. We have also shown that there are
second-order effects for the doublet analogous to those
found for the triplet. Although our analysis in this
paper has been simpli6ed by the assumption that the
Jahn-Teller coupling may be approximately repre-
sented by coupling to a single pair of vibrational modes,
we expect that a better analysis using the phonon con-
tinuum will lead to siiiiilar conclusions concerning the
behavior of the ground state, although the values of the

t 11 the be pp p tely od 6ed.
%e may now see plainly that CofI'man's "third type

of Jahn-Teller spectrum'"4 for a 'E state is simply the
case of a vibronic 'E ground state when q= 2. {Ogman
used Bersuker's theory"" to evaluate the appropriate
matrix elements of the Zeeman and hyper6ne interac-
tion among the tunneling states, and since he assumed
the overlap y to be negligible, his results are equivalent
to taking g= —', as given by Eq. (29) . We have seen that
q=2 is Rlso the limiting cRse approached for linear
Jahn-Teller coupling when h~r))5&v; in fact, when
EqT/%co is as small as 2.5, we find from the calculations
of Child and Longuet-Higgins'5 that q=0.542.
it is possible to have q

—', even though the situation is
rather diferent from one that can be described in terms
of tunneling. between well-defined distorted configura-
tions )for ErT/fuv=2. 5, the excitation energy 6, to the
first excited state above the 'E ground state is sti]1

(1/5)5~ from Eq. (16), and of course the trough in
Fig. j. preserves its rotational symmetry when only
linear Jahn-Teller coupling is presentj. On the other
hand, Coffman's 6nding that q~-,' describes the case of
Cu~+ in MgO is also consistent with his model based on
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a strong Jahn-Teller couphng with tunneling between
well-localized distorted conhgurations. As we have seen
from O'Brien's theory, q should be less than —,

' if the
Jahn-Teller coupling is strong, but as O'Brienm showed
explicitly, one obtains q= c2———,'Ll —(1/8~) j if the vibra-
tional wave function varies as exp) —~(8—80) 'j in each
well and if the overlap y is negligible. Thus for well-
localized states we should have q —,', in agreement with
Cowman s conclusion. Distinguishing between these al-
ternatives (and other intermediate cases that may also
give j=,') is not possible on the basis of the data so far
available for Cu'+ in MgO (although from the be-
havior of Cu'+ in other octahedrally coordinated crys-
tals we would of course expect a fairly strong Jahn-
TeHer coupling in this case) .

When the Jahn-Teller coupling is sufficiently weak
so that q is appreciably greater than ~, the present
theory based only on linear coupling should su%.ce to
give a fairly accurate description of the situation. In
this case, as we have seen, it is possible to infer the
value of EqT/Are directly from the value of g using
Kqs. (12) and (14). We shall now use this approach to
propose an alternative interpretation of Hochli's ex-
perimental data" for Sc'+ in CaF2 and SrF&.

Hochli found that his g factors and hyperfine splitting
for the Fs ground state showed an anisotropic variation
agreeing with that of Kqs. (34) and (38). From his
data for the g factors, taking the ratio of the coefFicient

qg2 of the anisotropic term in Eq. (34) to the difference
between the isotropic part gi and the spin-only value
2.0023, we obtain using Eq. (31) the values q=0.75
and q=0.7I, for CaF2.'Sc'+ and SrF2.'Sc'+, respectively.
Applying our theory for linear Jahn-Teller coupling to
these results, we obtain from Eqs. (12) and (14) the
values

EgT/kid =0.25 and 0.34 (59)

for CaF, :Sc2+ and SrF2. Sc'+, respectively. On the
basis of our present theory, therefore, Sc'+ in CaF2
and Sl'F2 is not Rt 811 near the 11mlt of a sta'tie Jahn-
Teller effect, which requires Eg~&)fr~; on the contrary,
the Jahn-Teller energy is only one-quarter to one-third
of the energy of the effective vibrational mode, so that
the Jahn-Teller coupling is relatively weak, and we are
well within the regime in which the Jahn-Teller effect
must be viewed entirely as a dynamic coupling of the
electrons to the vibrational modes. For so weak a Jahn-
Teller coupling as indicated by Eq. (59), we would ex-

pect our theory based on linear Jahn-Teller coupling to
be altogether appropriate (apart from the need to
generalize the theory to take proper account of the
phonon continuum) for a detailed interpretation of the
system. Moreover, from our result from O'Brien's
theory that q must be less than —,

' for a strong Jahn-
Teller coupling (EiT))ko) with warping, we see that a
model based on this limiting case as in Bersuker or

r = (4.3X10 ')/(q4Vg4T'), (60)

where r is measured in seconds and V~ in eV/(unit
strain). Taking thevalueq

~
2g&PH+A~

~
1)&10 'cm '

from Hochli's data, we find that (2vrhvii2) ' SX10 "
sec for the pair of lines with m=-,'. Accordingly for
q= 0.'IS, if V2~1eV/(unit strain) we find from Eq. (60)
that r& (2m.hvi, ) ' for T&8'K. It is therefore quite
likely that motional narrowing of the low-temperature
anisotropic spectrum appears in just the temperature
range in which Hochli observed the appearance of the
isotroplc spectrum. HoweveI', the linewldtlls should be
strongly temperature-dependent if the isotropic spec-
trum is to be accounted for on this basis, and Hochli re-
ports that the linewidths of this spectrum ar e practically
independent of temperature between 6 and Io'K. This
feature of the data is of course better accounted for by
HOchli's proposal that the isotropic spectrum arises
from an excited orbital state. This and other features of
the data, , particularly the relative extent to which re-
laxation and random strain inhuence the onset of the
isotropic spectrum and determine linewidths, can only
be clarified by further investigation. We may note, how-
ever, that an interpretation of the isotropic spectrum in
terms of relaxation would account at least qualitatively
for the diAerent widths of the diGerent hyperfine lines
in the isotropic spectrum at, say, T=9'K, since the
lines with the larger values of hv would be rnotionally
narrowed at higher temperatures. The corresponding
lines in the isotropic spectrum would thus be the
broader ones at temperatures low enough such that

O'Brien's treatment cannot account for the values of q
found from the experimental data.

Since the Jahn-Teller coupling for Sc'+ in CaFq and
SrF2 is thus evidently in fact quite weak, it is not
reasonable on the basis of the present theory to suppose
that the first excited vibronic state of the Sc'+ can be
as low as 8 to Io cm ' above the ground state, if we as-
sume that we should take for Ax a value of several
hundred cm '. From Fig. 3 we see that for values of
E~T/fuu as given in Kq. (59) we should have Di 0.7 fur.
The isotropic KPR spectrum which Hochli found for
T&O'K and which he attributed to resonance in a low-
lying excited state must then have some other origin
if the present theory is the appropriate one.

It seems very plausible that this isotropic spectrum
may arise from effects of rapid relaxation within the
'E ground state itself, although there are features of the
experimental data which appear to be not altogether
consistent with this proposal. As we have seen in Sec.
VIII, exactly such a rnotionally averaged spectrum is
expected in the 'E state when the relaxation time 7 as
obtained from Eqs. (57) and (58) becomes short com-
pared to (2shi ) ' as obtained from Eq. (38). Sub-
stituting values appropriate to CaF~ in Eq. (57), we
6nd
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the motional narrowing is not complete, in agreement
with the observations.

Finally, we may compare the values for EeT/Ru ob-
tained in Eq. (59) with what we might expect on the
basis of Eq. (6) and the approximate relation (43b) be-
tween the Jahn-Teller coupling coe%cient V and the
strain coe%cient V2. Using 8=2.36 A and p=M=
3.18&(10 "g for CaF, , we obtain (in cm ')

EeT
——0.088 (Ve/free) '. (61)

Thus if Ve has a value ieV/(unit strain), and if
%v~300 cm ', we would have E~T~60 cm '. Thus the
values (59) for EeT/fice are certainly consistent with
this estimate if Ve is in the neighborhood of ieV/(unit
strain). Clearly it would be extremely valuable to ob-
tain an experimental determination of V2 from a meas-
urement of the strain coeKcient V&'=qV2 of the 'E
vibronic ground state of Sc'+, in order to check the
consistency of applying our theory to this ion.

APPENDIX I: EIGENSTATES OF THE UIBRONIC
HAMILTONIAN

The transformation

X'= exp(i S)X exp( iS)—
of the Hamiltonian X of Eq. (1), with

(Ai)

yields

S= —(V/Ie~'f'i) (PeUe+P. U.),

X'=Xed —( V'/p~') pd+ AeM]

(A2)

as obtained previously by MofBtt and Thorson, "plus
terms of order V' and higher. Here 3f is the "angular-
momentum" operator

M=5 '(PeQ, —P,Qe).

The eigenvalues of X to order V' are therefore"-

(A4)

E„e,= Pp+ (n+1) fico (V'/ee(ee) (m+—1), (AS)

where n=0, 1, 2 ~ ~ ~ m= —n, —n+2 ~ ~ - n —2 n.
and p= 1, 2, each level being doubly degenerate. Since
M commutes with xe, the exact eigenstates

~

nmp)'
of X' to the order written down in Eq. (A3) are the
vibrational eigenfunctions of Xe (the Hamiltonian
of the two-dimensional harmonic oscillator) which are
also eigenfunctions of M, multiplied by the electronic
functions p„= (1/v2) Qe+g, ) which diagonalize Ae.
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The vibronic eigenstates of our original X are accord-
ingly given by

~
nmp)=exp( i—S)

~
nmp)', (A6)

U, '= U, —(2V/eesPfi) PeA,

—(2V'/Ie'eeet) (Pe'-U, P,PeUe)—, (A8a)

Ue'= Ue+ (2V/pcs%) P,Ae

—(2V'/ee'M%') (P,'Ue P,PeU, ) —(A8b)

de' = Ae+ (2V/ee(o%) (PeU, P,Ue)—
—(2V'/ee'(a%') (Pe'+P, ') Ae (A8c)

while of course by applying (A7) to the unit matrix d
we obtain simply d. Accordingly, the matrix elements of
Ue, U„and Ae among the vibronic eigenstates

~
nmp)

of 3'. are given to order V' by the matrix elements of
U, ', U, ', and A, ' in Eq. (A8) between the eigenstates
of the simple harmonic-oscillator Hamiltonian 3CO. In
particular, for the matrix elements of Uq within the
ground state, we obtain

(OOP I
U,

I
OOP'&=tt. i (Ve/p~'&—)]Q. ~

Ue
~ P;)

(A9a)
and similarly for U'„while for A2

(OOp I
~e

I
OOp'& =Ll —(2ve/„~en) jg „~ a,

~ p, , ).

(A9b)

These results provide the derivation of the reduction
factors of Eq. (8) of the text when Eer« Rue. Since S
as given by Eq. (A2) belongs to the symmetric repre-
sentation (Ai) of the cubic group, the transformation
properties of the states

~ nmp) and
~

nmp)' are iden-
tical according to Eq. (A6), and similarly those of the
operators 0' and 0 according to Eq. (A7). The opera-
tors Uy' and U, ' therefore belong as partners 0, e,
respectively, to the representation E, and A~' to A~.

When the Jahn-Te]ler coupling is not weak, we use
the fact that any linear combination of Pe and P, which
is a single-valued function of Qe, Q, may be expressed as
a series of the form

+~LA„(p) exp(in8)P +B„(p) exp(inc)g~j, (A1O)

where p, p+ are the electronic functions defined by
Eq. (4), and A„(p), B„(p) are functions only of p.
Here n must range over all half-odd integers, " n=

and matrix elements of any operator 0 among the
eigenstates of 3C are therefore the same as those of

0'= exp(i S)0 exp( —iS) (A7)

among the states
~

nmp)'.
Applying the transformation (A7) to the electronic

operators Ue, U„and Ae of Eq. (3), we obtain to
ordel V
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—2, ——'„+2, +—',. ~ . the half-integral value being
necessary in order that (A10) be single-valued, since

P+, P change sign if 8 is replaced by (8+2ir) . However,
X of Eq. (1) does not connect terms of (A10) having
diferent values of e. The eigenfunctions of this Hamil-
tonian accordingly have the form

4' =f„(p) exp(in8)P +ig„(p) exp(in8)P+, (A11)

where f„,g„satisfy the coupled dii'ferential equations" "
1 8 8 n'+(1/4)

2P P ~P ~P P

fn f~n gn

+ (-;/ia&'p'W Vp —E ) = — (A12)
g

2/4 p

Since all the terms in Eq. (A12) are real, we may choose
the arbitrary phase factor in 4'„ in Eq. (A11) such that

f„(p) and g„(p) are real functions. All eigenstates are
doubly degenerate, ""since if f„, g„satisfy Eqs. (A12)
for n=

I
n I, a solution of these equations for n= —In I

but the same energy E„ is given by

where in obtaining Eq. (A16) we have used the normal-
ization condition

pLf '(p)+g '(p)]~P=1
0

From Eqs. (A15) and (A16), we see therefore that the
relation

(A18)

is an exact relation so long as only linear Jahn-Teller
coupling is considered.

In general, it may be shown that Ut), U, have non-
zero matrix elements between two states 4„,0'„', of the
form (A11) only if

I
n —n'

I

= 1, but that A2 is diagonal
with respect to e. As the first excited state"" has
sz=+&, it follows that A2 has no matrix elements be-
tween the ground state and first excited state; those of
Ug, U, are given by

&+~@'I U4I +4/4')= &+4/2 I
f/

I
+3/2+)= —

2r/,

(A19)

&+i/4 I ~~ I +4/4 &= &+in I
f/4

I +4/2 &=+44/~

f—
I l(p) =f1 l(P)

g—l~l (P) gl~l (P) ~ (A13)

(A20)

where we use the notation of Eq. (A14), and p is given
by

we find for n=~-+3m (m=pcsitive integer or zero)
that 4„+, +„belong to E as partners tII, t., respectively.
For n= 2+3m, 4'„+ belongs to Ai and 4„ to A2. For
n= 5~+3m, 4„+and (

—) V„belong to E, respectively,
as the partners g, e.

The ground state of BC in Eq. (1) for an arbitrarily
strong Jahn-Teller coupling is a doublet having n=
and thus belonging to E.'~' We may evaluate the
matrix elements of Uq, U„and A~ within this ground
state explicitly in terms of fi/&(p) and gi/4(p), using

Eqs. (A11) and (A14), to obtain general expressions
for the reduction factors p and q defined in Eq. (g).
We obtain in this way

and

p= 4ir Pfi/2(P) gi/2(P) dP
0

(A15)

It is convenient to form explicitly the linear combi-
nations of the degenerate eigenfunctions 0'„ in Eq.
(A11) that belong to the irreducible representations

E, Ai, and A2 of the cubic group. Assuming that f„
and g„are real and that they satisfy Eq. (A13), and
defining (where now we take n) 0)

@„+=2—'/'(4„+4' „),
4'„=i2 '/'(4' —4' )

pdp I fi/~f&/2 gi/2g4/2 fl/2g4/4+gl/4f4/2}.
0

(A21)

When the Jahn-Teller coupling is strong, so that
E&T))fico, the separation 4EzT of the potential-energy
surfaces in Fig. 1 in the region of the minimum at
p=

I
V I//4442 is large compared to (fi'n/2/4p'), the coef-

ficient of the term on the right-hand side of Eq. (A12),
for small n. Accordingly, a state with E„near the mini-
mum is predominantly the electronic state foi the
lower potential-energy surface, so that for this state we
have

f„(p) exp(in8)P, ( V) 0) (A22a)
ol

ig„(p) exp(in8) f+, ( V(0) (A22b)

and we may omit the right-hand side of Eq. (A12) in
solving for the wave functions and energies. The re-
maining dependence on sz is then through the term in
(n'/p'), so that it is clear that the ground state has
e=&-,' and that the 6rst excited state has e=&—,

' with
an excitation energy above the ground state given to
an excellent approximation when EqT/fire&)1 by

(f42/4444/V') =Scu (fk0/2Egi) . (A23)
2ir pf&/4(p) gi/2(p) d» (A16)

Since in this limit the ground-state eigenfunctions, as
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given by Eq. (A22) are multiples either of P or of

f+, so that in Eq. (A11) either f„(p) or g„(p) is negli-

gibly small, we see from Eqs. (A15) and (A16) that in
this limit P =0 and q =-,'. This result provides the proof
of Eq. (11) of the text. Moreover, in this limit the
radial functions f1~~(p) and fg12(p) (or g112 and gg~l) for
the ground state and 6rst excited state are approxi-
mately equal, since the term rl'/p' in Eq. (A12) is then
small in the vicinity of the minimum. Accordingly for
EqT))&co we find from Eqs. (A17) and (A21) that

~
ll ~~1 in the matrix elements (A19), with the sign of

q the same as that of V.

APPENDIX II: RELATION OF STRAIN TO
DISTORTION MODES

we have thus
E= ', Mg-Q,',

provided the transformation (A25) is orthogonal. Ac-
cordingly, if we use such a transformation to define
vibrational coordinates Qy, Q„ the vibronic Hamilton-
1an describing thc interaction of thcsc modes %'1th thc
clcctlonlc state E ls glvcll by Eq. (1) of thc text with

Ke now introduce a tetragonal strain, given in ac-
cord with Eq. (40) by e„=e»= —se&, e„=+xat:e. The
eth ion is accordingly displaced to

E„'=LX„10(1—-,'eg), X„P(1—seg), X 3'(1+-',eg) j.
Ke derive here the relation between strain and the

amplitude of the distortion modes -of the set of nearest-
neighbor ions, in order to relate the coeScient for
linear Jahn-Teller coupling to the strain coefficient.

Let R =(X„l, X„l, X„l) denote the Cartesian co-
ordinates of the eth nearest-neighbor ion, and X„; the
equilibrium value of the coordinate. The kinetic energy
of these ions is then piven by

Qg = (2/v3) Bee. (A29a)

Substltutlng tllcsc dlsplacemcnts lllto Eq. (A25), wc
obtain the following relation between eg and the even
vibrational mode Qg that transforms as E(8), ior six-
and eightfold cubic coordination and fourfold tetra-
hedral coordination, respectively:

Sixfold,

vrherc M is the mass of one ion. Introducing a trans-

formationn

Fourfold,

Qg
——(2'/3) Bee, (A29c)

Q„=Qn„., „,(X„;—X„,'),
n, i

(A25) Here E is the nearest-neighbor distance. Identical rela-
tions between Q, and e, of course also hold.


