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upper curve of Fig. 13 yields 5"=32.1/sec'". Table III
yields a value of v, =6)&10 ' sec, from which the
computed value of C" is 7.12X10 "cm'/sec for Bt——24
G. The computed value of E„ is 1.6X10"/cm', as
compared to the value of 2.85X10"/cm' supplied by
the manufacturer of the crystal. " If this effective value
of S„were used to calculate D in Sec. IIIA, instead of
the value supplied by the manufacturer of the crystal,
the computed value of D would have been larger by a
factor of 2.18 than those given in Table III, and in
closer agreement with the value calculated in Ref. 16.

Dr. CONCLUSIONS

The results of these experiments give quantitative
support to current theories of nuclear spin relaxation
via paramagnetic centers where spin diffusion plays a
part. In particular, the measured value for the spin-
diffusion constant in CaF2 agrees reasonably well with
its current theoretical value. The spin-diffusion vanish-

ing case, predicted in LT, has been found, and the
dependence of T1„upon the magnetic field, 7, and Ã„,
has been verified for both this case and the di6'usion-
limited case. In these experiments, the technique of
studying relaxation in the rotating reference frame has
been extremely useful, for it has allowed us to find T&

and thus estimate 7-,. It has also allowed us to work in
regions where the direct spin-lattice relaxation rate is
very rapid without having an extremely high con-
centration of paramagnetic centers. This in turn has
allowed us to verify Blumberg's prediction of how the
nuclear spin system should relax when there is zero
magnetization gradient in the sample.

ACKNOWLEDGMENT

One of us (I.J.L.) wishes to acknowledge the hos-

pitality of the Physics Division of the Aspen Institute
for Humanistic Studies, where part of this paper was
written.

PHYSICAL REVIEW VOLUME 166, NUMBER 2 10 FEBRUARY 1968

Random-Walk Models of Photoemission*

STEVEN %. DUCKETT

Aerospace Corporation, El Segundo, California

(Received 11 September 1967)

An exact solution in closed form is given for the photoyield in the isotropic random-walk model of photo-
emission. The proof makes use of a theorem of importance in the theory of queues and ladder-point variables.
The eQ'ect of reQection of the photoelectrons at the interface is also treated. A recursion relation for the
probability of emission on the nth step I' is derived from the expression for the photoyield. Numerical
values of the photoyield and the E„'s are tabulated for numerous values of the relevant parameters, and
these numbers are compared with the results of approximate expressions. The exact photoyield values are
in good correspondence to a slightly modi6ed version of a formula derived by Kane. A simple approxima-
tion is also given for the values of the P„'s.

I. INTRODUCTION

PHOTOELECTRIC emission is a two-step process,
involving the creation of a free electron in the

interior of the solid and the eventual escape of this
electron through the surface into the vacuum. The
transport part of the problem has been treated as a
random-walk phenomenon and both Monte Carlo re-
sults" and approximate analytical formulas' 6 have
been given for the photoemission. However, as this
paper shows, an exact closed-form expression can be
obtained for the photoyield in the random-walk model.
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In addition, a formula for the probability of escape
after exactly n collisions P„ is expressed in a form suit-
able for machine calculation, and the first twelve P„'s
have been calculated for numerous values of the absorp-
tion and scattering parameters. These probabilities are
compared to the results of the approximate calculations,
and it is shown that some rather simple formulas give
very good approximations to the exact results.

Il. RANDOM-WALK MODEL

The model considers an electron, created at (x, y, s)
in the solid, that undergoes an isotropic random walk.
The problem is to compute the probability that the
electron will pass through the plane @=0 before its
energy has been reduced to the point where it is impos-
sible for the electron to escape. This energy loss usually
occurs suddenly due to pair creation, electron-hole
recombination, or the ionization of an impurity in the
lattice. We will call the energy-loss event "absorption"
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of the walker. If there is no reQection of the electron at
the x=0 interface, the problem can be reduced to a one-
dimensional one, where we consider only the walk
generated by the projection of the three-dimensional
walk on the x axis. We will consider the effects of elec-
tron reRection later.

If we let 1—5 be the probability of absorption at
each hop, the probability of escape on the nth hop of a
walker starting at x is of the form p„(x) 5" ', where

p„(x) is the probability of passing through x=0 for the
first time in the absence of absorption processes. This
expression is derived in more detail in Sec. III. The
distribution of x is given by f(x) =ae *, where a is the
absorption coeKcient of the light. Thus the fractional
number of electrons escaping after n hops is

are well known in probability theory. Feller' shows that

QU (a) 5'=(1—5) '

S"
X exp Q — (e ~—1)f„(x)dx ~, (6)

n=l n p
]'

where f„ is the probability density of the positions of
the walkers after n steps in the case that the walkers
start at the origin with no restrictions on their excur-
sions. Thus

co gn m

I'=- S ' 1—exp g — (e *—1)f„(x)dx . (7)
n 1 n p

Since fi(x) is assumed symmetric in x, we have

I'„=a e *p„(x)S" 'dx= afi„(a—) S" '
p f„(x)dx=-,', for all n.

where the circumAex denotes "Laplace transform of."
The quantum yield I' is given by the sum of the P„'s:

I'=a+ j„(a)5" '.
n=l

We note that F is a/5 times the Laplace transform of
the generating function of p„.

To calculate this quantity we proceed as follows. Let
U„(N) be the probability that I is the maximum excur-
sion in the course of n steps of a walker starting at the
origin. The total fraction of walkers that started at the
origin and penetrated the plane I=x sometime during
n steps is thus

U„(u) du;

the number entering the region N&x for the first time
on the nth step is

U„(N) dl — U„ i(u) du=—p„(x) .

Hence,

p (a) =— e *p„(x)dx= —a 'U„(a)+a 'U„ i(a). (4)
p

Thus,

V= QLU„, (a) —U„(a) jS" '
n=l

cd

= [ QU, (a) S - 5-'L Z i;(a) S -1j}
j=o

=5 'l 1—(1—5) ZUi(a) 5'j

The U; are related to the "la,dder variables, " which

Also,

1 co

f„(x)=— exp( ix8)—q "(8)d8=7r ' cos8xy"(8)d8,
p

where p(8) is the characteristic function of fi(x).
Accordingly

CO CO QO

e *f„(x)dx=—— y" (8) e ~* cos8xdx
p 2X p p

CO A
y" (8) d8.

~2+g2

Finally, we use the expansion

Xn
ln(1 —x) = —g—

n=l

V(a, S) = 5 '
~

1—(1—S)'"

CO 0.
X exp —ir ' »Ll —Sq (8)] d8

~

. (9)a2+82 j
This is the general expression for the photoyield. Notice
that Eq. (2), which formally contains an infinite num-
ber of truncated convolution integrals, has been ex-
pressed in a form containing only one integral. The
correct expression to use for p(g~ in the photoemission
case will be considered in Sec. III.

Certain asymptotic forms of Eq. (9) can be noted.
If a is very large

V (1/S) Li —(1—S) 'I'1 (10)

independently of the form offi(x) . To find the behavior

Feller, Art Introduction to Probability Theory and Its
A pp/ications (John Wiley 8z Sons, Inc. , New York, 1966),Vol. II,
p. 573.
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scattering is X, '; the corresponding probability for
absorption is P, '. In 3-space, the scattering density,
which is the probability of an "alive" walker stepping
to the point E, is
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where we have defi ed X '=—'A, '+P„, '.
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FIG. 1. Photoyield I versus n) for the case R=O. The solid
curves are from the exact calculation; the short-dashed curve is
from Kane's formula; the long-dashed curves are from Kane's
formula, slightly modi6ed as described in the text.

f, (x) = (2P„) ' "exp( —y/X)
(14)

The probability density as written is defective (does
not sum to unity); we can write Eq. (14) in terms of
the nondefective density

for small n we rewrite the integral in Eq. (9) as

CO

1nL1 —Sq (ay) ]
0 1+y

where

f (x) = 5(2X) ' d
l~l 3"

5= X/X, = L1+ (X,/X, )] '. (16)

For symmetric f2(x) the first two terms of the expansion

p(ay) are 1—(1/2)a2n2y2, where a' is the variance of
f&(x) . For small no. we get

CX2

lnL1 —Sp (ny) ]
0 1+y'

The characteristic function of the exponential integral
density is

q&y) = (tan 90) /M.

The total photoyield thus becomes

QO

~2r i ln I ] —5$] —(1/2) e-2(yyq I 1+y-'

= inLno (5/2) 'I'+ (1—5) '~2g.

Thus for small uo.

Y(n, X„X,) =5 ' 1—(1—5)'~-'

- ln (1—LS(tan-ice)/~e] I de
+exp((17)

7t
Q

~2+ g2

We next derive an expression for the p„(o).
Eqs. (2) and (7) we obtain

+72 (u) 5"=a '[1—expL —ga„(5"/») jI

(11) with 5 given by Eq. (16).A trivial rearrangement of the
integral in Eq. (17) yields a somewhat more useful

From

Y(nX, 5) =5 ' 1—(1—5)'"

where

n=1 ~ ln(1 —.LS(tan 'nay)/nay)Idy
yexp —~-~

( . (18)
0 1+/

g n—1

7i-(~) = ——» 'Zo~7i -2(~). (13)

a„= L1—e gf„(x)dx.
0

We take the derivative of Eq. (12) with respect to
S and equate powers of S to obtain

So far we have not considered the possibility of electron
reflection at the interface. We assume the reflection is
disuse, since surface irregularities will probably be of
the order of the electron wavelength ( 10 A) . Suppose
a fraction E of the electrons approaching the surface is
reflected. A certain fraction Ii of these will again ap-
proach the surface. Since the number of previous hops
has no e6ect on the future scattering,

III. THE SCATTERING FUNCTION
F= 252 Y( ~, 5) —(1/2) 3= L1—(1—5) '~2j2. (19)

We now specialize the general formulas (9) and (13)
to the scattering function f, (x) that we expect for elec- A fraction R of these one-reflected electrons may, of
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TAaI.E I. Values of the photoyield for numerous values oof S and a) for the case R=O.!

I
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0.2232
0.3520
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course, be reflected again. The qua, ntum yield is thus The a„S"@i.e given by

I"(nX, S, R) = (1—R) F(o.X, 5) Q(RF)" a„S"= L1—e ')5"f„(x)dx
Q

„,—, Y(nX, 5). (20)
1—RE1—(1—5) '"j'

& gn2

gn
g
—CZ

Q
3 Q

cos8xq "(8)d8dx

Finally we reduce Eq. (13) for the individual prcba-
bilities of emission after n steps (in the absence of re-
fl

'
j t form suitable for ma. chine calculation.flectionj o a orm su'

The probability of emission on the nth step is
P„(nh, 5)

Q

tan '&Xy " dy

-Xy 1+y-

P„= "~( )5" '=S ' nZa~r„, —= IX' N
g=l

0.5 —~—

f' 5=(~5) 'I

n—1 gj

Q

tan 'aXyt" dy

o,hy ) 1+y'-'

t--.~y dy i
nay 1+y' )

(22)
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Fro. 2. Fractional emission on the nth step, I'„, versus e for the
case S=i, R=O. Th points are from the exact calculation; the
curves are taken from the approximate expression descry. bed in the
text,

IV. NUMERICAL RESULTS AND DISCUSSION

The photoyield Y(nX, 5) (Eq. 18) is tabulated in
Table I for different values of Q.P and S. The first 12
values of P„(nX, 1) are found'in Table II. P„(nX, S) is,
of course, equal to P„(nX, 1)5" '.

The approximate expressions for the photoyields have
been compared with the results of the exact calculation.
A modification of the formula derived by Kane' as
been found to give the best fit. The approximation o
Duckett and Metzger' is more cumbersome and not as
accurate. The results of Beckman' and of Roberts'
require numerical integration; although very accurate,
they are not exact, because these authors have used in
their proofs the assumption that the angular distribu-
tion of walkers passing through an imaginary plane is
isotropic, whereas the real distribution is biased toward
small angles because electrons traveling normal to any
given plane are much more likely to intersect it before
being scattered.

Some of the Monte Carlo calculations by Stuart and
Kooten' cover the range of parameters for which we
have evaluated Eq. (18), a,nd the results agree to better
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TAM, K II. Values of the fractional emission on the eth step, P„,for the case S=1, R =0; the numbers for other values of S are obtained
multiplying the P„'s by S" '.
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than three places. These authors also consider cases in
which the photoelectron has an "escape cone" of less
than 2m sr. The yield under this restriction can be cal-
culated to within a few percent by using in Eq. (20) an
effective refiectivity, which is given by

R= [(2w —0) /2wj',

where 0 is the value of the escape cone.
In his approximation, Kane uses the function

(S/2X) exp( —
~

x ~/X) as the step-length probability
density, instead of using the function of Eq. (14),
and then solves the transport integral equation exactly.
The result Kane obtains for 8=0, expressed in our
notation, is

I'(aX, S) =aX/[ah+ (1—S) '"/[1+ (1—S) '"j. (23)

This function, for 5=0.9, is plotted as the dotted
curve in Fig. 2; the agreement is fair. However, it is
naive to equate the X in Kane's expression with the
scattering length in 3-space. A fundamental observa-
tion of random-walk theory' is that the variance
of the step-length density is the most important
single parameter. Thus we rewrite Kane's density
in the form p(x) = (S/2X&) exp( —

~

x ~/&&)& with Xq

being such that the variance jx'p(x) dx equals the
variance of the density of Eq. (14). A straightforward
calculation (or the comparison of the second terms of
the series expansion of the respective characteristic
functions) shows that X~——)/v3. We thus obtain, as
the approximation to use,

aX/v3

[(a~/v3) + (1—S)"'j[1+(1—S) '"j
(24)

' P, Krdos and M. Kac, Bull. Am. Math. Soc. 52, 292 I,'1946).

This function is plotted as the dashed lines of Fig. 2.
To correct for reflection we need to multiply Eq. (24)
by (1—R)/I1 —R[1—(1—S)'I'j'I as shown in Eq.
(20).

The average number of hops in the absence of any
surface or absorbing barrier is A'= S/1 —S. Equation
(24) can be rewritten as

aX (sV/3) '"
I'= 25

[nX(X/3)'"+ Sj[1+(S/N) "'j
In the limit (iV)'12»1, this reduces to the expression
given by diffusion theory,

nX (X/3) "'
aX (X/3) "'+1 (26)
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A formula that approximates the P„'s has also been
found. Kane shows that P„(alj, 1)~nX/2+e for
aha»1 in the case of no reflection. He also shows that

1+(1/aX)p for a'n+e»1.
2 (we') '~'

A simple formula that has both these limits is

P„(nX, 1)
7 2

2(/e) (2+/ '+w' 'ye) '

where y=aX/W3. This approximation is plotted in Fig.
2; the approximation is poorest when aha 1


