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Nuclear Spin-Lattice Relaxation via Paramagnetic Centers*)
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The theory of nuclear spin-lattice relaxation via paramagnetic centers in diamagnetic crystals is investi-
gated in terms of both the single-relaxation-center and the multirelaxation-center models. In this theory, the
distances between centers are allowed to be Bnite. A new case is found for which the theory predicts a new

dependence of the spin-lattice relaxation time upon the applied magnetic Geld, the concentration of the
paramagnetic centers, and the magnitude of the diffusion constant. An adaptation of the theory to the rotat-
ing reference frame shows that under certain conditions the spin-lattice relaxation time in the rotating frame
can be larger than in the laboratory frame.

I. INTRODUCTION

~ 4HE dominant role played by paramagnetic im-
..purities in nudear spin-lattice relaxation in certain

diamagnetic crystals was recognized as early as 1947.'
In 1949, Bloembergen proposed and investigated the
idea of spin diffusion' as a means of transporting nuclear

energy to the paramagnetic impurity centers. In this

paper Bloembergen derived the transport equation for
the nuclear magnetization and solved the time-inde-

pendent case numerically to obtain an expression for
Ti in the diffusion-limited case. Later, Khutsishvili
found an analytical solution to the equation. '4 de
Gennes also solved the problem and showed that to a
first-order approximation, the same Tj expression could
be obtained from either the steady state or the transient
solution. ' Blumberg investigated nuclear spin-lattice
relaxation due to paramagnetic centers for the case
where the effect of spin diffusion was negligible. He
derived the Pl' law for the growth of the nuclear
magnetization a short time after the nuclear spin system
was saturated. Blumberg also worked out a theory to
cover the case in which spin diffusion is so fast that the
relaxation rate depends completely on the rate at which

pal RHIRglletlc celltels cRII absorb ellelgy (rap1d-dlffll-
sion case). Khutsishvili subsequently solved this prob-
lem also~ by taking the proper limits for his solution
to the steady-state transport equation. In 1964,
Rorschach derived a general expression for Tj. that
linked the two limiting cases in one expression. ' This
solution shows a rather abrupt transition for the be-
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havior of T» when going from one limiting case to the
other (the rapid-diffusion case and the diffusion-limited
case).

Most of the developments of the theory are based on
the assumption that the paramagnetic-center concen-
tration in the crystal is so dilute that the average
impurity separation is essentially infinite in comparison
to the range of direct interaction between the para-
magnetic center and the surrounding nuclei. For some
experiments, this assumption is violated. These theories
also assume that the direct relaxation due to the para-
magnetic centers is spherically symmetric.

In Sec. IIA of this paper the general spin-lattice
relaxation-time equation in the laboratory reference
frame is set up. In Sec. IIB, a spin-lattice relaxation
time T~ is computed from this equation for a spherically
symmetric single-paramagnetic-center model for a jilrite
average separation between centers. Various limiting
cases are considered. In Sec. IIC, the general spin-
lattice relaxation-time equation in the laboratory refer-
ence frame is solved for a multi-paramagnetic-center
model, and its solutions are connected on to the single-
center model.

A nonequilibrium value of magnetization may be
generated along a magnetic Geld rotating in a plane
that is perpendicular to the large applied static mag-
netic 6eld. The time constant with which this magneti-
zation decays, called the rotating reference frame spin-
lattice relaxation time and denoted by T&", may be
diferent from Ty. The calculations of Sec. II are
repeated in Sec. III for T~".

II. SPIN-LATTICE RELAXATION TIME IN THE
LABORATORY REFERENCE FRAME

A. Differential Equation for M(r, r)

In a solid containing paramagnetic centers, the nu-
clear spins are acted upon by the time-varying local
magnetic fields produced by these centers. If an initially
saturated spin system is put in a static magnetic field
Qo, nuclear magnetization will be built up most rapidly
near the paramagnetic centers due to the strong inter-
actions of the nuclear spin system with the time-varying
279
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local Gelds at these sites. This gives rise to a spin-
temperature gradient which causes spatial diffusion of
nuclear spin energy. It will be assumed that the nuclear
spins and the paramagnetic centers occupy Axed po-
sltlons ln space.

Let M(r, f) denote the nuclear spin magnetization at
position r and time t. Then,

[BM(r, f) /Bt]g.e.&= [BM( r, t) /Btf, +[8M(r, t) /BIJOU.

The term [BM(r, 3)/Bkj„represents the rate of change
of M(r, f) due to the direct interaction of the nuclear
spins with the paramagnetic centers, and is given by'

where
[BM(r, t) /Btj„= [Mo—M(r, t) $/T|„(r), (2a)

[2'i.(r) 3-'= Z[C~/I r—R, I']. (2b)

Mo is the equilibrium value of the nuclear spin rnagneti-
zation at the lattice temperature T in the applied
magnetic Geld Boi. R; is the position of the jth para-
magnetic center, and the sum is over all the para-
magnetic centers of the lattice. As shown in Eq. (A27)
of Appendix A, for cvo7-,&&~„7-,', the term C; has the
VRluc

&;=»in'8; «»'ttn. 'V„'&'~(~+ &) [r./(&+~0'r. ') 3,

where 8 is the angle between the vector (r—R~)»d
the applied ma, gnetic Geld 808; y„and y„are the ma, g-
netogyric ratios of the paramagnetic center and nucleus,
respectively; S is the spin of the paramagnetic center,
r, is the correlation time of the s component of the
paramagnetic center spin, v, is the correlation time of
the x or y component of the paramagnetic center spin,
+0=+„80, a,nd co„=+~80.

The term [BM(r, f)/N]q represents the rate of
change of M'(r, t) due to the spatial transport of
magnetization. %hen there is a spatially inhomogeneous

distribution of magnetization, it has been shown' that
due to spin-spin interaction

This radius b is deGncd as the distance from the para-
magnetic center at which the change of 8„, the mag-
netic Geld of the paramagnetic center, is of the order
of the local Geld. 8» produced by nuclei at the sites of
other nuclei. Its va, lue is given by'

&=(3 (~.) /&)'"
where (p~), is the average effective value of the mag-
netic moment of the paramagnetic center in quenching
spin difFusion and u is the distance between neighboring
nuclear spins.

The magnetic Geld of the paramagnetic centers also
broadens the resonance lines of the nuclei near the
centers so that these nuclei normally do not contribute
to the signal produced by the nuclei in a measurement.

e can deGne R radius bo about each paramagnetic
center, inside of which the nuclei have such broadened
resonance lines that their contributions to a measured
signal are unobserved. . A reasonable criterion for the
VRIuc of bo ls thRt dlstancc fl"oIIl thc paralTlagnctlc
center, where 8„ is of the order of 8». Assuming 8„
(p, ),/r', one has

f.= ((.,)./~ ) I*.

It is obvious that bo&b.
Substitution of Eqs. (2) and (4) info Eq. (1) yields

Bm(r, &)/Bt= Q D &(8'/Bx Bxe)m(r, t)
7

—m(r, f) p(C, /i r—R; i'), (7)

where Bl(r, t) = Mo M( I, $) . 8 one could 6nd the
general time-dependent solution to Eq. (7), one could
then find the behavior of the total magnetization of the
nuclear spin system as a function of time for a reason-
able set of initial conditions (such as m=M0 at (=0).
From this behavior, one could then deduce a nuclear
spin-lattice relaxa. tion time for this model. Unfortu-
nately, this differential equation is dificult to manipu-
late, and a number of simplifying assumptions or ap-
proximations have to be made.

[BM(r, t)/Wjg ——Q ~(8'/Bx Bxe) M(r, f), (4)
a„P 1

where D & is the nP component of a spin-diffusion

tensor. Near the va, rious pa, ramagnetic centers, the
value of D & goes to zero. The local Geld duc to the
paramagnetic center is diferent at different nuclear

spin sites, and this tends to prevent the t' f~~J, t'

tlRnsltloD fx'01Tl taking plRcc. This pI'occss ls ncccssRI'y
foI' splD dlfEQslon, RQd v?hcQ this pI'occss ls qucDchcd

the spin-diffusion rate goes to zero. This spin-diGusion

quenching is normally introduced into a calculation by
deGning a radius b about each paramagnetic center,
called the spin-diffusion barrier radius, inside of which

D &=0 and outside of which D t' has a, constant va, lue.

'I. J. Love and S. Gad', Phys. Rcv. 155, 817 (j.9g'),

B. Single-Paramagnetic-Center Model

One type of assumption that can be made to solve
Eq. (7) is that in each region of the sample, only one

of the pal RITlagQctlc ccntcls ls illlportant ln determining
the total nuclear spin-lattice relaxation rate in that
region. The sample is thus divided up into "regions of
inQuence. " These regions Rre assumed to be spheres
centered on the various paramagnetic centers and have
1adll 8 equal to thc Rvcl age scpRI RtloQ of thc pR1R-

magnetic centers:
R= (3/4nE )'"

where Ã„ is the number of paramagnetic centers per
unit volume in the sample. The second approximation
is that D~~=O for a&P and that D"=D"=LP=D



NUCLEAR SPIN-LATTICE RELAXATION

Dft(t) =4~ M(r, t) r'dr

In this model of nonlntcrRctlng sphcl cs of inhuence
the only way that BR(t) can change is by the direct
relaxation of the nuclei in the sphere with the para-
Inagnetic center in the sphere. DiA'usion only moves
IHRgnctization Rround f lorn onc part of thc sphcl c to
another. Thus, since the nuclei for which r&bo are not
obscI'vcd Rnd since thc nuclei foI' which 'F Q 0 hRvc
D=O and thus do not make contact with the nuclei
that have r& b, we can write

DER(t) C—= 4m. PMo —M(r, t) j—r'dr. (12)
N

I.ct us now assume the distribution of magnetization
in the sphere is such that 80R(t)/Bt is exponential with
a time constant T». Then

BAR(t)/R= (BR{~) —DR(t) 1/TI

4~
t Mo M(r, t) jr'dr—

~» b0

Combining Equations (12) and (13) yields

am(r, t)CT;I= '
— dr m(r, t) r'dr

b b0

(13)

If one knew m{r, t) for any pa«Icula«imc d«»g
the exponential relaxation process, one could compute
T» from the above equation. This equation shows that
T» is not extremely sensitive to thc deAuled shape of
m(r, t) .We cannot solve Eq. (10) rigorously for m(r, t),
but we can 6nd the time-independent solution rigor-
ouslys for m{r) and use it to compute TI from Eq. (14).
While m(r) might not look like m(r, t) in detail, these
diGerenccs shoujd not produce majw errors in thc
computation of T».

Setting am(r, t)/N=O in Eq. (10) yields

(r')-I(8/Br) I r'(Bm{r)/Br/ I
—(P'/r') m(r) =0 (15)

Thc thlld RpploxlIIlatlon ls thRt Cgq which ls angularly
dependent, can bc replaced by the constant C equal to
the value of C; averaged over all Rnglcs:

~= 55'(5'+1)v,'~.'f'I:r./(1+~o'r') j (9)

With these approximations, Eq. (7) reduces to

Bm(r, t}/Bt=DV'm{r, t) —(C/r')m(r, t) .(10)

The paramagnetic center is located at the center of the
coordinate system, and the region of interest for the
solutions to the above equation is v&E. Even these
simplifications are not enough to yield a nuclear spin-
1atticc relaxation time T», and one must resort to
further 1ouQd-Rbout methods»

Lc't OR(t) dcliotc tile totR1 Obsclvcd magncflzatlon III

the sphere about the paramagnetic center.

( )

The quantity p has the dimensions of length and is a
measure of thc competing contributions between direct
I'claxatloll and spill dlffuslon. EqllRtloll (15) for m(r)
is a second-order differential equation and yields a
solution with two arbitrary constants whose values can
bc dctcrIYlincd froIQ boUndRI'y condltlons, Since B=O
for z&b, no magnetization can Sow across the sphere
about the paramagnetic center with radius b. Thus

p= (~/D) "'

Bm(r) "C4''D = 4Ir —m(r) r'dr.
Br

The integral in the above equation vanishes for r=b„
so that LBm(r}/Br/I, =0, and we have our first boundary
cond1tlon. Conlbllllng Eq. (17) wltll Eq. (14) yields

m(r) r'dr. (18)

&=2(plr)',

(19)

(20)

Eq. (15) is transformed into the modified Bessel
CqURtloQ

s'»(s)/ds'+sdx(s)/« —Ls'+ (1/4)'jx(s) =o.

(21)
Equation (21) has the linearly independent solutions

The second boundary condition is set artificially by
placing a magnetization sink at r=rt. , so that m(E}
has the fixed value of m». The value of ng» witl eventually
cRncci oUt, of thc cxpIcssloQ foI' T»& so its actual value
is unimportant. The use of a magnetization sink. is an
arti6cial device to yield a nontrivial solution to Eq.
(15). This artificial device, as well as the single-para-
magnetic-center model, should work reasonably weH
for P((E, since for this case the direct interaction near
the boundaries of the spheres of inhuence make a
ncgligibic contribution to T», and only this case has
been studied in the past. ' This restriction on R will be
relaxed here to cover a wider range of experimental
condltIons. Tile solutions foi tllc case P))R Ri'c expected
to have the least validity because:

(1) 21 depends strongly On the behavior of the
magnetization QCRr thc boundaries.

(2) Thc llllclcl ncai' tile boundaries of th'e spheres of
inhuence are acted on by several paramagnetic centers,
so thRt thc slngIc-paramagnetic-center modd shouId no
longer be valid. That the solution to this problem. for
p~R gives pllyslcally IIlcalllllgf ill Icslllts will bc sllowzl
by a comparison of this solution with an exact solution
to the multiccntcr model carried out in Sec. II.

Sy making the substitution
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8
m(r) rsdr

m&R' &0

(31)

0 b=0 IR 0,2R 0.6 R O, SR I,OR

The term X is a measure of the average value of m(r)
relative to its value at r=E, and it is independent of
mq. The expression for T» is also independent of ns»,
as was predicted earlier.

The above expressions for m(r), X, and Tl are compli-
cated functions of 5 and 8. For several limiting cases,
these expressions can be simplified and some physical
insights about these results can be obtained.

pro. y. ~(g ) versus r for different values of 8 and h. The value of
g is arbitrarily picked as 10b. The value of P is allowed to range
from 0.5b to 100b, thus making the range of 8 from O.125 to 5000.

Il/4 (s) Rnd I 1/4 (3) wllel'c

m {z/2) +v+svvvI„{)=Z,„~m!I'(&r +m+1) (22)

for fractional values of v. Letting

It„(s)=It „(s)
= {~{I .(s) —I,(s) j}/2 sin.~,

the solution to Eq. (15) can be written as

m(r) =r "{AI1/4(Ps/2r')+BKl/4(Ps/2rs)] (24)

where the constants A and 8 are to be determined from
the previously discussed boundary conditions. The first
boundary condition yields

A/B= ~& 3/s(~) /I 3/4{ "p), --(25)

b 3(P=/b)'

The second boundary condition yields

Case I:R&b»p

For the case where the direct relaxation rate is small
enough, one has that R)b))P, and thus 1»b) h. The
arguments of the modified Bessel functions in Eqs.
(29) and (30) are all much less than one, so that these
functions can be expanded in a power series and only
the first few terms kept. This simplification yields

m (r)—mlL1 —(p'/3bs) (r
—'—R—1) +—'ps(1/rs —1/Rs) j

(32)

)I=1+(bp/R) ', (33)
2'1-'=—x P.C/bs) {:1+(b'—b')/R' —:(P/b)s]. (34)

This case is called the rapid-diffusion case by
Rorschach. ' Equation (32) shows m(r) to be almost
equal to m» for all r except near the diffusion barrier.
This is reasonable, since for this case, the direct relax-
ation term is small and not able to establish a large
spin-temperature gradient. Curve (1) of Fig. 1 shows
a plot of m(r) versus r for this case. The dependence
of the dominant term of Tl in Eq. {34) on various
paIamctcrs is listed in Table I.

ml=R '/s, tAIl/s(h)+BKl/4(Il) j, (2&) Case Z: R&)P))b

For this case, the direct relaxation rate is large
enough that R)&P))b and b»1))h. Equations (29)
Rnd (30) CR11 RgR111 bc slmphf lcd by expanding tllosc
modi6ed Bessel functions with arguments much less
than one in a poorer series and keeping only the 6rst
few terms, and expanding those modi6ed Bessel func-
tions with arguments greater than 1 asymptotically.
This simplification yields

0.70ns»
m (r)= (r/p)'/3 exp {—ps/2rs)

I—0.68 P R

r(&P (35a)

m{r)=m F1+068(p/R plr) j, .»p— (35b)

X= 1+0.34(P/R), (36)
2' '=1'1 &,{C)'"(D)'"L1+1.02(p/R) j. (3I)

This case is caDcd the diffusion-limited case by
Rorschach. s Equations (35a) and (35b) show m(r)

& por the properties of modiied Bessel functions and their
recursion formulas, see G. ¹ Watson, A Treatise ol the Theory of
jgeggeE Iiznctjons (The University Press, Cambridge, England,
1944).

~=-:(P/R)'. (28)

Solving for 3 and 8 and substituting the results into
Eq. (24) yields

m(r) =ml(R/r) .
"'

X (K 3//3 (h ) Il/4 (P'/2r') +I~/& (b) Kl(/4 (P'/2rs)
29

Ks/s(~) Il/s(~) +I 3/s(b) Kl/s(~)-
Substituting Eq. (29) into Eq. (18) yields the general

P» cxpI'CSslOn

2'1—' ——(4srXN~DP3/R)

X
I—3 4( /)Kb3/4(~) I 3/4(&) K-3-/s(b)—

30
I-3/3 (b) Kl/s (~) +Is/3 (&)K 3/3(8)—
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to be nearly equal to m~ for r&p and to decrease
rapidly to a small value for r(p C. urve (3) of Fig. 1
shows a plot of m (r) versus r for this case. As for case 1,
X is well approximated by the value 1. For P/R&(1, the
dependence of the dominant term, of T~ in Eq. (37)
on various parameters is listed in Table I. Case

Exponent dependence of T7.

Condition C J3o v, E~ b D

TABLE I. The dependence of the leading terms in the relaxa-
tion time Tq upon |,Bo, v„S» b, and D for the condition of
Cd pTQ+1.

Case 3:P»R&b

For this case, the direct relaxation rate is large
enough that P»R&b and h&A»1. The arguments of
the modiled Bessel functions in Eqs. (29) and (30)
are all greater than one so that they cari all be expanded
asymptotically. This simplification yields

Rapid
diKusion

DiGu sion
limited.

Diffusion
vanishing

8«j.

a&&1

6«i

2

r p2 p2 p2 p2)
m(r) =m& —

l
1+ exp ———exp

r2 b2 g2 P~

3 R' r"l p' p' l
&& 1+———

I e~ ——
I

(38)
16 P' P') 2R 2r'I

X =P'/3R2+ 11/6,

Ty ' Lx(7rX ) O'C——(1+6R'/P')

= 17 5C/V 2+40.4(CD)»» 4/'. (40)

Equation (38) shows that m(r) has the proper limiting
value of m&, but it falls very quickly to zero. for r some-
what smaller than R. This is what one would expect,
since for C large enough, diffusion is relatively un-
important in determining the magnetization value ex-
cept for very near the boundary of the sphere. Curve
(5) of Fig. 1 shows a plot of m(r) versus r for this case.
X is much greater than 1, which follows from the
average magnetization being much less than m&. As
long as p/R»1, the spin-lattice relaxation time does
not depend upon the diffusion constant D. This is
physically reasonable since the direct relaxation rate is
now so fast that spin diffusion does not have a chance
to transport magnetization from one part of the sphere
to another.

While this calculation is correct, the model on which
it is based has no validity for actual experimental
situations. As mentioned above m(r) is different from
zero only near the surface of the sphere. Since direct
relaxation dominates in this case, those nuclei near the
surface of the sphere are acted on by several para-
magnetic centers and a multi-paramagnetic-center
model, in which the angular dependence of C; is kept,
should be used to compute T~.

Case 4: R~P&&b

For this case, the direct relaxation rate is large enough
that R P»b and b»5~1. For this case, neither the
power-series expansions nor asymptotic expansions used
for the previous cases will work. The behavior of m(r)
as a function of r will lie somewhere between that of
m(r) for cases 2 and 3. Curve (4) of Fig. 1 shows a
plot of m(r) versus r for such a case. Also, the behavior

of X and T~ ' for case 4 should lie somewhere between
that of cases 2 and 3. In both cases 2 and 3, as P/R
approaches 1, the correction term to T~ ' in p/R be-
comes of the same order of magnitude as the leading
term and the limiting forms for T~ ' are no longer valid.
For case 2, the first-order correction terra to Ti ' is

assr/ (C) '/'(D) 3/4C 1.02 (P/R) ]= 10.4$„4/'(C) '/'(D) "'-

(41)

while for case 3, the first-order correction term to 2"q ' is

1 &4(s.A/ ) $2(C) (QP/P~) =40 4A/' 4/3(C)//2(D)1/2 (42)

Both these correction terms have the same dependence
upon S„,t, and D, but they have diferent multiplying
coefBcients. In a crude fashion, this suggests tha, t the
behavior of T& ' shouM be of the form listed in Eqs.
(41) and (42), but with a diferent multiplying coeffi-
cient. This argument should not be pressed too hard,
however, because the model on which it is based is not
very sound in this region. Sounder arguments that lead
to the same behavior for T listed in Eqs. (41) and
(42) will be given in the next section.

To keep pace with the existing names for cases 1 and
2, this relaxation region is loosely designated as the
diffusion-vanishing case, suggesting that the large value
of p can be produced by the small value of the diffusion
constant. The new features that distinguish the diffu-
sion-vanishing case from the others are (a) Tz is linearly
dependent upon the applied magnetic fMld, and (b) Tq
is dependent upon the concentration of paramagnetic
centers to the —~ power. Table I summarizes the
dependence of the leading terms of Tj upon various
parameters for cases 1, 2, and 4.

C. Multi-paramagnetic-Center Model for the
Diffusion-Uanishing Case

The direct spin-lattice relaxation term T~„, listed, in
Eq. (2b), is strongly spatially dependent. For a sample
containing many paramagnetic centers, T~„'(r) should
have positions where it is a minimum, these positions
being far away from the paramagnetic centers. A second
type of approximation that can be used to solve Eq. (7)
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is to expand T» (r) in a power series about a position
X, where it is a minimum, and keep only terms through
second order in r, where the origin for r is now takeri
at X. Since this terminated power-series expansion accu-
rately represents the direct relaxation term only for
small r, vrhen this approximation is used, solutions to
Eq. (7) for m(r, t), are acceptable if they are large
only in the region for which r(E.

In the power-series expansion of T» '(r) about X,
terms linear in x, y, 2' will be absent since positiori X
is chosen to lie at a minimum for T» '( r) . By choosing
the coordinate system so that terms in xy, xs, and ys
do not appear in the second-order term the power-series
expansion for T» '(r) may be written as

PT,„(r)7 =uo+u„-x'+u»y'+u, .s', (43)

where the e's are constants that are evaluated in

Appendix C. Inserting Eq. (43) into Eq. (7) and
assuming that D e=0 for aHP yields

82 8' 't

zm(x, t)/z& (&& +=D"-" +D—-—~z'(r, &)—
Bx' By' Bs'J

= (u()+u„x'+u„„y'+u„s')m(r, t). (44)

The variables in Eq. (44) can be separated by
making the substitution

( , y, , t) =f*( )f.(y)f. ( )f (t).

This yields the equations

D" (gf.(x.)/dx. '7 u, x 'f. (x.)—= k f, (x.), —

(45)

o(= x, y, z (46)

(tf, (t)/dt= —f,(t)/T)(k. , k„, k.), (47)

T1-'(k., k„, k,) = k.+k„+k*+uo, (48)

where k„k„, and)k. are constants. Equation (46)lis
similar to that for the one-dimensional quantum-
mechanical harmonic oscillator, whose solution is given

in a number of standard texts. "This solution is

f. „& &(x„)=each —k(u../D" )'"x.'7

XIf-(-&L( -/D" )"'*-7 (49)

k. ,„&„&-—t 2n(a)+17(D" u..)'(',
n(n) =0, 1, 2, 3, ~ ~ ., (50)

where )(f„( & (g) are Hermite polynomials of order n(a).
The Hermite polynomials form a complete set, so that
we have found all the solutions. The general solution

may now be written as

m(x, y, s& t) z(z). ,z(z),z(z) LII f~,z(~) (x ) 7

Xexp I
—t/T&Ln(x), n(y), n(s) 7), (52)

T rn(x), n(y), n(s)7=u, +gPn(~)+17(D-u. .))(2
(53)

where the constants in Eq. (51) are to be determined
from some initial set of conditions. Equation (53)
shows T1 'Ln(x), n(y), n(s) 7 to be a rapidly increasing
function of n(x), n(y), and n(s). If one is willing to
wait long enough after some initial excitation of the
nuclear spin system to make a measurement of the
magnetization, only the (0, 0, 0) mode should make an
appreciable contribution to m(x, y, s, t), assuming that
it has been initially excited. Since Hp($) = 1, the tong
time sotuti on for m(x, y, s, t) is

m(x, y, s, t) = (constant)

Xexp ——,
' * x' ""

y2
" s' ——,

T& '—= T1 '(0, 0, 0)
(54)

=uo+(D *u )"'+(D )"'+.(D" )'(' (55)

As mentioned at the beginning of this section, the
expansions used in this model should only lead to valid
results if m(x, y, s, t) is small near the paramagnetic
centers. From Eq. (54), we can conclude that a neces-
sary and sufhcient condition for our solution to satisfy
this criterion is

(u /D ))('R')1

for O.=x, y and s. Replacing u and D by their
spherical averages, and using the results of Appendix 8,
the above condition can be crudely approximated by

V(~/~') "',
g2 (57)

which is approximately the condition for the diGusion-
vanishing case that was discussed for cases 3 and 4 of
Sec. IIB.

For the purpose of making a quantitative estimate
of T&, using Eq. (55), it will be assumed that the
paramagnetic centers form either a simple cubic lattice,
a face-centered cubic lattice or a body-centered cubic
lattice. It will be further assumed that D =D""=
D"=D. Using

uo=rtpC/I
&

m(x, y& z& t) = g (constant)»(z), »(&o,»(z)
w~~), rt(g, rt(~)

Xm(x& y& s& t)»(z)»(&&)»(z)& (,51),
"See for example, Leonard I. SchiB, Quantum Mechanics

(McGraw-Hill Book Company, Inc. , New York, 1955).

u. =r&..C/I. ',

Eq. (55) can be rewritten as

T1
—1= (»OC/D)) +»P(C(D) )/2/$47

(58)

(59)
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Thar, E II. Constants used to evaluate TI ' for the di6usion-vanishing case. Only one of the positions of the (T&„) ' minima is given.
The others within the unit cell can be found from the symmetry properties of the cube.

Paramagnetic center
lattice

Position of
(TI„) ' mini-

Inum in cubic
unit cell 'gp 'Qxs /vs 1l gz

Simple cubic
Face-centered cubic
Body-centered cubic t, ) ', )0j

2X„I/3
21/gg 1/3

22/gyes 1/3

0.048 0.0135
0.5 15
0.075 15

0.0135 15
15 30
15 1,9

3.86 3.1 61
13.3 1.95 33.2
9.1 1.2 58.5

where 2J is the edge dimension of the cubic unit cell.
The values of the g's are given in Table II for the
applied magnetic field pointing along a cubic axis.
Equation (59) can be rewritten in terms of the number
of paramagnetic centers per unit volume, X„,as

Ti ' ——XpCS '+l (CD)'t'(X )4t'. (60)

The values of Xo and X for the three cubic lattices are
also given in Table II.

The form of Ti ' in Eq. (60) is identical to Ti '
given in Eq. (40) for case 3 of the single-center model.
The coefFicient of E~' in Eq. (40) is much greater than
that in Eq. (60), however. Those regions where the
direct relaxation is a minimum are weighted most
heavily in both models, but the value for the direct
relaxation is made artificially high in the single-center
model by neglecting the angular variation of the direct
relaxation term in the process of replacing C; by C.
This leads to the much larger coeKcient of E„' in
Eq. (40). In contrast to this large difference of coefFi-
cients for X„', the coeflicient of X„4t' in Eq. (40)
agrees very well with the several computed coefIicients
of E~"' in Eq. (60). This could be attributed to the
averaging effects on the relaxation rate due to diffusion,
but the good agreement is more likely fortuitous and
we ascribe no significance to it.

In Eq. (59), the ratio of the direct relaxation term
to the one involving spin diffusion can be written in
the form (imp/rt) (P/L)'. All three lattices for the para-
magnetic centers yield values for imp/rt&(1, as shown in
Table II. Therefore, as long as P/L is less than 4 or 5,
the direct relaxation term makes a negligible contri-
bution to Ti and may be dropped from Eqs. (59) and
(60}.The range of X~ for 1(P/L(5 is 1.25.

One normally expects the paramagnetic centers to
have a random spatial arrangement. The positioning
of the paramagnetic centers in an ordered arrangement
was assumed in order to compute the values of the
u's in Eq. (43). This procedure does not seem un-
reasonable, since the form of Ti ' in Eq. (60) should
not depend upon the detailed arrangement of the para-
magnetic centers, and the values of Xo and X in Table II
do not vary greatly for the three lattices for which
they are evaluated. Averaging T&-' over a random
distribution of paramagnetic centers yields

2' —gpss/ '+X(|.D) '"/~4", (61)

where the expected order of magnitudes for the X's are

Xo 2, X 50.

III. SPIN-LATTICE RELAXATION TIME IN THE
ROTATING REFERENCE FRAME

A. Differential Equation for M'(r, t)

Besides the static magnetic field 808 that was applied
to the sample in Sec. II, let there now also be applied a
magnetic field Bi(t) that rotates in the xy plane at the
I armor frequency pip/2s. In the presence of this strong
resonantly rotating magnetic field, the nuclear spin
magnetization along the rotating field, denoted by
M"(r, t), behaves as if it were proceeding toward
thermal equi1ibrium in the coordinate frame rotating
with the field. The same arguments used in Sec. IIA
to derive an equation for the time rate of change for
M(r, t) can also be used to derive an equivalent one
for M'(r, t).

As in Sec. IIA, one may write that

[piM'( r, t) /Bt]„,.i= [8M'(r, t) /R j„+[8M"( r, t)/i9tgg,

(62)
with

/8M'(r, t)/Bt]„=[M," M"(r, t) j/T —„"(r). (63)

3fo" is the equilibrium magnetization along the rotating
magnetic 6eld. Equation (A26) of Appendix A demon-
s'trates that one may write

[2'."(r)3-'= Z(~'/I r—R; I'), (64)

and that for ~„7.'&)1, and coo&)~~,

C,"=y„'y„'fPS(5+1) P (1—3 cos'0 ) 'f~,/(1+ piiPr ') ]
+—', sin'8, cos'e;[p.,/(1+pipPr, ') j). (65)

[BM'(r, t)/Bt]~ in Eq. (62) represents the rate of
change of M'(r, t) due to the spatial transport of
magnetization. It is shown in Appendix C that the
diGusion tensor for magnetization in the I.armor ro-
tating reference frame is exactly 1/2 that in the labora-
tory reference frame. Thus

PBM"(r, t)/at]g= Q D ~'(8'/Bx Bxt')M"(r, t), (66)
n, P 'i

where D /'"= ~D ~.
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As in the case of spin diffusion in the laboratory
reference frame, spin diffusion in the rotating reference
frame is quenched near paramagnetic centers due to the
local magnetic field of these paramagnetic centers. If
By is much larger than the nuclear spin-spin interaction,
then the component of the magnetic field of the para-
magnetic centers that lies along Bi(t) is the most
eGective component of this field in quenching spin
diffusion. The value of this field, denoted by 8; ", is
found from Eqs. (A23), (A4), and (A5) to be

8;;=—(y„) 'exp( —mpt) gt'A, ,S, (t)

B. Single-Paramagnetic-Center Model —Rotating
Reference Frame

To apply the single-paramagnetic-center-model so-
lution of Sec. IIB to relaxation in the rotating reference
frame, a set of approximations, identical to those of
Sec. IIB, must be made. D &" must be set equal to zero
for 44&P, and equal to D" for cx=P. C;" must be replaced
by C", its value averaged over all angles:

C"=y 'y V4'5(5+1) — +—
~. (69)

4 7.
15 1+ppiPr. ' 5 1+p/pPr ')

&&exp(f4p„t)+C;„S„,(t)+E,„S„+(t)exp( —icp t)j
+complex conjugate. (67)

These approximations yield the equation

mr („ t) Qr= D"V'm" (r, t) ——m(r, t)
N

(70)

The same formalism as Rorschach's' may now be used
to compute that part of the magnetic moment that is
effective in quenching spin diffusion in the rotating
reference frame. This analysis leads to the conclusion
that only that part of U;," Ldenoted by (U;,"),ff]
whose Fourier spectrum lies between —-', (21r/Tp) and
+p(24r/Tp) iS effeCtiVe in quenChing Spin diffuSiOn.

T2 is the "linewidth" of the nuclear resonance line. If
pp~r, '&&1, then 5„+(t) and S„(t) listed in Eq. (67)
make a negligible contribution to (U; ")./4 because of
the exp/i(&pp„ppp)tj —factor multiplying them. This
leaves S„,(t) exp( icppt) —in Eq. (67) as the dominant
contributor to It,,". Only that part of S„(t) whose
Fourier spectrum lies near ~0 is eA'ective in quenching
spin diGusion because of the exp( —i4ppt) factor. Let us
denote the spin diffusion barrier radius in the rotating
reference frame by b", and use the same criteria in
evaluating it (an admittedly crude one since it ignores
angular variations in various coeKcients) as is used in
the laboratory reference frame. From the above argu-
ments, it follows that for coor,))1, b"«b; while for
MO7t;&&j &

b ~b.
It should be added at this point that the region about

each paramagnetic center, inside of which the nuclei
have broadened resonance lines and are unobservable,
depends upon the method of observation. Assuming
the magnetization to be observed by the same technique
as the laboratory reference frame experiments, the
radius of this region may also be taken to be bo, the
same radius as used in Sec. IIA.

Substitution of Eqs. (64) and (66) into Eq. (62)
yields

p/mr(r, t)/Bt= g D'/'"(r//Bx'Bxs)m'(r, t)
e,P

—m" ( r, t) g(C "/I r—R Ip), (6g)

where m'(r, t) =3IIp' Mr(r, t). Equation (68) —is iden-
tical in form to Eq. (7), and the same sets of approxi-
mations and forinalism that were used to solve Eq. (7)
may be used to solve it, too.

Defining the parameters p", 8" and LV as

pr (CrDr) 1/4

1 (pr/t/r) 2

'(p"/~) -' (71)

and applying the procedures of Sec. IIH to Eq. (70),
yields the following results for T&", the spin-lattice
relaxation time in the rotating reference frame:

Rapid-diGusion case: R& b"&)p'

Diffusion-limited case: E»P"»b"

(Ti")—'= P mN~(C") '"(D")"(1+1.02P"/E) (73)

For the condition: P"»E) b

(Ti")—'= 17.5CrN '+40.4(C"D")'"N ". (74)

The discussion in Sec. IIB about the properties of the
solutions of Tj and properties of T~ also holds for the
above listed solutions for T~".

I.et us now compare T~ and T~" for a given sample
(so that E is fixed) at a given temperature (so that
r, is fixed). Let us assume that r, is long enough that
4ppr, )&4pir, )&1, and therefore P'»P. The forms of the
solutions for Ti and T&" may be of the same type, but
not necessarily. While T& might be in the rapid-diGusion
region, T~" might be in the diffusion-limited or diffusion-
vanishing region. While T~ might be in the diffusion-
limited region, T~" might be in the diffusion-vanishing
region. Without knowing the precise values for the
various constants that control the types of solutions
for Tz and T&", little can be gained by a mere comparison
of TI and T~". This is not the case when v, is short enough
that 1»~pr~&~, r, (it is assumed that r, ' is still long
enough that co„~,'&&1 so that our approximations are
valid). This condition can be recognized by Ti and Ti"
being independent of coo and ~&, respectively. For this
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short v, condition
C'/C= 7/6

br~b

P"/P = (7/3) '"= 1.24.

(75)

(76)

(77)

Since P" and P are now small and almost equal (because
of the shortness of r,), a,nd since b' and f/ are also about
equal, T& and T&" will both be given by either the
diffusion-limited solution or the rapid-diffusion solu-

tion. Which solution holds depends upon the values
of p and p". The ratio between T1' and T1 may
be calculated separately for each of these cases from

Eqs. (34), (72), (37), and. (73), or calculated for
both these cases together from Eq. (30). Carrying
out the second procedure yields to lowest order in b,
br p, and pr

T1"/T1= 1.62LI3/4(~) I-3/4(t/") /I-3/4(ti) I3/4(t/') jz (78)

where F= 1.536. The ratio T1"/T, listed above is plotted
as a function of 6 in Fig. 2. In the rapid-diffusion region
(h&0.1), T1'/T1 has the value 0.86. For this range of 8,

T1 varies as f/3 and T1" varies as (b")'. Thus a small

difference between b and b" would strongly affect the
ratio T1"/T1 and the result should only be treated as
approximate. In the diffusion-limited region (5&2),
T1"/T1 has the value 1.62. Since b and b" do not enter
into the values of Tj and T~" in this region, this ratio
should be more reliable than the one for the rapid-
diffusion region. It is interesting that this theory pre-
dicts that under suitable conditions T~" can be larger
than Tg.

C. Multi-paramagnetic-Center Model for the Di8usion-
Vanishing Case—Rotating Reference Frame

Using arguments similar to those of Sec. IIC one
can show that a multi-paramagnetic-center model is
valid for the diGusion-vanishing case in the rotating
reference frame. T»'(r) has a different spatial de-

pendence than T1~(r), so the spatial positions where

T»'(r) has minima will not necessarily coincide with
those for T1„(r), and expansion coefficients may be
different. Expanding 1/T1~"(r) about points where it
is a minimum, keeping only terms through second
order, and choosing a coordinate system so that terms
in xy, xs, and ys do not appear in the second-order
term yields

1/Tl r( r) —u6r+u rg2+u ry2+u rs2 (79)

where the e"'s are constants and are evaluated in
Appendix B. Inserting Eq. (79) into Eq. (68) and
assuming that D ~"=0 for 42&P yields

8224'(r, t) /Bt

P)zzr($2/f/22) +Dwr(6//tfy2) +Dzzr($2/6/22) )year( r t)
—(u6'+ u„'x2+ u 'y'+u„'s') 2/3'( r, t) . (80)
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Eq. (81) can be rewritten as

(T r) —1—
2/ rC r/I6+2/r(C rDr)1/2L4 (83)

The quantity of C~" is defined in Appendix B.The values
of the q's are given in Table III for the applied mag-
netic 6eld pointing along a cubic axis. Equation (83)
can be rewritten in terms of the number of para-
magnetic centers per unit volume, E~, as

(Trr) '= X6rC1"CV '+V (C1'Dr) /'IZI "' (84)

The values of Xo" and X~" for two cubic lattices are also
given in Table III. All of the remarks made about
Eqs. (59) and (60) also hold for Eqs. (83) and (84)
and need not be repeated. As in the multi-paramagnetic-
center-model calculation in the laboratory reference
frame, averaging (T1") ' over a random distribution of
paramagnetic centers yields

(T r) —1~/ rC rQ 2+yr(C rD) I/2Q 4/3

Equation (80) is identical in form to Eq. (44), and
the solutions of Eq. (44) may be used to yield a value
of the spin-lattice relaxation in the rotating reference
frame of

(T r)-1 u r+ (Dzzru r)1/2+ (Dwzzru r)1/2+ (Dzzru r)1/2

(81)

For the purpose of making a quantitative estimate of
T1" using Eq. (81), it will be assumed that:

(1) 646r,»1, so that the second term in Eq. (65) is
small in comparison to the first term and may be
dropped.

(2) Dzzr D32r Dzzr Dr

(3) Paramagnetic centers form either a simple cubic
lattice or a face-centered cubic lattice. Using

u "=
2/

'C "/I.'

"C1'/I.',
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TABLE III, Constants used to evaluate (T&") ' for the diffusion-vanishing case. Only one of the positions of the (T»") ' minima is given,
The others within the unit cell can be found from the symmetry properties of the cube.

Paramagnetic center
lattice

Simple cubic
Face-centered cubic

Position of
(Tq "} ~ mcm-
mum in cubic

unit cell

2g 2p

4)4&4

2E '/~

21/3+ &/3

0.0080 0.165
0.255 25.5

0.165
25.5

0.66
87.4

1.62
19.4

0.51
1.02

25.9
48.9

These calculations show that the introduction of a
6nite separation distance between paramagnetic centers
does not greatly alter the calculated values of the spin-
lattice relaxation time T~ for the rapid-diffusion and
di6'usion-limited cases. It, however, has the advantage
that the Tq expression is extracted from the steady-state
solution of the transport equation using the physically
reasonable ussumptioe that the shape of the magneti-
zation distribution remains unchanged throughout the
observed relaxation process, and is not very different
from the steady-state distribution.

The use of a finite separation distance between para-
magnetic centers permits the investigation of a new

relaxation case, the diffusion-vanishing case. The single-
center model is not particularly valid for this case but
nevertheless seem to join on very nicely to the new
model that is introduced, the multicenter model. The
multicenter model is only valid for the diffusion-
vanishing case, but appears to be a rigorous solution
for this case. It has the a,dvantages of introducing the
spin-lattice relaxation time Tj in a very natural way
and takes into account the angular dependence of the
direct spin-lattice relaxation rate, and the spin-diffusion
constant.

Measurements of spin-lattice relaxation rates in the
rotating reference frame are becoming common in cur-
rent literature. The results of the calculations of Sec. III
shows that it will probably be a useful tool for providing
a quantitative test of spin diffusion. In the foHowing

paper are measurements we have made that test the
spin-diA'usion theory, using analyses based upon Secs.
II and III of this paper.

x=acp+xg(/),

Xo= AMoIsgy

(Al)

(A2)

(A3)aug(t) =Pi)U;+(t)I;++U, (t)I; +U;,I,,f,
U, (+/) = +PA;„S {/) exp(ice„t)+C;„S..(t)

+E;„S„+(/) exp( ice„t—)j, (A4)

(A5)U*-(~) = LU*+(&)3*,

U,, (t) = QQB,„S.,(f)+C,„S,+(t) exp( —ia)„t)

+D,„S„exp{ice„t)$, (A6)

B„=y„yAr;. '(1 3cos'8, ,), —

C,„= 23'„v„hr;„—sin8;, cos8,„exp(—iQ;,),

Eg„=—
~ yy'y„Ar;„slI1 8;~ exp( —2$$iy) )

F
&p='y~~o& no= Pn+o.

The summations over v in Eqs. (A4) and (A6) are to
be taken over all the paramagnetic centers in the
sample. r;„, 0;„, and p;„are the spherical coordinates of
the vector connecting the ith nucleus and the vth para-
magnetic center. The s axis of the coordinate system lies

along the applied static magnetic 6eld.
Assuming that the time dependence of U; (t) has a

random component, we can calculate 8'„, the tran-
sition probability per unit time of the ith nuclear spin

going from the unperturbed state n to the unperturbed
state m using 6rst-order perturbation theory":

APPENDIX A: DERIVATION OF TI~; AND Ti~;"

%e give here a brief sketch of the derivation of the
nuclear spin-lattice relaxa, tion time due to the coupling
of a nuclear spin I; with a number of paramagnetic
centers. The nucleus ha, s spin I, magnetogyric ratio
y„, and its interactions with other nuclear spins will be
ignored. Each of the pa, ramagnetic centers will be
assumed to have a spin 5, a magnetogync ratio y„,
and generate a fluctuating dipolar magnetic Geld at the
site Of the nucleus, Tbc effects of the nuclear spig. OD

CO

=(fi') ' e*p —(li.,—j!,.) )
XL(rc [ xg(t+r) ~ m){rrl [ SC&(t) [ rI)jA,dr; {A&)

'2 A Abragam The Prgmsp/es of ENcleaI 3fageekstn (Oxford
University Press, London, 1961),p. 273.

where the expected orders of magnitude for the X's are the motion of the paramagnetic center will be ignored,
~o" and angular momentum of the paramagnetic center

will be treated classically. Denoting the applied static
IV. DISCUSSION magnetic field by Boi, the Hamiltonian for the ith

4 nuclear spin is
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)+ ( .— ) '( '')')W„= (II')-I Q(II i I. I )rt) {m ) It) j II)

E„ is the energy of the Nth eigenstate. The matrix and (A16) with (A14) and. (A12) yields
elements in the large brackets above are averaged )I

over an ensemble. Since U; (t), (n=+, —,s), are (TI,.)—I=,'(5)(5+1)g
independent of the nuclear spin states, Eq. (AS) can 1+(~n+~o) '(r') '
be rewritten as

exp —— E —8 ~ U t' 7- Up/ Adv

(A9)

Substituting Eq. (A9) in Eq. (A10) and rearranging
terms yields

j Tlu'
((o ) Tr jLXo, I.]L X„II)]}/2'TrIXo'},

a,P

(A11)
h

J,'s(o ) = exp(ioo r) fU; {t+r)U;p{t)]A,dr {A12)

and Lp is the energy difference between states coupled
by the operator I .

The direct spin-lattice relaxation time for the ~th

spin, denoted by T.„; is given by the formula"

1/TI„;=y Q{E—E )'W /Q E '. (A10)

+)C;„(:;."(, , (A)7)

The computation of the spin-lattice relaxation time
T~„;"for magnetization lying along a rotating magnetic
field that rotates at the I.armor frequency in the x-y
plane is similar to the one just carried out. The Hamil-
tonian for the ith nuclear spin is now given by

Xo+Xrf+XI)

X,(=Ao)I (I;, cos(dot I~)1sino)ot—) )

+&=7~B&

Bj is the magnitude of the rotating magnetic field.
Since we now wish to compute the time rate of change
of the transverse magnetization as viewed from the
rotating Larmor reference frame, we shall transform
BC into the rotating I armor reference frame, and denote
it by 3.".

X'=X()"+Xl"(t),

Xo = —ex%,I;,
Xl"(t) =%AU;,"{t)I,+U, '(t)I; "+U; "(t)I, "],

Tr f[xo, I.]LXo, Ip]}
Tr IXo'}

otherwise. (A13)

where the operators I;+" and I; "are de6ned as

I;p"=I;),+iI;„

(A21)

(A22)
Thus, Eq. (A11) reduces to

1/Tl„;——I,+ -(o)o) +J';-+(—(oo).

If we assume that the Quctuations of the direction of
angular momentum of the paramagnetic centers is
described by an exponential correlation time, then

Ls„(t+r)s„,(t)]A,——-';5(s+1) exp( —
I r I/r, ),

(A15)
LS„,(t+r) 5„(t)]A,——LS. (t+r) 5~(t)]

=-,'(5) (5+1) exp( —
I r I/r. '),

where v, is the correlation time of S„and z,' is the
correlation tlrnc of S,g aIld S~. Conlbllllllg Eqs. (A15)

"L. C. Hebel and C. P. Slichter, Phys. Rcv. 113, 1504 (1959).

The U;,"(t) are related to the U;.(t) in the following

U;,"(t) = U; (t) exp(i(oot)+ U;+(t) exp( —i(oot), (A23)

U;+"(t) = 2ifU; —(t)—exp(i(oot) Ug+{t)—
y exp (—i07ot) +U;, (t) ], (A24)

U-"(t) =LU'+" (t)]'.
X" in Eqs. (A20) through (A25) has the sa,me form

as in Eqs. (A1) through (AS) and the formalism for
calculating T»;" is identical to the one just used to calcu-
late T»,. In carrying out this calculation, the eGects
of nuclear spin-spin interaction on the equation of
motion of the transverse magnetization are ignored.
This is permissible, provided that Bj is large in com-
parison to the nuclear spin-spin interaction. Carrying
oil't thc fol'lllallslll lls'tcd 111 Eqs. (AS) through (A17) )
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with K" instead of X, yields

r„,'=-:s(s+))Z ~,. (-,
, , +2Z;,E;„*

1+(0)„—g)0+ 0)1)'(r.') '

)+( .+ + )'(~.')' &+( .+ — )'(.')')

lt ls R IniniD1ulTl will not hRvc Rny terms llncar ln

x, y, y,nd s. It will be assumed that it doesn't have any
tcrIns 1Q xp» xs'» RIid $8» which ls true fol IQRQy sym-
metries. Keeping terms only through x', y2, and 2.", the
power-series cxpRQslon of 1 12» ls

LT1g(r) j =Ng+sggx +Nggy +Nggs,
where

~=—;CZLZ, (X,'+F, )/~; &,

1+ ((dg+(01) '(r, )
' 1+ ((gg —(01)'(r.) '

27 Q 27 g

1+(-.+-.) (.') 1+(-,--) (.)

+0;. (, ", ,) . (A2s)

Zs.g 25Xig+5Fsg
+30 g,2

Zsg 25Fs'+ 5'
Ngg

=— I—
g .10 E~'

60Fsg (XP+ Fsg)

Ep'

(&5)

60Fs'(Xs'+ ~P)
E

(36)

= 3v.'v-'V5'(5'+1) Lr./(1+»'r. ') 3

g g r;„0sin'8;„cos'8... (A27)

(&1,'') '= 05'(5'+ 1)2 l &"Lr./(1+~1'r') j

Under nornl. Rl cxpcI'lmcQ tRI conditions» Mppp&0++Ml.

This condltloQ pcl Inlts coIisldcI'able slnlpll6catlon of
Eqs. (A17) and {A26). For the calculations carried
out in this paper» lt ls fUrthcl RSSUIned that co07;g4cv„v,

so that Eqs. (A17) and (A26) can be further simpli6ed
to the following results:

(T1n') '=45'(5'+1) Z C'.C* 'Lr./(1+~0'r. ')1

—~ (XP+ Fsg) 25' 60Z,'
g.10 +.0 g 4 (&7)

Thc paraITlcters No» N~~» Qyy» Rnd egg Rrc cvRlURtcd for
the CRscs of pRrRDlRgnctlc ccIltcls RrI'Rngcd ln R slIQplc
cubic lattice, a face-centered cubic lattice, and a body-
centered cubic lattice. The edge dimension of the cubic
UQlt cell ls 2.L Thc sumlTlations Rlc CRrrlcd out ovcl'
the paramagnetic centers nearest Rnd next nearest to
the points where T~~ are minima. This is considered
adequate since the sums converge very rapidly. The
results are listed in Table II in terms of q's, which are
de6ned as

+2C;„C;„*fr,/(1+ g'ggr') ]I,

=-'y 'y 'fPS(5+1) QI {1—3 cos'8 )'

)&r;„-gl r,/{1+0)1',') j+—', sin'8;, cos'8;,

&»'. 'I.r./(1+~0'r. ') jI
APPENDIX 8: EXPANSION OF THE INVERSE

SPIN-LA.TTICE RELAXATION TIMES T(„'
AND (Ti„") 1 ABOUT MINIMUM POINTS

Using Fqs. (2b), (3), and (9), the formula for 2"11, '
can bc written as

l Rj r I sln8s cos 8s
L2'1n(r) j '=~C Z

(Z —s)'C(»—~)'+ (F'—y)'j
s. L(»—&)'+(Fs—y)'+(Zs—s)'j"

(B1)

C"=~.'~-'~'~(&+1) 6"/(1+-".')j. (»2)
Carrying out the power-series expansion and dropping
terms higher order than the secon.d yields

1/2 1~"{r) =gag"+I "x'+01„„"y'+I„"s', {813)
WhCI'C

»"=-:C1"Z(Qsg/&"), (B14)

Ns,"=-,'C1"Q, '

(6Xsg+6Fsg —4Zsg)

1lg+.ri 1ig+.~ 1ig (810)

A slmllRI' cxpRQslon will no%' bc CRllled out fol
{T1~")—' listed in Eqs. (64) and (65) . It will be assumed
that gggr+)1, so that the second term in Eq. {65) may
be dropped. Then

P'»"(r) j-1=Y',"ZL(1—3cosg8;) 0/l r—R;~gj, (&11)

R;=X;i+F;j+Z;8
A power-series expansion of Tj„' about a point where
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N '= 45Cj,
" g —

—,
— (2Xp+6Yp —4Z,') 8,;= —2A;;=-', y„'Sr;; '(1—3 cos'8;;). (C2)

r;, is the vector connecting nuclei i and j, and 8;; is
the angle between the vector r;; and the applied mag-
netic 6eld 808. The spin-di6'usion constant, computed
to 6rst order from X~, was

4P r g 4( X,2 P,'2+6@.9) D ~= ''" -Q A 'X Xp,s( Q Bgj) '~'.
~(~zr ) Jo~i, a)

(C3)

Q,2 —X .'2+ P'.2 2g .2 (818)

The parameters mo", N ", N~", and N„" are evaluated
under the same conditions as for eo, N„, N„„, and u„,
except that the body-centered cubic lattice was left
out because we could not locate the T~„"(r) minimum.
The results are listed in Table II in terms of q"'s, which
are de6ned as

n"=(n ")'"+(n ")'"+(~ ")'"

(819)

(320)

(821)

APPENDIX C: EVALUATION OF THE SPIN-
DIFFUSION CONSTANT IN THE ROTATING

REFERENCE FRAME

It has been showno that for spin diffusion in the
laboratory reference frame the secular terms of the
dipole-dipole interaction Hamiltonian make the domi-
nant contribution to the spin-diffusion process. The
listed secular terms were

The same argument used in Ref. 9 to derive the
spin-diffusion equation in the laboratory reference
frame, may also be used to derive a spin-diffusion
equation for magnetization lying along the rotating
magnetic 6eld listed in Appendix A, except that only
those terms that commute with 3Q&" of Eq. (A20) will
make a signi6cant contribution to D t'". These terms
may be found by making a transformation to the
coordinate system that rotates with angular speed ~~

about i of the I.armor rotating coordinate system, and
then choosing only those terms that are time-inde-
pendent. These terms, denoted by BCd," are

Kg,"————,'fi, g[ ', A;;(I,+"Ig "-+I; 'I;~")+8;,I;,I;,].i'

D aPr & D crP (C5)

The second-order correction to the diffusion tensor
calculated in Ref. 9 also must be multiplied by a factor
of —', when transformed into the rotating reference frame.

The relationship between operators I;&", I; ", and I;,
is the same as J;+, I;, and J;,. BCq," is thus identical
in form to Xd„with each coefficient multiplied by —~.
Thus to 6nd D"~", we need only take the formula for
D2 & in Eq. (C3) and multiply each Aa, and 8*a by —~.
This leads to the result that


