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We have calculated the effect of first- and second-order spin-orbit, trigonal, and Zeeman interactions
within the vibronic states of the d"T~ term, and also the smaller con6gurational interaction with the excited
2& term. A model is used which includes only interactions with vibrational modes having E~ symmetry about
the impurity site. It is found that second-order vibronic effects can be very important even though the elec-
tron lattice coupling may be relatively weak. The uniform partial quenching of crystal-field splittings,
characteristic of a first-order vibronic calculation, is modi6ed in second order. The recently observed far-
infrared spectra of A1203'. Ti'+ and A1203'.V4+ can be explained quantitatively by the inclusion of these second-
order terms. Moreover, our calculations explain for the 6rst time the hitherto anomalous ground-state

g values of A1~0g .'Ti'+. For A1203.' V4+, the ground-state spin resonance has not been positively identi6ed, but
we predict g~~

=1.5, gi =0. We And Jahn —Teller energies of 200 and 320 cm ' for Al.0&.'Ti'+ and Al"103,V
respectively, and an effective J.:,mode frequency of. 200 cm '.

I. INTRODUCTIDN

CCORDING to the Jahn-Teller (JT) theorem, ' '
.I the non-Kramers degeneracy of an electronic

state belonging to a nonlinear complex ls lifted by
spontaneous asymmetric nuclear displacements. If the
coupling between the electrons and the nuclear dis-

placements is very strong, the complex undergoes a
distortion to a new con6guration of minimum energy
(the static JT effect).s ' In general, there may be
several equivalent configurations which the complex
can assume. If a particular complex undergoes transi-
tions among these con6gurations in a period which is
short compared to the time scale of the relevant experi-
mental observation, we have the dynamic JT effect. s—"
The averaging can occur either by thermal activation
over the barrier separating these equivalent con6gura-
tions or by tunneling. These two avearging mechanisms

are not equivalent; the former is random and the latter
ls selective.

One of the observable consequences of the dynamic

JT effect is the partial quenching of the matrix elements
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of certain orbital operators. This was erst recognized
by Ham" (although special cases of it had been im-
plicitly noted earlier)" "and has been called the Ham
effect. The 6rst experimental evidence of such dynamic
quenching was furnished by spin-resonance data'4 '6 in
which great reductions in the orbital contributions to
g factors were seen. Recently, Scott and Sturge'~
reported the quenching of spin-orbit and trigonal
crystal-6eld split tings in the excited 'T2 term of
A)2O~. V'+. Using a model which includes only E,
vibrational modes, they explained their data in terms of
a 6rst-order Ham effect plus second-order effects in the
static JT or strong-couphng hmtt.

In this paper we use a similar model to elucidate
the consequences of a moderately weak dynamic JT
eftect. Ke consider the ground term 'T~ of an octa-
hedrally coordinated 3d' impurity ion, which has a
relatively simple electronic structure and for which
spectroscopic data have recently been reported. 's '9 We
find that the 6rst-order theory is inadequate to account
for the results, and that in this region of weak. coupling,
second-order effects have to be treated in a more exact
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manner than was done previously. '~ The general theory
of a second-order JT interaction with excited vibronic
states has been outlined by Ham. "We have calculated
explicitly the effect of this interaction on the'T2 ground
term of 3d' impurity ions in A1203, also including the
small configurational interaction with the excited 'E
term. Inclusion of second-order effects enables us to
obtain quantitative agreement with the measured far-
infrared spectra' ' and with the ground-state g
values'P" We find a JT energy of 200 and 320 cm '
for Al&03'. Ti'+ and A1903.V4+, respectively, and an
effective E, mode frequency of 200 cm ' for both
systems.

In Sec. II we present the conventional crystal-Geld
calculations of octahedrally coordinated 3d' impurity
systems including configurational interactions. In Sec.
III we calculate the 6rst- and second-order dynamic JT
effects for the d' 'T2 term coupled to a doubly degen-
erate E, vibrational mode. We have obtained analytical
expressions for the ground-state g values and the 'T2
splittings. I inally, we discuss the possible application
of our results to other systems.

II. CRYSTAL-FIELD CALCULATIONS OF d'
IMPURITY SYSTEMS

The electronic Hamiltonian for a d' impurity ion in
a crystal can be written as

X BCgg+Xgf~

where 3C„ is the spin-orbit coupling energy and X,& is
the energy due to the crystalline field of the surrounding
ligands, which includes V,„b and V~„,. For Ti'+ and
V4+ in A1203, V,„b))V&„.g, 3C„.We therefore choose the
zeroth-order Hamiltonian Ko to be V,„b, and obtain
analytical expressions for the energy by treating the
trigonal-field, spin-orbit, and Zeeman interactions as
perturbations. The separation of the two cubic terms
of d' is 5= E('E) —E('7,). For Al, op.'Ti'+, 6 has been
measured optically" to be around 19000 cm '. The
corresponding value for A1203.'V'+ has not been meas-
ured, but it is expected to be somewhat larger. The
complex trigonal basis states for the 'T~ and 'E terms
are labelled

(I ~-', "&, I ~-:, *.&, I
~-', *-&)

(I+p I+& I~p I-&)

respectively. The energy diagram of a d' impurity ion in
A120q is shown in Fig. 1, which also includes the labelling
of various term splittings under trigonal-field and spin-
orbit perturbations. The diagram is drawn for
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FIG. 1. Low-lying levels of d' impurity systems in corundum.
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~
tp0&) 0. The matrix of the Hamiltonian

given in Eq. (1) has been calculated in the complex
trigonal basis and is given io Appendix A. The Zeeman
interactions have also been included. If we consider
only interactions within the 'T. term (which is a good
approximation, since ~))n, I ), the zero magnetic-field
energy matrix factorizes into two 2-dimensional and
and two 1-dimensional matrices; these have degenerate
eigenvalues given by

bp(Epp. ) =0,

'i(iEvp) =
2"+l" pL(91—4) I' I "+"—]",

bp(pEi(p) = ', n+ ,'I+-', (-(9/4)-I' I e+v—']'I', (2)

where a constant term —,'e+ —',I+@,has been added to
the right side of Eq. (2) to make the lowest state Eg/2

have zero energy. E&~2 and E3~2 label representations of
the Cp double group. The quantities I and v in Eq. (2)
are the one-electron spin-orbit and trigonal-field param-
eters, respectively. The ground-state g values can be
obtained in a similar way from Appendix A, and they
have the values

g((
——2(1—k),

g~=0,

where k is the orbital reduction or covalency factor."
We have taken the spin-orbit parameter I to be 120
cm ', which is 80% of the free-ion. value. This represents
a typical expansion of the 3d radial function in the
solid. The trigonal-Geld parameter e is not known for
A1203.Ti'+. However, for four other trivalent 3d" ions
yn A1203y p is in the range 700—1000 cm 2 5 We take
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TAsr, z I. 'T2 term splittings and ground-state g values of A1203'. Ti'+ in the static-crystal-field approximation.

First order
Analytical

Second order
Numerical

First order Second order

fh (+3/2~1K/2)

~2 (E3/2~2~1/2)

gi ) (&3/2)

g (~/. )

2 (1—S)

0

2+ 4$—
2 P (9/4) P—$2)+2fql» —(2~/A'/g) + (2P/g)

ev+ lf+ 2 L (0/4) f' —fv+v'3'" —Y&fv'/&) + (v "/&)
+-,'(r'/~)

(4k/a) (vZ~' —g)

109 cm '

771 cm

0.4

—11cm '

+19 CIn 1

+0.14

it to be +700 cm '. The positive sign follows from the
observation that the ground state is E3//g and has a very
anisotropic g value. Putting these values of f and v

into Eq. (2), we find that the first two excited states of
A1203.'Ti'+ have energies of 109 and 771 cm ', respec-
tively. The orbital-reduction factor k for transition-
metal ions in the moderately covalent A1203 typical)y
has a value between 0.7 and 0.8. Taking 4=0.8 for
Al&Os'. Ti'+, one finds from Eq. (3) g~~

——0.4 and go=0.
Since V4+ is isoelectronic with Ti'+, the same expres-

sions apply for the 'T2 term splittings and ground-state

g values of A1203'. V4+.

Configurational interactions with the excited 'E term
have also been calculated, and the numerical results
together with approximate analytical expressions are
summarized in Table I. The numerical corrections were
obtained by diagonalizing the d energy matrix includ-

ing both the 'T2 and 'E terms. We have taken 6
19 000 cm ' and p'~600 cm '" in this calculation. It
was found that these interactions change bj and b2 of
Eq. (2) by —11 and +19 cm ', respect, ively, and the
correction to the ground state g~~ is +0.14.

The ground-state g values of AI203'. Ti'+ have been
measured' " to be g~~~1.07 and g&&0.1. In order to
explain this anomalous value of g~~ in terms of static-
crystal-field theory, one has to assume an orbital-
reduction factor k of 0.5. In the usual covalent theory of
the orbital-reduction factor, "this would imply complete
delocalization of the electron onto the neighboring
oxygen iona, which is quite unphysical. No explanation
for this anomalous value has previously been offered.
The ground-state g value of A120~'. V4+ is not known at
present, '~ and we will discuss the V'+ problem later.

Recently, the far-infrared spectra of A1203'. Ti'+ and
A1203.'V'+ have been measured. ' ' For Al203'. Ti'+, the
first two excited states are located at 37.8 and 108.0
cm ', respectively. The corresponding levels for
A1203.V'+ are 28.0 and 52.6 cm—'. These transitions
are pure 0- polarized as expected for the E3/2~Ei~/2
transitions predicted by crystal-field theory (see Fig.
1). These values for the 'Ts term splittings do not
agree with crystal-field calculations for any reasonable
set of parameters (see Table II). They appear to be
very much quenched. It is shown in Sec. III that a

A2

0 ~-—Q + ~Qv
I 2 5 2 2

vv~ ~Q ~ ~Q
2 2 3 2 2

op*Qp

Fio. 2. Vibronic potential surface t/ (Q2, Q3) for a triply degen-
erate state interacting with 8, distortions. The electronic states
associated with each paraboloid are mutually orthogonal (in a
cubic system with zero spin-orbit coupling).

"v'=—ifsx+ ) Vt„., ) eN~ ). The value of 600 cm ' for v' is typical
of transition-metal ions in A1~03.

Gl=—Qg + ~ Q2

a =-WQ -mQ
2 2 5 2 2

o~= Q~

Fzc. 3. Section through Fig. 2 along the a axis.

"The isotropic spin resonance with S=-,', g=2, observed in
vanadium-doped corundum at room temperature by J.Lambe and
C. Kikuchi, Phys. Rev. 118, 71 (1960),cannot arise from the same
center as the far-infrared spectrum reported in Ref. 19. The
infrared data show that the ground state is the E3/2 state, which
must have g~ =0. Furthermore, the low-lying excited states would
cause rapid spin-lattice relaxation and prevent observation of
resonance except at very low temperatures. The spin-resonance
spectrum may belong to a VO'+ complex: compare, for instance,
the data on this complex compiled by K. D. Bowers and J. Owen,
Rept. Progr. Phys. 18, 304 (1955).
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Tax,z II. Observed and calculated splitting and g factors for the ~T2 ground term of A1203'. Ti'+.

Observed'
No JT elect

(Sec. II)

Calculatedb
Grst order' First and second orderd

(Sec. III A) (Sec. III 3)

gll

gI

37.8cm '

107.5 cm '

1.07

(0.1

98cm ~

790 cm '

0.54

14cm '

195 cm '

1.68

43cm '

107 cm '

1.14

a References 18, 20, and 21.
Interaction with ~E is included. The parameters are 6 =19 000 cm 1,

y =700 cm-1, o' =600 cm &, f =120 cm I, A: =0.8.

y =0.21, fg =Or fb Oo

d y =0.21, f~ =0.11,fg =0.41,

first-order Ham effect still fails to account for these
data. Quantitative agreement with both spin-resonance
and far-infrared data is possible only when second-order
effects in the dynamic JT or weak-coupling limit are
included.

III. DYNAMIC JT EFFECT

A. First Order

In the harmonic approximation, the vibronic Hamil-
tonian for a complex in which a single E, mode'8
interacts with a cubic electronic term may be written
as

Xvib= Xo+ (1/2p) ~~ (Ez'+y'oo'Qp')
k=2 3

0=2,3

As in Sec. II, Xo is the cubic part of the electronic
Hamiltonian. V(Qz, q;) is the potential energy of the
electrons in the field of the nuclei, and is a function of
both the electronic coordinate g; and the normal coordi-
nates Qz of the E, mode. The effective mass and angular
frequency are denoted by p and ~, respectively, and I'&

are the momenta conjugate to Q&. The equilibrium
configuration of the nuclei in the absence of electron-
lattice coupling deffnes Qs=O. Only terms linear in Qz
have been retained in the electron-lattice interaction
[the last term in Eq. (4)].If we choose a real tetrag-
onal basis for T2 and E,29 then the eigenstates 0'; of
K;b are Born-Oppenheimer products of the electronic
components of zTz (I &g;), i= 1, 2, 3) and the eigen-
states of a displaced 2-dimensional harmonic oscillator
p;„,„,."The eigenvalues of X;b are given by

E„,„,=Eo+ (rzz+ no+ 1)qua EzT, —

's In 5 real crystal the impurity ion interacts with a continuum of
vibrational modes, not just one. Ham (Ref. 10) has shown that, as
far as erst-order sects are concerned, the same results are ob-
tained for a continuum as for a single mode. We will assume that
this is also true for the second-order effects considered in this paper.~ That is, for T2 (P, q, g,) transforming under 0 as (y2', sx, xy)
and for E(tIi o) as ((3zz—r') (zz —yz) g.

where

is the JT stabilization energy. The vibronic potential
surface in (Q, , Qz) space consists of three disjoint
Paraboloids, z oo one for each comPonent of 2'z (see Fig.
2) . Without any perturbation terms in X„b, the com-
plexes in the crystal would randomly occupy one of
the three paraboloids and undergo a tetragonal distor-
tion (the static JT effect) . The Tz term is split into an
E and an Az (of Dy, ) as shown in Fig. 3. The dynamic
JT effect arises when a particular complex undergoes
transitions among these paraboloids in a period which
is short compared to the time scale of the relevant
experimental observation. Since P; are orthogonal,
transitions from one paraboloid to another can only
occur via terms not included in Eq. (4) . In the present
case, such terms can be the trigonal-field, the spin-orbit
interaction, and the orbital part of the Zeeman interac-
tion (we will show later that Tz, vibrations are not
important). We will regard these three terms as per-
turbations (X „t) on X~;b.

Now we consider the evaluation of the matrix ele-
ments of X „, in the zeroth-order vibronic basis
I
4';»~t )=

I
&-,'P;)

I p,»»). In a tetragonal representa-
tion, the trigonal-6eld spin-orbit coupling and orbital
angular momentum have only off-diagonal matrix ele-
ments within the 2T2 term. Since these perturbation
operators are independent of the Qz, the off-diagonal
matrix elements of X„,t are given by

(~2/i I Xoert I ~24'i) (4'intzz I it'2»'nt' ) (I)
The electronic matrix element is multiplied by a factor
y= (P;»„o I P;„,„, )(1, which is the .overlap integral
between vibrational wave functions corresponding to
the different components of 'T2. These functions are
not orthogonal, since they belong to displaced oscillators

~ A. D. Liehr, J. Phys. Chem. 67, 389, 471 (1963).
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Fze. 4. Vibronic energy levels of d impurity systems in
corundum.

with difFerent origins. For the lowest vjbronic levels,
y=cxp( —3Eqr/2IIId). This quenching of off-diagonal
operators is known as the Ham e8ect.

To obtain the 6rst-order correction to the energy of
the 'T& term, we must diagonalize the energy matrix of
BC~„&among the states

I
4';bo), since the latter are degen-

erate. Although the qualitative splitting pattern of the
'T2 term due to 3'.„,~ remains the same as in the absence
of the JT coupling, the magnitudes of the splittings are
reduced. The discrepancy between crystal-6eld calcu-
lations and the measured far-infrared spectra in the 'T2
term splittings of 3d' impurity ions in corundum has
been mentioned in Sec. II (see Table II). It seems

reasonable to attribute the reduction of these splittings
to a Ham CB'ect. However, according to Kq. (7), matrix
elements of all operators which are off-diagonal in this
tetragonal representation (i.e., all operators included
in X~~) are reduced by the same factor y. Thus bI,
82, and k should be reduced by the same factor. Clearly
this is not the case experimentally; 81 is reduced by a
factor of roughly 0.35, 52 by 0.14, and k by 0.6. %e mill

6nd that by going to the next order of perturbation
theory we can account for this difFerence.

3. Second Order

We now consider second-order interaction within '32

and between '32 and '8."The latter interaction is rather
small, and we can neglect "nondiagonal" second-order
contributions (i.e., contributions from perturbation
loops beginning and ending on different electronic
components of 'T2), since these are reduced by a factor
y relative to the "diagonal" contributions. The latter
are unquenched and may be calculated using electronic
matrix elements in a trigonal basis, in exactly the same
way as in static-crystal-field theory (Sec. II). We
neglect the correction (~Eqr) to the energy denomi-
nators 6, since E~T&46.

The most important contributions come from inter-
actions within '3~, these being absent when there is no
vibronic coupling (see Fig. 4). The general expression
for the second-order correction to the lowest vibronic
level is

Here K„and X„are operators in X„,&. Since these are electronic operators, the vibrational part of the matrix
elements can be integrated out. The vibrational integrals have been evaluated by Ham, '0 and we may write the
result as

fb=c *G(x),

G(x) = g Px-/(~X~!) j
a~1

The numerical values of the quenching factors y (see
Sec. III A), fb, and f as a function of x=3EqT/fuy have
been tabulated, '0 and a plot is shown in Fig. 5. Note
that in the limit of strong JT effect, y and f, fall off as
exp( —x/2) or faster, while fb only goes as 1/x. Terms
in fb represent the second-order effects which survive in

the static JT case; these were the only second-order
tcrnls 111cllldcd 111 pI'cvlolls calculatlo11s (scc, fol' 111-

stance, Ref. 17).

Matrix elements of 3C„„~within 'T2 in a real tetrag-
onal basise' were obtained by transforming the 'T2
block of Kp„, given in Appendix A (superscripts on

X and 3f indicate the basis used to calculate the matrix

"'32 denotes the manifold of vibronic energy levels derived from
the 'T2 electronic term (and 2g that of ~E}.The Grst-order effects
discussed in Sec. III A are within the lowest three levels of 232,

these being degenerate in the absence of X~„&.
3'The reason for expressing X~„& in a real tetragonal basis is

for convenience in introducing the quenching factors fy and f .
Ultimately we will transform back to a trigonal basis to get an-
alytical expressions for the g values. In the case of the spin-orbit
and trigonal terms (i.e., the part of 3C~„& which yields the energy
levels but not the g values}, we can work directly in the trigonal
basis. This is because the coefficient of ff, is a multiple of the unit
matrix (i.c. ~"+t ls thc same foI' $ = 1 2 ~ ~ ~ 6} aIld ls unaGcctcd
by the transformation.
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elements):

X,,~4=~(tT, t
~
sc,.„)rT, q)

= ~'-~ ('Tt~
I ~" t I

'TtP )~rs*

=U'. g trig+. 8

where ¹"it+M"'&is now expressed in reduced form
comprising three 2-dimensional matrices, " and we can
obtain analytical expressions for the energy levels and

g values by solving the quadratic secular equations. We
find

~i=V( 'v+ 'f)+-(f.-/«) ( '.f'+ ,'—f'v —-'.v')-—,'~, (—»—a)

&i=~(2v+ 'i)+(-f./«) ( sf+—2iv 6v')+—k~, (12b)

where

+2—~2(vt f v+/f2)

+(f /«) ( 'v + 'v'f+ -'f'v +-,'f' v+-xiii- )-
—(pf, /hei) (3v'+av'g+ ',Pv+xP) -.

The ground-state (Emir) g values are"

g4.—=0 (by symmetry),

where
gii

—2—(2it/«) (44'+fi') 'i

a= (2/9) ift (7—/9) &f. 3v—f &«— —

(13)

fi= ,'%2/( f f.) . — —

While ft appears in the expression for the g factor, it
drops out of 8~ and 82. In the static limit the spin-orbit
and trigonal splitting of the ground vibronic state go
to zero, as they must since this state is then a Kramers'
doublet.

~ This is guaranteed since the over-all symmetry of the Hamil-
tonian is trigonal.

'4 The fact that the g values may sometimes agree with those
predicted by static-crystal-6eld theory does not necessarily mean
that the vibronic effects are unimportant. The static-crystal-6eld
g values can be reproduced even with substantial JT quenching
because of the complicated way that second-order terms come in.

The real tetragonal components of 'T2 are labeled i ~ ~

and the complex trigonal components a ~ .. The
unitary transformation matrix U' between trigonal and
tetragonal bases is given in Appendix B. These matrix
elements were used to evaluate the second-order matrix
3II~t using Eq. (9). At this point we could diagonalize
E"t+M'~t to get the energies and g values of the lowest
vibronic triplet of '32, and this was subsequently done
as a check. A more elegant method is to transform the
matrix X"'+3II~~ to a trigonal basis

.4:
(gtet+~tet) U'S .—gtri g+~tri rt

l.O

Or9

0.8

0,7

0.6

0.5

0,4
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FIG. 5. Values of p, f, and f& as a function of x. (The quantities
y, f, fb, and x are defined in the text. )

Substituting into Eqs. (12) and (13) the crystal-
field parameters for A1203.'Ti'+ as discussed in Sec. II,
viz. , v=700 cm ' v'=600 cm ', /=120 cm ' k=0.8,
the JT quenching factors y=0.21, ft ——0.41, f,=0.11,"
and an eRective E~', mode frequency @&=200 cm '
(note that the values of ft and f, are fixed by the choice
of 7), we get

8q=43 cm ',

g)) =1.14,

8~=107 cm '

go=0,

where the second-order interactions with the excited
'E term (see Sec. II) have been included.

"The corresponding numbers for the 'T.. term of Al 03.V'+
(Ref. 17) are 0.023, 0.156, and 0.007, respectively.

IV. DISCUSSION

We have shown in Sec. III 8 that a model in which
only E, vibrations are considered to interact with the
d' electronic system gives a satisfactory quantitative
explanation of the low-lying levels and ground-state
g values of A1203'. Ti'+. There are several other reasons
why we restrict our attention to E, modes. Firstly, only
even-parity modes mill interact with d-like functions.
The symmetric A&, mode produces no vibronic splittings
and so has not been considered. The justification for
neglecting the T2, mode is more dificult. Including it
would lead to a much more complicated calculation,
since the Born-Oppenheimer products

~
'Tr, Tt,n4444444)

would no longer diagonalize the vibronic Hamiltonian
LEq. (4)].Also, further parameters would be required,
and there are insufhcient experimental data to deter-
mine them. However, there is also some physical
justification for restricting our attention to the E,
modes. The observed spectrum indicates that there is
comparable quenching of spin-orbit and trigonal split-
tings (the latter is in fact quenched somewhat more
strongly). The trigonal fmld is a Tt, operator, and
coupling to the T» modes should be quenched by the
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same factor (about 1/7) as is the trigonal field. Further-
more, coupling to T2, modes would tend to quench the
spin-orbit interaction much more strongly than the
trigonal field. ' In fact, we find that the latter is
quenched more than the former, and we can safely
conclude that T2, coupling is not important.

It is interesting to discuss the transition from the
static to the dynamic limit. When the last term in Eq.
(5) is neglected (no vibronic coupling), the Hamilton-
ian is invariant under operations of the cubic group Oq

applied separately to the electronic and nuclear coordi-
nates. In the presence of vibronic coupling, it is in-
variant under operations of OA applied simultaneously
to the electronic and nuclear coordinates. There are
always spin-orbit terms present as perturbations, and
these provide a mechanism for the system to tunnel
among the equivalent distorted configurations (Sec.
III A). In the case where the system is observed in a
time which is long compared to the tunneling period,
an individual comp]ex exhibits the full cubic symmetry
of the Hamiltonian when averaged over the observation
time (dynamic effect). If the tunneling period is very
long compared to the observation time, it is possible
to observe the system "frozen" into one of the distorted
configurations. An individual complex may assume any
of the equivalent configurations with equal probability,
so that a spatial average yields a system with cubic
symmetry (static effect). In. the static limit the lowest
vibronic state of 'T2 is effectively a Kramers' doublet,
'32 of D4A, and cannot be split except by a magnetic
field. (This was not true, of course, of the 'T~ term
considered in Ref. 1'/. ) There is still a second-order
contribution to the g factor, arising from magnetic
interaction with the upper JT branch ('E of D4I„).

The calculation that we have performed does several
things. It shows that the second-order vibronic interac-
tions can be important even in the case of relatively
weak coupling between the lattice and the electrons.
It provides useful expressions for the vibronic energy
levels and g values of single d-electron systems for the
case of an E, vibrational mode interacting with a cubic
T2 level, and we are able to show that the introduction
of vibronic coupling modifies the crystal-Geld predic-
tions in a way that gives quantitative agreement with
the observed spectrum of A1203.Ti'+.

The present discussion is also relevant to the case of
A1203.'V4+, which is isoelectronic with A1~03'. Ti'+. As
mentioned in Sec. II, the spin-resonance spectrum of
A1203'. V4+ has not been positively identified at present. ~
The positions of the low-lying levels of this system as
obtained from the far-infrared spectrum'r (8q=28.1
cm ', b&=52.8 cm ') do not agree with static-crystal-
field theory. We have performed a similar calculation
on this system using the crystal-field parameters
6=20,000 cm ' v=700 cm ' v'=600 cm ' /=200
cm ', and k, =0.8, and obtained quantitative fit to the
experimental data with EJT——320 cm ' and 8~=200
cm '. The ground-state (E~~2) g values with this set of

parameters are predicted to be g~~ j..s and g~=0
(by symmetry) ."

Note that the number of parameters describing the
crystal-field, spin-orbit, and vibronic interactions is
greater than the number of experimental data available.
However, we should stress that this does not imply
that a Gt to the data is meaningless, since most of the
parameters are constrained to a relatively narrow range
of values. We arrived at thesevaluesasfollows. The cubic
parameter 6 is obtained from the position of the excited
'E term measured by optical spectroscopy, "and v and
v' were fixed by extrapolating the values found for other
d" ions in corundum. ""(6 and v' have only a small
effect on the 'T2 splittings. ) The spin-orbit parameter is
taken to be about 80% of its free-ion value f,, which
corresponds to a very reasonable expansion of the 3d
radial wave functions in a solid. The expectation value
of orbital angular momentum has been reduced in the
same ratio, viz. , 1/t p For t.he two and three d-electron
systems in corundum (V'+, Cr'+), it has been observed
that transitions to JT distorted states couple strongly
to a vibrational mode of 200 cm '."I We note that
static-crystal-field theory cannot give a fit to the data
for any physically reasonable set of parameters. A
further test of the model that we propose here would
be to measure the g values of the ~,~Ei~~ levels of
A1203'. Ti'+ at 37.8 and 108.5 cm ', respectively. We
have calculated these numerically for the set of param-
eters in Sec. III 3, and find g~ ~

(~Er~2) = —2.5,
g~(~Ev2) -02 ei(2Ev2) =19 g~(~Ev2)=2

In a recent paper Moser et al.38 argue that the far-
infrared lines in A1203.Ti'+ are not associated with Ti'+.
However, the evidence for the assignment to Ti'+ is
fairly conclusive. The first infrared transition at 37.8
cm ' corresponds very closely to the activation energy
for Orbach relaxation observed in spin resonance. ""
Recent experimental results" indicate that the 38 cm '
line splits in a magnetic Geld, and that g~~))gi. This is
consistent with our theoretical prediction but incon-
sistent with its assignment as a localized vibrational
mode. The Ti'+ spectrum does not appear in all Ti-
doped samples because Ti'+ is the most stable charge
state and Ti'+ is only obtained under controlled condi-
tions. Correlations with chemical analyses can be mis-
leading for this reason. While Moser et al.' report that
they obtained the same infrared spectrum in a sample
containing less than 20 ppm Ti, it wouM appear from
the anomalous dependence on a sample thickness that
they have a surface e8ect, and it may be that the sur-

'6 Resonances of vanadium ions in A1203 with g values in this
region have recently been measured by F. R. Merritt (private
communication) and by J. D. Castle, Jr. (private communica-
tion).

87 M. H. L. Pryce and W. A. Runciman, Discussions Faraday
Soc. 26, 34 (1958);S.N. Grechushnikov and P. 0. Feo61ov, Zh.
Eksperim. i Teor. Fiz. 29, .384 (1955) /English transl. : Soviet
Phys. —JETP 2, 330 (1956}P;

'8 J.-F. Noser, W. Zingg, H. Steven, and F. K. Kneubuhl,
Phys. Letters 24A, 411 (1967)."P. L. Richards and R. Joyce (private communications).
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face concentration of Ti + was quite high in this particu-
lar sample.

V. CONCLUSION

We have investigated the interaction between an
E, vibrational mode and the 'T~ electronic term of the
d' configuration. Such interaction gives rise to the JT
effect. The theory proposed by Ham has been applied
to this case, and analytical expressions were obtained for
the energies of the lowest vibronic levels and the ground-
state g values of single d-electron systems. We find that
second-order interactions within the lowest vibronic
multiplet are important even in the case of relatively
weak coupling to the lattice, and we are able to obtain
quantitative agreement with observed levels and g
values in A1~03'.Ti'+.
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APPENDIX A

We give in Table III the d' electronic energy matrix
without the electron-lattice interaction terms. The
parameters are defined as follows: 6=———', (t2 I

V«b
I i2),

tr—=+-,'(t,OI V„;, I
t,0), rr'= (t,x~ I V„;, I el~), and i is

the one-electron spin-orbit parameter; k is the orbital-
reduction factor (assumed to be isotropic); g=2.0023
is the spin-only spectroscopic splitting factor. The mag-
netic field is expressed in units of 1/P, and lies in the
(x, s) plane. Note that if II,=O, the 'T2 block of the
energy matrix can be rearranged into two 2-dimensional
and two 1-dimensional matrices. (The latter two are

connected in second order via 'Li',). The energies and

g values of Ear2( ,'x+, -——,'x ), iEi(2( ——,'x+, -', x ), and
2&i&2(2xo, —2xo) of 'T2 can be obtained by solving the
quadratic secular equations.

U2= D "'(ttir ~~i ~3) D"' (~ri 02i 03) i (all)

where the Eulerian angles which rotate the (100) axis
into the (111) axis are Hi ——rr/4, 82——cos ' —',V3, and
t513

——z. The choice 8~= ~ is made to conform to Griffith's4'
convention for the definition of the complex bases. Now
the transformation matrix between real and complex
tetragonal bases is given by

U, =D&'r'&(0 0 0) -',v2 0 —',V2 r (32)

0

so that v e get

APPENDIX 8
In Sec. III B we require the matrix

U;.= (iV.y(y= $, rt, l—) I
M, 'y'(y'—=x~, xo, x ) ),

which transforms the six components of the 'T~ term
from a complex trigonal (p—=x+, xo, x ) to a real
tetragonal (y—= (, rt, l) basis. The spin components are
labelled by M, =&-,', the orbital components by p, and
the transformation is carried out in the coupled (spin
and orbit) space. The matrix U can most readily be
obtained as a product of two 6)&6 matrices, U = U~U2.

U2 is the transformation from a complex trigonal to a
complex tetragonal basis and is given by a direct prod-
uct of two rotation matrices~:

or*p~
I

—-'x )

= i&2

I+-;x, )

I
—kxo)

I
y-', xo)

I

——,'x )

(83)

i I+ i ) ~ p ~ P ~ I3 ——~ - -I+~x)~
where or= expLi(2rr/3) j, a=exp/ i(x/8) j c—osL—,

' cos ' —,'V3), p= —exp[ i(m/8)] s—inL-,' cos ' -,'Aj, and or*, a,
and P* are complex conjugates of or, n, and P, respectively.

4' See e.g., M. Tinkham, Group Theory and Quantum& Mechanics (McGraw-Hill Book Company, Inc., New York, 1964).
4' J. S. GriKth, The Irreducible Tensor Method for Molecular Symmetry Groups (Prentice —Hall, Inc., Englewood Cli6s, ¹J.,

1962).


