
(1—T/ Ti) '&1.206. (5.5)

Thus the thermodynamic upper limit ri& (1—T/Tr, )
is not violated. Under these conditions the diode would
have an electrical power consumption of E„—=jeV=
1.101&&10 ' W, and a refrigerating power of Q=
0.203E„=2.2X10 4 W. It appears, therefore, that the
laws of thermodynamics do not preclude the construc-
tion of a diode having a measurable refrigerating eGect
and a technical efficiency significantly greater than
unity.

Since quantum efficiencies at 300'K are of order 6%
or less, the thermodynamic limits are at present of
only academic interest at this temperature. Conditions

and v0 remain unchanged, 0 is increased from 0.0312 to
i. This means that all nonradiative processes are made
radiative, so that it is reasonable to assume that dv
remains the same or increases. The resulting values of
Tl. and g are as follows:

TJ.& 1759'K,

i7 = 1.325/1. 101= 1.203,

at low temperatures are very di fl'eren t. Recent;lq,
quantum efFiciencies of 36% have been recorded at
77'K ' and of 40% at 20'K (Carr' ). lt seems possible
that in these cases the ie/erma/ quantum eAiciency 8, ,

i.e., the number of photons produced in the device per
electron crossing it, is near unity, the losses being
accounted for by internal absorbtion and reQection.
Pilkuhn and Rupprecht" have estimated that 8, 100%
for epitaxial GaAs diodes used as lasers at 4.2'K. One
can therefore expect that improved experimental
techniques may lead to external quantum efFiciencies
near 100%, and in such a case the thermodynamic limit
would become a realistic restriction. External quantum
efficiencies of 95% at 77'K have recently been reported
by Lamorte et al. ,

" but this refers to a pulsed laser
which is not a steady-state device and to which there-
fore the thermodynamic arguments of this paper do
not apply.

9%. N. Carr, IEEE Trans. Electron. Devices 12, 531 (1965).
' M. H. Pilkuhn and H. Rupprecht, J.Appl. Phys. 38) 5 (1967).
"M. F, Lamorte, T. Gonda, and H. Junker, IEEE J. Quantum

Electron. , 2, 9 (1966),
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Quantum Theory of an Optical Maser. II. Spectral Profile'
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In Paper I of this series, we derived equations of motion for a quantum-laser field interacting with atomic
reservoirs. In the usual region of sustained oscillation, the off-diagonal elements of the radiation density
matrix p, ++&(t) were found to have an expontential decay associated with phase difFusion. In I we found
the spectrum of the laser radiation by calculating the single time-ensemble average electric Geld implied by
p, +& (t) .This electric Geld was then treated as a classical variable whose Fourier analysis gave the spectrum.
In the present paper, we establish the validity of this procedure by analyzing a simple model for a spectrom-
eter. It is also shown that the same spectrum can be obtained from a two-time correlation function derived
from the equations of motion.

I. INTRODUCTION

N the first paper of this series, ' we derived the equa-
.. tion of motion for the density matrix of the laser
field as it evolved under the inhuence of excited atoms
(lasing medium) and a dissipation mechanism (cavity
Q). We found that the elements of the density matrix
in the e representation were coupled only along lines
parallel to the main diagonal. The diagonal elements
of the density matrix were seen to approach a steady
state while the off-diagonal terms decayed in time. It
was shown, to a good approximation, that the density

* This work was supported in part by the National Aeronautics
and Space Administration and in part by the V.S. Air Force
OfFIce of Scientific Research.

f Present address: Department of Physics, Massachusetts
Institute of Technology, Cambridge, Mass.' M. O. Scully and W. E.Lamb, Jr., Phys. Rev. 159, 208 {1967).

matrix for a laser in sustained oscillation sufficiently
above threshold obeys the equation

where I is the laser frequency. We have included the
6rst term on the right since it is more convenient for
the present purposes to work in the Schrodinger
picture. The damping constant go&~' had the form
~Dk2, where D is given by

(2)

and (ri) is the average number of quanta at steady
state. It was seen in I that the decay of the off-diagonal
elements implied by Eq. (1) is associated with phase
diffusion.

The density matrix p„,„represents our knowledge
of the state of the system of interest and thus contains
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The probability of Gnding an atom of frequency co in
the upper state at t0+ T is

p2, 2(t0& t0+T) —g p2 n;2.n(00r to+T) ~ (8)

+0™=02A2A2+01Al Al

is the free-atom Hamiltonian, and

V= —gLA2tAla+AltA2at) (12)

%'e now proceed to calculate this quantity.
During the time that the spectrometer atom is in

the cavity, to a very good approximation, the pumping
and damping of the laser Geld are going on as if the
spectrometer atom were absent. That is, the presence
of the spectrometer atom weakly coupled to the
"massive" laser Geld hardly affects the optical oscillator.
Hence, the time rate of change of the density matrix
for the spectrometer atom-laser system is given by
the sum of the time derivatives in the absence of the
atom plus the time derivative produced by the spec-
trometer atom interacting with the Geld,

dp/dt= (dpldt) ineer+ (dp/dt) epeotrometer intereotion (9)

Using Eq. (1), we have

(dp/dt) r,n;s,n' i(22 22 ) ppr, n;s, n' 90 pr, n;s,n'

zg(gg atom+ P') p), (10)
where

is the interaction Hamiltonian of the atom and Geld.
Here ut, u; A2t, A2, and Alt, A1 are the creation and
annihilation operators for the Geld and the atom in its
states

~
2) and

~ 1), respectively. The 6eld frequency
is given by v and the atomic energies are el and e2

while the strength of the atom-field coupling is denoted
by g. The equations (10) in which we are interested
are those coupling pi,„+i;i, +i(to) to pi, ;2, (t0+&), i.e.,
we want equations of motion for the evolution

P2,n; l,n+1

pl, n+1; 1,n+ 1 P2,n; 2,n.

Pl,n+1; 2,n

These equations are

(dP/dt) 2.n;2, n, &f+2n; l,n+,1Pl,n+1;2,n(t) C C )r (13)

(dp/dt) 1, +1,2,„=—Li (1'—t0) —tt0@')pl, „+1,2,„
tD in+1;2,np2 n;,2n+. pl, n+1;1,n+il ,in+1;2,n)y , (14)

P2,n; l,n+1—Pl,n+1;2,n ~

We now proceed with the perturbation calculation.
Noting that at f=$p the atom-Geld density matrix
factors and that the atom is in the lower state at that
time, we have the initial conditions given by Eq. (5).
The Grst nonvanishing contribution to P2,n. 2,n is given by

P2, n; 2,n (00) 2

t0+T
dt LI 2,nil, n+1p l,n+1;2,n(t ) —C.C.).

tp
(16)

The argument t0 in Eq. (16) indicates that we are considering an atom having that atomic frequency. The oif
diagonal elements p"&1,„+1., 2,„(t') are calculated from Eq. (14) and are given by

tt

p 1„+1,2,„(t')= i d—t" expI —iE(i'—10) —ttt)(t t ) Il i,n+1;2. p, (to),
tp

(17)

where

Inserting (17) into (16) we find
P
—~p(&) (17')

P2;;2, (~) =— tp+T
dt'

tp tp

dt" f ~
l 2, ;1, +i I' exp/i(10 —P) —tt)(t' —t")+ c.c.I p„,„(t ). (18)

As indicated in Eq. (2), we must sum this expression over I to find the probability that the atom of frequency

co has absorbed a laser photon in a time T. %e Gnd

P .2(~) = —Lg' Z NP. ,-(t0))
nM tp tp

tp+T t'
dt' dt" expti(00 —v) —tt)(t' —t")+ c.c. (2g2tt2') (tt)j (t0 y)2+tt2)—1(19)—

which is in exact agreement with the spectrum given

by Eq. (4), since tt=12D.
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APPENDIX

In this paper we designed an experimental
"apparatus" to measure the laser spectrum. This
device was then analyzed using the equation of motion
for the density matrix p,„(t) of the laser radiation.
Such an operational procedure for obtaining the
spectral profile has the merit of being understandable
physically.
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The spectral profile for a system may be defined''
formally as the Fouri. er transform of the correlation
function given by

G(t) =~ Tr (Lot(t)u(0)+u(t) at(0)]p(0)i,ops

+Lo'(0) o(t)+o(0) o'(t) 3p(o) i ~.iI (A1)

where p&,&,& is the density matrix for the total system of
field plus reservoirs. This Appendix is intended to
show that the linewidth implied by Eq. (A1) agrees
with that of Eq. (19).

In order to use (A1) we must ask, what is the time
dependence of o(t)? Clearly it is not that of a free
field, 4' for then there would be no linewidth (8 function
spectrum). To obtain the temporal evolution of the
correlation function G(t), we must recall how "noise"
entered the problem in the Grst place, We considered
the radiation field to be acted upon by the pumping
and damping atoms (reservoirs) and then traced the
density matrix over the reservoir states. After con-
traction, the radiation field cannot be described by a
state vector but is in a mixture requiring a density
matrix for its specification. Thus we have extended
the definition (A1) to include the reservoir states over
which we will later trace. The time dependence of the
operator a(t) is now given by

o(t) = U'(t) ~(0) U(t) (A2)

where U(t) is the, time development operator for the
combined laser-reservoir system. The correlation func-
tion with the atomic reservoirs included, but traced
over, may now be written in terms of these time-
dependent operators. In the following discussion, we
restrict our attention to the quantity

g(t) = Trio'(t) ~(0)pi.~.~(0)j, (A2')

since the other terms of (A1) are similarly obtained.
Writing (A2') in terms of (A2), we have

g(t)= T Tr ILU (t)a (0)U(t)o(0)Ã(0)p(0) I

= Tr.I»~LUt(t) ~(0) U(t) R(o) 3~'(0) p(o) I, (A3)

where R(0) is the reservoir density matrix which is
uncoupled from the radiation field p(0) at t=0 Equa-.

~ H. Ekstein and N. Rostoker, Phys. Rev. 100, 1023 (1955).
3 M. Lax, Phys. Rev. 129& 2342 (1963),
4 P. L Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).
5 R. Glauber, in Quantum Optics and E/ectronics: Lectures

De/ieeretj at Les Pouches During the 1964 Session of the Summer
School of Theoretical Physics, University of Grenoble„edited by C.
DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gordon and
Breach, Science Publishers, Inc., New York, 1965).

tion (A3) is seen to have a simple form if we define a
new operator

K(t) = Trodi(U'(t) u(0) U(t) R(0)],
for now Eq. (A3) is

(A4)

g(t) = Tr,LCt(t)e(0) p(0)]. (AS)

We obtain an explicit form for the time dependence
of the operators 0', (t) and 8,t(t) by recalling that the
density matrix is given by

p. ..(t) = fT"LU(t)R(0) p(0) U'(t)3I. ,". («)
However, we may obtain the time dependence of this
quantity by integrating Eq. (1)

p„,„(t)=

p-,"(o) "p~-BD(~-~')'+'. (~- )gt}. (A7)
Comparing (A6) and (A7) we see that U(t)„,„ is in
fact diagonal. Hence, we may write (A6) as

pn, n (t) =p~,~ (0) TruCU(t), oR(0) Ut(t)o, n 'j (A8)

A comparison of (A7) and (A8) then shows that

Tr,(U(t) „,„R(0)Ut(t) „,,„,i
= exp/ yD(it —ii ) /+ted (e—it')tj, (A9)

and we may write the time dependence of the matrix
elements of the 8 operator (A4) as

L+(t) $„,„+i——a(0) „,„~i TriiLU(t), „R(0)U (t)„+i,~Q
= a(0)„,~i exp/ (-', D+—ip) t$ . (A10)

We may now write Eq. (A3) as

G(t) = Tr,Lat(0) a(0)p(0) j cosvt exp( —~iDt). (A11)

It is clear that the Fourier transform of (A11) and the
other terms in Eq. (A1) will give the spectral profile
of Eq. (19). Accordingly, the decay of the two-time
correlation function for the laser radiation (A11) is
identical to the decay of the single time averaged elec-
tric field as given by Eq. (3).

This Appendix can be regarded as a demonstration
of the Onsager regression hypothesis. ' Lax' has shown
that Onsager's original statement for an equilibrium
system is true even for nonequilibrium situations, pro-
vided the system is Markofhan. Louisell and Marburger~
have extended the proof to show "that this result is
always true, but that only under the conditions stated
by Lax are the equations of motion the macroscopic
ones. "

' L. Onsager, Phys. Rev. 3V, 405 {1931).
7W. H. Louisell and J. H. Marburger (to be published).


