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and » remain unchanged, 0 is increased from 0.0312 to
1. This means that all nonradiative processes are made
radiative, so that it is reasonable to assume that Ay
remains the same or increases. The resulting values of
T and 5 are as follows:

T, <1759°K
7=1.325/1.101=1.203,
(1—T/Ty)~1>1.206. (5.5)

Thus the thermodynamic upper limit < (1—7/77)!
is not violated. Under these conditions the diode would
have an electrical power consumption of K,=jeV =
1.101X10* W, and a refrigerating power of Q=
0.203E,=2.2X10"* W. It appears, therefore, that the
laws of thermodynamics do not preclude the construc-
tion of a diode having a measurable refrigerating effect
and a technical efficiency significantly greater than
unity.

Since quantum efficiencies at 300°K are of order 6%,
or less, the thermodynamic limits are at present of
only academic interest at this temperature. Conditions
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at low temperatures are very different. Recently,
quantum efficiencies of 369, have been recorded at
77°K 7 and of 409, at 20°K (Carr®). It seems possible
that in these cases the infernal quantum efhciency 6;,
i.e., the number of photons produced in the device per
electron crossing it, is near unity, the losses being
accounted for by internal absorbtion and reflection.
Pilkuhn and Rupprecht! have estimated that 8;~1009,
for epitaxial GaAs diodes used as lasers at 4.2°K. One
can therefore expect that improved experimental
techniques may lead to external quantum efficiencies
near 1009, and in such a case the thermodynamic limit
would become a realistic restriction. External quantum
efficiencies of 959, at 77°K have recently been reported
by Lamorte et al.,'! but this refers to a pulsed laser
which is not a steady-state device and to which there-
fore the thermodynamic arguments of this paper do

not apply.
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Quantum Theory of an Optical Maser. II. Spectral Profile*
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In Paper I of this series, we derived equations of motion for a quantum-laser field interacting with atomic
reservoirs. In the usual region of sustained oscillation, the off-diagonal elements of the radiation density
matrix pn,a4x(f) were found to have an expontential decay associated with phase diffusion. In I we found
the spectrum of the laser radiation by calculating the single time-ensemble average electric field implied by
pn.ns1(2). This electric field was then treated as a classical variable whose Fourier analysis gave the spectrum.
In the present paper, we establish the validity of this procedure by analyzing a simple model for a spectrom-
eter. It is also shown that the same spectrum can be obtained from a two-time correlation function derived

from the equations of motion.

I. INTRODUCTION

N the first paper of this series,! we derived the equa-
tion of motion for the density matrix of the laser
field as it evolved under the influence of excited atoms
(lasing medium) and a dissipation mechanism (cavity
Q). We found that the elements of the density matrix
in the » representation were coupled only along lines
parallel to the main diagonal. The diagonal elements
of the density matrix were seen to approach a steady
state while the off-diagonal terms decayed in time. It
was shown, to a good approximation, that the density

* This work was supported in part by the National Aeronautics
and Space Administration and in part by the U.S. Air Force
Office of Scientific Research.

t Present address: Department of Physics, Massachusetts
Institute of Technology, Cambridge, Mass.

1 M. O. Scully and W. E. Lamb, Jr., Phys. Rev. 159, 208 (1967).

matrix for a laser in sustained oscillation sufficiently
above threshold obeys the equation

(1)

where » is the laser frequency. We have included the
first term on the right since it is more convenient for
the present purposes to work in the Schrodinger
picture. The damping constant po® had the form
3Dk?, where D is given by

D=3(/Q)/{n), 2)

and (#) is the average number of quanta at steady
state. It was seen in I that the decay of the off-diagonal
elements implied by Eq. (1) is associated with phase
diffusion.

The density matrix p,,. represents our knowledge
of the state of the system of interest and thus contains

(dp/dl) noatk= — 1(%— n,) Vpn m+k_ﬂ0(k)Pn.n+'-‘:
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the information necessary to calculate expectation
values of single-time Hermitian operators. That is, if
we know the density matrix p for our system, the
expectation value for an operator Q (in the Schrodinger
picture) is just

(@)= Trlp()Q].

In I, the spectrum of the laser oscillator was obtained
by calculating the ensemble average electric field.

(E)=(E) exp(—1Dt) sinst. (3)

This time-dependent expectation value was then
Fourier analyzed, and multiplied by its complex
conjugate. The resulting expression for the spectrum
of the laser oscillator was found to be Lorentzian:

I(w)= | E(w) P=E(0—»)*+(ED)* T (4)

One purpose of this paper is to establish the validity
of this spectrum even when (E)=0 because the density
matrix is diagonal.

In Sec. II, we give an operational analysis of a
simple spectrometer and obtain an expression for the
laser spectrum in agreement with that given by Eq.
(4). Before doing so, we must answer the question,
“How is the spectrum of the quantized laser oscillator
to be defined”’? A plausible guess is that it should be
deduced from the Fourier transform of the low-fre-
quency part of the two-time correlation function

G(7) =3(E(t+7) E() +E() E(t+7) Jenserabie  (4)

where E({) is the electric field operator at time ¢.
There are two difficulties with this recipe for finding
the linewidth: First, it is based upon the assumption
that a procedure used in classical noise theory can be
transferred to a quantum-mechanical problem. Second,
we have not yet given a meaning to a time-dependent
operator such as E(f). The second difficulty arises
because we are considering operators of the radiation
field possessing a time dependence which is no longer

pltg,w) /

Fi16. 1. Schematic illustration of spectrum analyzer. Atom
enters laser cavity in ground state 1, interacts with laser radiation
and emerges in linear superposition of states 1 and 2.
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Fic. 2. Relative excitation of spectrometer atoms plotted versus
atomic frequency w= (e—e) /h.

describable by a Hamiltonian after we have traced
over the reservoir coordinates. The Appendix includes
a discussion of the spectrum as inferred from a two-
time correlation function using the equation of motion
(1) for the density matrix.

II. SPECTRUM ANALYZER

We consider the following simple spectrometer.
Imagine that we have a beam of two level atoms, upper
state | 2) and lower state |-1) separated by an energy
e—e=7w. The beam is prepared with each atom
initially in the lower state | 1), i.e., its initial 2X2
density matrix has only one nonvanishing element

pra(to) =1. ©)

These atoms pass through the laser cavity and interact
weakly with the laser radiation, as shown in Fig. 1.
The time of flight 7 is much greater than 1/D, so that
the effective atomic linewidth is much narrower than
that of the laser radiation. The fraction of excited
atoms pg,2 emerging from the cavity is determined by a
suitable measurement. We then prepare a new beam of
slightly different atomic frequency and repeat the
experiment. Finally, we plot the relative excitation of
the different beams as a function of frequency, as in
Fig. 2. This plot of the relative effectiveness of the
laser radiation in exciting atoms with different fre-
quencies provides us with an operational definition of
the spectral profile for the laser.

We now calculate the probability that an atom of
frequency » will make a transition to the state | 2).
To do this, we consider an atom injected at {=/{ in
state | 1), determine the density matrix for the com-
bined spectrometer atom-field system at time 4+ 7,
and then trace over the radiation field. The spectrom-
eter atom-field density matrix will evolve from one in
which all the atoms in the beam are initially in their
ground states,

Patom—tield (f0) = p1,1(40) pn.nr (£0) = pr,nr (),

(6)

to

Patom—field(t0+T) =Pr,n;a,n'(t0+T), r= 1, 2, §= 1, 2. (7)



248 M. O.
The probability of finding an atom of frequency w in
the upper state at £+ 7T is

p2.2(@, bt T) = 2 prmszin(w, ot T). (8

We now proceed to calculate this quantity.

During the time that the spectrometer atom is in
the cavity, to a very good approximation, the pumping
and damping of the laser field are going on as if the
spectrometer atom were absent. That is, the presence
of the spectrometer atom weakly coupled to the
“massive” laser field hardly affects the optical oscillator.
Hence, the time rate of change of the density matrix
for the spectrometer atom-laser system is given by
the sum of the time derivatives in the absence of the
atom plus the time derivative produced by the spec-
trometer atom interacting with the field,

dp/ dt= (dp/ dl) la,ser+ (dP/ dt) spectrometer interaction. (9)
Using Eq. (1), we have
(dp/dt) rajsm — ""L(%'—‘ 71«,) VPr,n;8,n’ —‘Mo(k)Prm;s.n’

_i[(Hﬁatom‘l’ V), P]rm;s.n’: (10)
where
Hoa.tom= €2A2TA2+€1A1TA1 (11)
is the free-atom Hamiltonian, and
V= —g[A27A1a+A1TA2(lT] (12)

¢
P2,n;2,n (w) =1 /
¢

0
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o+T
Y[ Vamita1pP a2, () — c.c.].
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is the interaction Hamiltonian of the atom and field.
Here af, a; A2f, Ag; and 4,1, A4, are the creation and
annihilation operators for the field and the atom in its
states | 2) and | 1), respectively. The field frequency
is given by » and the atomic energies are e and e
while the strength of the atom-field coupling is denoted
by g. The equations (10) in which we are interested
are those coupling p1ni1;1,n41(f) tO pami2n(fo+7T), ie.,
we want equations of motion for the evolution

P2,n;1,n41
Pln41;1,m41 P2,n;2,n.
Platl1;2,n
These equations are
(dp/d) 9,2, =—1[ Vam1mp1p1nn2.a(t) — c.c. ], (13)
(dp/dt) 1,n41,20= —[E(r— ) — 1D Jp1,n41;2,n
- i[Vl.n+l;2,nP2,n;2.n+Pl,n+l;1,n+l Vl ,n+1;2,n], ( 14)
pz,n;l.n+1=91,n+1;2,n*- (15)

We now proceed with the perturbation calculation.
Noting that at f={ the atom-field density matrix
factors and that the atom is in the lower state at that
time, we have the initial conditions given by Eq. (5).
The first nonvanishing contribution to ps ;2. is given by

(16)

The argument w in Eq. (16) indicates that we are considering an atom having that atomic frequency. The off-
diagonal elements p®1 541,22 (#) are calculated from Eq. (14) and are given by

t/
POrmizzn(t) =—i [ ' exp{—iL—0) —iu] (=)} Vimrsanpun(h),
to

where

Inserting (17) into (16) we find

to+T t’
pran@ == [ @t [ (| Vamaa I expliCo=s) =JE =)+ c.chpmalt).
to to

p=po®.

(17)

(17)

(18)

As indicated in Eq. (2), we must sum this expression over # to find the probability that the atom of frequency

w has absorbed a laser photon in a time 7. We find

o to+T v
pa.2(w) =—[g é pn.n(to) ] {f' " dt"/; dt" exp[i(w—v) —p] (¢ —1t")+ c.c.} (282 T) (n) (w—r)24u2] (19)

which is in exact agreement with the spectrum given
by Eq. (4), since u=3D.
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APPENDIX

In this paper we designed an experimental
“apparatus” to measure the laser spectrum. This
device was then analyzed using the equation of motion
for the density matrix p,.-(f) of the laser radiation.
Such an operational procedure for obtaining the
spectral profile has the merit of being understandable

physically.
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The spectral profile for a system may be defined??
formally as the Fourier transform of the correlation
function given by

G(t) =% Tr{[a'()a(0) +a(£) 27(0) Jo(0) totar
+La™(0)a(?)+a(0)a’ () 1p(0) totar},

where piota1 is the density matrix for the total system of
field plus reservoirs. This Appendix is intended to
show that the linewidth implied by Eq. (A1) agrees
with that of Eq. (19).

In order to use (Al) we must ask, what is the time
dependence of a(f)? Clearly it is not that of a- free
field,*® for then there would be no linewidth (8 function
spectrum). To obtain the temporal evolution of the
correlation function G(¢), we must recall how “noise”
entered the problem in the first place. We considered
the radiation field to be acted upon by the pumping
and damping atoms (reservoirs) and then traced the
density matrix over the reservoir states. After con-
traction, the radiation field cannot be described by a
state vector but is in a mixture requiring a density
matrix for its specification. Thus we have extended
the definition (A1) to include the reservoir states over
which we will later trace. The time dependence of the
operator a(t) is now given by

a(t)=U"(1)a(0)U(1),

(A1)

(A2)

where U(¢) is the time development operator for the
combined laser-reservoir system. The correlation func-
tion with the atomic reservoirs included, but traced
over, may now be written in terms of these time-
dependent operators. In the following discussion, we
restrict our attention to the quantity

g(#) = Tr[a*() a(0) protar(0) ],

since the other terms of (A1) are similarly obtained.
Writing (A2’) in terms of (A2), we have

g(8)= Tr, Tre{[U"(£)a*(0) U (#)a(0) 1R(0)(0) }
= Tr,{Trz[ U (#) a(0) U() R(0) Ja*(0) p(0) }, (A3)

where R(0) is the reservoir density matrix which is
uncoupled from the radiation field p(0) at ¢=0. Equa-

(A2)

2 H. Ekstein and N. Rostoker, Phys. Rev. 100, 1023 (1955).
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tion (A3) is seen to have a simple form if we define a
new operator

a(4) = Trz[ U () a(0) U(£) R(0) ], (A4)
for now Eq. (A3) is
g(t)= Tr,[a’(1)@(0)p(0)]. (AS)

We obtain an explicit form for the time dependence

of the operators @(f) and @'(#) by recalling that the
density matrix is given by

pua (£) = {Tra[U () R(0)p(0) U (1) T} (A6)

However, we may obtain the time dependence of this
quantity by integrating Eq. (1)

Pn.n’(t) =
pnn(0) exp{ —[FD(n—n')"+iv(n—n')Jt}. (A7)

Comparing (A6) and (A7) we see that U(f)nn is in
fact diagonal. Hence, we may write (A6) as

Pt () = panw (0) Ter[U (D) naRO)UT ()]  (A8)
A comparison of (A7) and (A8) then shows that
Tre[U () 2 aR(0) U () nr,n]

= exp —3D(n—n')%+iv(n—n')t], (A9)

and we may write the time dependence of the matrix
elements of the @ operator (A4) as

LG(®) Jnn41=a(0)n.ns1 Tte[ U (£) 2,nR(0) U (1) mi1,n41]

=a(0)n,n41 exp[ — (3D+iv) £]. (A10)
We may now write Eq. (A3) as

G(t)= Tr,[a'(0)a(0)p(0)] cosvt exp(—3Dt). (A11)

It is clear that the Fourier transform of (A11) and the
other terms in Eq. (A1) will give the spectral profile
of Eq. (19). Accordingly, the decay of the two-time
correlation function for the laser radiation (A11) is
identical to the decay of the single time averaged elec-
tric field as given by Eq. (3). '
This Appendix can be regarded as a demonstration
of the Onsager regression hypothesis.® Lax? has shown
that Onsager’s original statement for an equilibrium
system is true even for nonequilibrium situations, pro-
vided the system is Markoffian. Louisell and Marburger”
have extended the proof to show “that this result is
always true, but that only under the conditions stated

by Lax are the equations of motion the macroscopic
ones.”

¢ L. Onsager, Phys. Rev. 37, 405 (1931).
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