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for various values of § and a. Because of the complexity
of the spectrum, since each Am =0 transition consists of
five fine-structure lines, it is frequently impossible to
measure all the Am==1 transitions. Thus, in Table I,
where a measurement is given for a particular value of
m, this is the only value for which the corresponding
doublet of lines was measurable; otherwise, the symbols
P and @ denote an average over several doublets. It
should be noted that Q(m) =0 for §=0, =+1r, while
P(m) =0 for tana sin4§=0.87.

III. DISCUSSION

It can be seen that there is very satisfactory agree-
ment between theory and experiment, considering the
experimental difficulties of accurate alignment of the
crystal and of measuring lines of low intensity. It is
interesting to point out that the intensities of forbidden
lines can be much increased by the presence of local
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deviations from cubic symmetry; this effect is spec-
tacularly demonstrated in powder samples of MgO
and CaO, where the forbidden lines are an order of
magnitude larger relative to the AM =1, Am=0 lines
than in single MgO crystals. Such effects can also arise
in single crystals; if we assume that the effect of random
distortions can be represented by second-rank spin
tensors (of the form S5,2—18S? etc.), it can be shown
that the averaged effect in a single crystal gives an
additive contribution

I'=(F+Gcosdd) [ (Hy+)?/ g8 H* I (I+1) —m(m=1)]

to the forbidden line intensities of Eq. (12) (F and G
are constants describing the average strength and angu-
lar distribution of the local distortions, where
F> |G| >0). However, we find that it does not
appear necessary to include such terms in the analysis
of our experimental results on single crystals.
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A quantum theory is developed for the spontaneous optical parametric process in nonlinear, anisotropic,
and dispersive media; the process is treated directly as a scattering problem rather than a problem involving
equivalent coupled oscillators. Following the general procedure in quantum field theory, a general expression
is obtained for the differential extinction coefficient, which contains all the information on the intensity of the
spontaneous emission in the parametric scattering process. The tuning characteristics, beam divergence, and
spectral properties of the spontaneous emission for colinear and noncolinear interactions are described in
detail and illustrated with numerical examples on such standard nonlinear optical crystals as LiNbOj,
NH,H,POy4, and KH,PO4 under various pumping conditions. Explicit formulas for the intensity of the
spontaneous emission are also obtained. The spontaneous intensity calculated using the formulas given is
shown to be in complete agreement with known experimental data on NHH,PO, pumped at 3472 A.

I. INTRODUCTION

ARAMETRIC interaction of light waves in

optically transparent nonlinear media is an ef-
fective method for producing continuously tunable
amplification and generation of coherent optical radi-
ation throughout the visible and into the infrared
region of the spectrum.! Since the initial observation?
of the parametric effect in KH,PO, (KDP), significant
progress has been made in developing such amplifiers

* Work supported by the Advanced Research Projects Agency
through the Materials Science Center of Cornell University.
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transl.: Soviet Phys.—JETP Letters 6, 23 (1967)7], which con-
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1965).

and oscillators.* The theory of optical parametric
process has also been discussed extensively in the
past."® The calculations dealt mainly with the gain
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mechanism and the behavior of the single-mode
oscillators; the quantum noise of the single-mode
parametric amplifier due to the zero-point fluctuations
has also received considerable attention.”?

The study of the quantum noise in the parametric
process is important not only because the ultimate
sensitivity of the optical parametric amplifier is limited
by such noise but also for a more immediate reason:
With all the presently available nonlinear crystals,
sufficiently high parametric gain can be achieved only
when pumped with the intense outputs of pulsed solid-
state lasers or their harmonics. Within the limited
duration of the pump light, the parametric oscillator
does not always achieve steady-state oscillation?
and the oscillator output consists primarily of amplified
noise; it is proportional to the average intensity of the
quantum noise. When pumped with the continuous-
wave gas lasers,! there is hardly any gain and one can
only observe the noise.

In Ref. 3, the average intensity of the quantum noise
produced in LiNbO; pumped at 5300 & was inferred
from the measured oscillator output by Miller and
Nordland. Madge and Mahr® have made extensive
direct measurement of the average intensity of the
quantum noise in NHH:PO; (ADP) pumped at
3472 A. It is known that the quantum noise intensity
per mode’ is equal to the usual zero-point energy of
harmonic oscillators. One can then make a rough
estimate of the expected total intensity of the quantum
noise from this single-mode result and the estimated
flux of modes that can be parametrically amplified.
Indeed it was found® that the measured result in ADP
agrees reasonably well with such an estimate. On the
other hand, there are indications® that the measured
result in LINbO; was far less than that estimated on this
basis.

The comparison of theory and experiment is compli-
cated by the fact that the extension of the single-mode
results on quantum fluctuations, which are quite
adequate for the cavity-type microwave amplifiers,
to the optical parametric process is far from trivial. In
this case, the nonlinear crystal is anisotropic and
dispersive and the pumping laser beam always has a
finite spectral width and is rarely diffraction limited;
there are no clearly isolated modes. Whole regions,
rather than isolated points, in the wave-vector space
of the electromagnetic fields must be considered in the
interaction process. The optical parametric process
should then be treated directly as a scattering problem
rather than a problem involving equivalent coupled
oscillators. The quantum noise is the spontaneous
emission in the parametric scattering of the incident
pumping light in the nonlinear crystal. We have carried
out the calculations this way.

Following the general procedure in quantum field

10 C. K. N. Patel, Appl. Phys. Letters 9, 332 (1966); S. E.
Harris, M. K. Oshman and R. L. Beyer, Phys. Rev. Letters 18,
732 (1967).
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theory,' we obtain in the next section an expression
for the differential extinction coefficient for the para-
metric scattering process. This coefficient is defined as
the ratio of the number of photons spontaneously
emitted into a given differential solid angle and fre-
quency interval due to the parametric scattering
process per unit time per unit volume to the incident-
pump photon-flux density; it contains all the informa-
tion on the intensity of the spontaneous emission.
In Sec. III, explicit formulas are obtained and the
properties of the spontaneous emission described.
Finally, detailed numerical results are given for various
representative experimental situations and comparisons
are made with known experimental results.

II. DERIVATION OF THE DIFFERENTIAL
EXTINCTION COEFFICIENT

A. Field Quantization and the Interaction Lagrangian

The total Lagrangian density L. of the fields in
the nonlinear medium can be split up,

Lt()t=L0+Lly (1)

into a part Ly for the free fields in the medium in the
absence of the nonlinearity and a part L; that describes
the interaction due to the nonlinearity.
Consider first the part independent of the non-
linearity'?:
Ly=(1/8x) [D-E—(1/po) B-B], (2)

and the corresponding Hamiltonian
1
th= - [ (D-E+uB-B)r, 3)
™

where u, is the permeability of the medium and the D
vector is related to the E vector by a linear dielectric
tensor.

For anisotropic crystals, the formal problem is
slightly complicated by the fact that for extraordinary
waves the wave vector k and the Poynting vector s
are not always in the same direction since D and E
are not always colinear. However, for all the crystals
of interest (e.g., LiNbO;, ADP, KDP, etc.) this
difference is extremely small. As a lepllﬁcatlon we
assume in what follows that the (/- E)2 term is negli-
gible compared with the E-E term in electric energy
density™ for the extraordinary waves. In a dispersive
medium,® the electric energy density for a spectral
component of frequency w would contain an additional
term of the form (w/2)[de(w)/dw]E-E, where e(w)
refers to the dielectric constant at this frequency.
Again, in all the crystals and spectral ranges of interest,

1N. N. Bogoliubov and D. V. Shirkov, Introduction to the

Theory of Quantized Fields (Interscience Publishers, Inc. New

York, 1959).
12 cgs electrostatic units are used throughout this paper.
13 See, for example, L. Landau and E. Lifshitz, Electrodynamics
of Continuous Media (Addison-Wesley Pubhshmg Co., Reading,
Mass., 1960), p. 316 and Sec. 61.
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this term is generally small compared with the re-
maining terms in the energy density. As an additional
simplification, in what follows, we also neglect this
term. The main effects of the anisotropy and dis-
persiveness of the medium on the optical parametric
process are not dependent on these neglected terms and
these approximations would have no effect on our final
results.

We now expand the electric field in the medium in
plane extraordinary and ordinary waves normalized in
the continuous spectrum:

E(r,t)= i / [0 (k) T2 (Ficw,) 2

X[a,(k) exp(ik-r—iw,t) —a,’ (k)
Xexp(—iker+iw,t) J6(k)dk

+ Zi/[ne(k)]“l(/’zwe)”z[ae(k) exp(tk-r—iwt)
—a,' (k) exp(—ik-r+iwt) 2(k)dk, (4)

where a.f(k) and a,(k) are the creation and annihila-
tion operators for a quantum of extraordinary wave
with the wave vector k and polarization &(k) ; similarly,
a'(k), a,(k), and 6(k) refer to the ordinary wave.
According to the usual rules of field quantization,!* the
creation and annihilation operators satisfy the com-
mutation rules:

[a(k), a(K')]=[a'(k), a' (k') ]=0 for any aq,

(5)
Lao(k), o, (k') ]=8(k—K'), (6)
La.(k), a.! (k) J=6(k—k’), (7)
La.(k), o' (k) ]=0. 8)

The angular frequencies w, and w, are related to the
magnitude of the corresponding k vector and the
indices of refraction, #.(k) and #,(k), for the ex-
traordinary and ordinary waves, respectively, as
follows:

wne(k)— | k| C=0, 9)

wote(K) — | k | C=0, (10)

i xiilei (k) 05 (k) o ()
(21)3/]_/“2,6 16 (Kp) 110 (Y1) 10 (K3)

L1='—‘
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where C is the speed of light in free space. Using this
representation, Eq. (4), the interaction-free part of the
Hamiltonian, Eq. (3), becomes simply:

Hum [ o (9,00, (1) (00 Yk

+% f oL a.t () ao(K) +a,(K)a, (k) Jdk. (1)

The interaction Lagrangian L, is determined by the
following considerations: In a nonlinear optical crystal,4
a component of the electric displacement vector at a
given frequency may contain an additional term
DN%(w) corresponding to the nonlinear polarization
PNL(w;) which is related to the electric field com-
ponents at two other frequencies, E;(w;) and Ej(ws),
through a nonlinear susceptibility coefficient!

DN (wl) =47I’PiNL(C01)
(12)

The interaction Lagrangian would have to be con-
sistent with this, since in general’®

D;=(4m)~(dL/dE;) (13)
and within the context of the present problem we have
DNV () = (4m) " [L:1/E;(w1) ], etc. (14)

Furthermore, in considering the parametric process
which corresponds to the simultaneous annihilation of
a pump photon with wave vector k, and creation of
two other photons and the reverse process, one needs
to consider only those terms in the interaction La-
grangian that are proportional to a(k,)at(k;)a’(k,)
and a'(k,)e(k;)a(ke). Finally, one can assume, for
definitness, that the pump wave is an extraordinary
wave while the other two are ordinary waves; this cor-
responds to the usual experimental arrangement in
LiNbO;, ADP, KDP, etc. The final results can be
easily modified to apply to the other situations when
required. Thus, one finds that for the present purpose
the interaction Lagrangian density L, should have the
following form:

=darx N (wiwaws) ;i (ws) e (ws) .

X (ﬁawe,,wolw.,g) 12 { a, ( kp) (101— ( k]) aaT ( kz) expD ( kp - kl— kz) or—1 (we,,-—wm ""wo2) l:]
—a,"(ky) ao(k1) @, (k) exp[ —i(kp—Ki—Ky) - 1414 (0ep —wor —wos) £]} dKpdIidky  (15)

in terms of the representation given in Eq. (4). ei(ky),
0;(ky), and ox(k;) are the projections of the unit
vectors é(kp), 6(k1), and 8(ks) on the unit vectors 7,
3, k, respectively, referred to in the subscripts of the
nonlinear susceptibility coefficient.

With the interaction Lagrangian given, the para-
metric process in the nonlinear optical medium can now
be described in terms of an appropriate scattering

matrix and studied by means of the usual perturbation
theory."t

4P, A, Franken and J. F. Ward, Rev. Mod. Phys. 35, 23
(1963) ; N. Bloembergen, Nonlinear Optics (W. A. Benjamin,
Zgnc., 1)\Iew York, 1965); D. A. Kleinman, Phys. Rev. 126, 1977
1962).

16 See, for example, A. 1. Akhiezer and V. Berestetsky, Quantum
Electrodynamics (Consultants Bureau Enterprises, Inc., New
York, 1953), Part II, Sec. 47, p. 491.
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B. S Matrix and the Differential Extinction
Coefficient

In considering the spontaneous emission in the
parametric scattering in the nonlinear optical medium,

only the lowest-order term S® in the perturbation
expansion of the .S matrix'® is needed:

SO = ; / Ladrdt
)

o A¢ (ﬁgwepwolwﬁ) Rk

= ,/// 2n6(Ky) 10 (K1) 1 (Ko)

X [ae ( kp) aoT ( kl) a/aT (k2) - aeT (k;n) Qo ( kl) Qo ( k2) .—_l

kg) é (wgp —Wo1 ""wo?) dkpdkldk2; ( 16)

Xo(ky—ki—

which is obtained from Eq. (15) and after carrying out
the integrations in r and ¢, where

Aelz 47r Z X,;jkNLCi(]:?p) Oj(ic\l) (3 (]22) .

25k

(17)

We must next specify the types of initial states that
are of interest when calculating the spontaneous
emission. Physically, in the absence of the nonlinear
interaction, now characterized by S®, the only field
present should be that of the pump beam. In order to
study the influence of the coherence property of the
pump wave, two representative situations are, how-
ever, of interest: a coherent pump wave represented
by a Glauber state” or an incoherent pump wave
represented by a fixed-number state.

The initial state representing an incoherent pump

d’finalfS(l)qbincoh =¢0Tao(k1) Qo ( k2)

(2m)3/2
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wave with precisely V, pump photons per unit volume
in the medium is

bineon =[(2m)2/ (N )" [a." (kp) V7o, (18)

where ¢ is the ground state. The coherent state is
constructed from a superposition of fixed-number
states with a Poisson distribution:

@, o,V exp(—3% ?) :
¢coh = (277) 312 N=OZ,1... - I;)jir f)f/2| < I [(ZCT ( kp) ]A ¢01

(19)

where |, |? Is equal to the average number of pump
photons per unit volume in the nonlinear medium N,.

In the presence of the nonlinearity, the parametric
process characterized by S® will lead to the creation of
photons at lower frequencies from the pump photons.
The probability for such transitions depends upon the
matrix elements

¢final'r5(l)¢incoh (20.’«1)

or
qsfinal,TS(l)qscoh, (ZOb)

depending on whether an incoherent or a coherent
pump is used, where ¢sina and ¢gina’ are the cor-
responding final states.

When an incoherent pump is used, the final state
will contain one less pump photon, but there will be
one photon each in some suitable pair of momentum
states k; and ks, or

@' tina1 =@ 020 (K1) @0 (k) {[@c(ky) V71 /[(Np—1) ]2},
(21)

which is normalized to unity: | ¢sina [2=1. The matrix
element of interest, Eq. (20a), then becomes

Aél (ﬁ%ep'wol 'w,,g' ) 172

[a.(k,) J¥7
[(N,— 1)13112( //fz
X[a.(k,")ao' (k') @' (ky') —a." (k') a0 (ki) a0 (ko) 16 (kp' — ot —Foo') 6 (wep —wor

(27r ) 312A¢ (ﬁwepwoleZ) 1/2(N p) 12

e (K ) 110 (Ki”) 10 (')

f— w,,g') dkp,dklldeI)

o(k,—ki— (22)

K3) 6 (wep— o1 —wo2) .

X

(V)2 La." (k) JV7o=

1e( Kp) 10 (J&1) 10 (Ko)

The corresponding transition probability is equal, in accordance with the general rule of quantum mechanics, to

‘ ¢fina11.S(1)¢incoh 12 _

( Ael) 2N, pﬁMeWolwoz

vr

(2m)ne (lp) e (k) o ()

6(ky—ki— (23a)

k2) é (wep —We1 woz)

from Eq. (22) and making use of certain results'® given in Ref. 11. When a coherent pump is used, the final state is

16 Reference 11, Sec. 18.
R, J. Glauber, Phys. Rev, 131, 2766 (1963).
18 Reference 11, Egs. (21.35) and (21.37).
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of course no longer a particular fixed-number state and the transition probability now becomes

| ¢ﬁna1’TS(l)¢coh |2 (27'.)3/2aPN exp(_% | Ap IZ)

VT [NY(N—1) ]2

. (Aél) ZN phwepwolwﬂ e — —
T (2m)ne(ky)ne (ko) n? (k) Pl k)3 oy —anmen) - (23D)

from Eqgs. (20b) and (19) and with the help of the results in Ref. 11. The only difference between this result and
Eq. (23a) is that here the average photon number N, appears in place of N,. Thus, when normalized to the in-
tensity of the pump beam, the properties of the intensity of the spontaneous emission in the parametric scattering
process are independent of the coherence property of the pump beam. From now on, only one of these cases needs
to be considered.

We are now in a position to calculate the differential extinction coefficient do (k) for the spontaneous emission
in the parametric scattering process in the nonlinear medium. It is defined here as the ratio of the number of
photons spontaneously emitted into the solid angle d, and the frequency interval duw,, per unit time per unit
volume to the incident pump photon flux N,C/#. regardless of the coherence property of the pump wave. The tran-
sition probability, either Eq. (23a) or Eq. (23b), is already correctly normalized. Thus, to obtain the differential
extinction coefficient one simply integrates in the k spaces the following:

=(VD)* 2 o' a0 (Ky) a0 (Ke) L2 (Kp) V2SO a," (ky) PV 2

dg(ks) = f/ l d’ﬁnalT(kl: ks)S(l)d)incoh l 2dk2neG(kp) (VTNpC) _ldkpdks

= -/:/. l ¢finsllf(k1= ks)SQ)d)coh l 2dk2neG(kp) (VTNpC)—ldkpdks

-J/ (Aer) iegstniG (Iep)
2

k —ki_ks ep — Woi ™ Wos d 2 39
wOn (B (k) () )5 (wep i) Ayl

(24)

where G (k,) is the distribution function of the pump intensity in the k, space; it is, as usual, normalized to unity.
The & functions of course ensure that the energy and momentum of the photons are conserved. The integration in
k; space can be carried out immediately by virtue of the wave-vector, or momentum, matching condition em-
bodied in one of the § functions:

k,—k;—k,=0. (25)

By further reexpressing dk, in terms of the corresponding spectral width dw,s and solid angle d<3s in the medium,
we obtain the final result:

(Aer) Hieptos woilo ( k,)G ( kp)

do(k,) = 3 (F) dkpdwosdSs,
o(k) 2 Con, ()i () o) ot (26)
where in this equation and what follows equivalently the equation
Woi = Wep = Wos (27) F=0, (29)

and

7 Cne (T — k) T (it U which combines the wave-vector and frequency
= Wep— Wos— | Mo Kp—Ks) |77 7 p) Wep T Mo s ) Wos

matching conditions. Equation (26) itself gives the

—2n, ( k) ne ( kp) wep“’osi&s : kp]1/2’ (28)

on account of the wave-vector matching condition,
Eq. (25), and the dispersion relations, Egs. (9) and
(10). These final results, Egs. (26)—(28), contain
all the information on the intensity of the spontaneous
emission: For a given pump beam and nonlinear
crystal, the tuning characteristics, the spectral proper-
ties, and the beam divergence are completely de-
termined through the single remaining § function, or

intensity distribution function in the frequency and
the direction of the spontaneous emission. In the
following section we shall examine in detail the physical
consequences of these results.

In crystals such as ADP, the wave-vector and fre-
quency matching conditions can also be satisfied
simultaneously when one of the scattered beams is also
an extraordinary wave. All the results obtained so far
can be simply modified to take care of such situations
by using the appropriate subscripts for w and .
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Fic. 1. Colinear tuning characteristics of LiNbO;, KH,PO4, and
NHH;POs. ), is the pump wavelength and 0, is the angle between
the pump ray and the optic axis of the crystals.

III. SPONTANEOUS EMISSION

We now make quantitative estimates and describe
the characteristics of the spontaneous emission in the
parametric scattering of intense light in nonlinear
optical crystals.

A number of simplifications are possible at the outset,
however. The crystals of interest here, such as LINbOs,
ADP, or KDP used in most experimental studies, are all
uniaxial crystals; our considerations can, therefore, be
limited to crystals with such a symmetry. The spectral
width of the pump light is generally much smaller than
the spectral width of the spontaneous emission due to,
for example, the finite beam divergence of the pump
light in most cases. In addition, none of the relevant
parameters vary much at all over the pump frequency
band. The spectral distribution function of the pump
light can, therefore, be assumed to be a & function
centered at the pump frequency w,. Finally, we can
assume without loss of generality that the pump light is
uniformly distributed within its beam width AQ,
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inside the medium. Thus specialized, Eq. (26) now
becomes
(Aer) w05’ woitto (os)

do (K =f 0 (F) dQpdwosdSs,
o (k) agp 2mCne(wpbp)10* (woi) ARy (F) e

(30)

where 6, is the direction of a pump ray relative to the
optical axis of the crystal and dQ, refers to the cor-
responding differential solid angle in the medium.
The differential extinction coefficient will vanish
unless
F=0; (29)
for each set of wp, 0,, and k,+k, values, each real solu-
tion of this equation implies a possible frequency for the
spontaneous emission. Let us consider first those char-
acteristics of the spontaneous emission that are pri-
marily determined by this equation alone. This will be
followed by a detailed study of the physical conse-
quences of Eq. (30).

A. Colinear Tuning Characteristics

First of all, as in the case of the parametric oscillator,
Eq. (29) determines the basic tuning characteristics
of the spontaneous emission. Let us start with the
colinear situation k;-k,=1; this case has already been
discussed extensively in the past in connection with
the parametric oscillators.*=%8 Figure 1 gives some
additional numerical results covering the entire room-
temperature colinear tuning range of ADP, KDP,
and LiNbO; with various pump sources. These com-
puter solutions are based upon the room-temperature

3.0-
48°
46°
44°
2.0
1.9 1 1 1 1 1 1 1 A 1 1
o 3 6 9 12 15 18 21 24 27 30

cos™! (kgkp) ()

Fi6. 2. Noncolinear tuning characteristics of NH;H,PO; pumped
at \,=4880 A.
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index of refraction data given in Ref. 19 for ADP and
KDP and Ref. 20 for LiNbO;. There are some small
differences between the numerical results given in
Fig. 1 and the measured results given in Refs. 2, 3, and
S; these small discrepancies are due to the fact that the
index of refraction of the crystals vary® from boule to
boule and the tuning characteristics are very sensitive
to such small variations. A precise prescription for
determining the temperature tuning characteristics of
the oscillators at a fixed 6, along with extensive ad-
ditional data on LiNbOj; are given in Ref. 21.

B. Noncolinear Interaction, Beam Width, and Spectral
Characteristics

The spectral characteristics and the beam width of
the spontaneous emission are primarily determined by
the solutions of Eq. (29) for noncolinear interaction,
k,+k,<1. As an example, Fig. 2 gives w,, as a functlon
of the noncolinear angle cos™(k,+k,) for various values
of 8, covering the entire colinear tuning range of ADP
pumped at 4880 A at room temperature. Figure 3 shows
the similar results for LiNbO; pumped at 6943 A. We
have also obtained numerical results for all the other
cases shown in Fig. 1. These results on noncolinear
interaction point up a number of interesting properties
of the spontaneous emission; for example:

(1) The range for noncolinear interaction could be
quite large. Thus, even for a very well collimated pump
beam, the beam width of the spontaneous emission
could be quite broad; the exact width depends, of
course, on the crystal and the pump wavelength as well
as the value of 6,. In the case of Fig. 2, for example, the
total beam width of the spontaneous emission in the
colinear tuning range could be as large as 3.8°, even in
the limit of an infinitely narrow (AQ;—0) pump beam.

251 1

w5 (1015sec™!)

5 1.0 L5 20 2.5
cos (ky'kp) (°)

Fic. 3. Noncolinear tuning characteristics of LiINbO; pumped at
Ap=6943 A.

B F, Zernike, Jr., J. Opt. Soc. Am. 54, 1215 (1964).
% G. D. Boyd, R C. Miller, K. Nassau, W. L. Bond, and S.
Savage, Appl. Phys. Letters 5, 234 (1964).
2 G. D. Boyd, W. L. Bond and H. L. Carter, J. Appl. Phys.
38, 1941 (1967)
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3.0F
NH,H,PO,

2.9 A\p=4880A°
2.8}

2.7

2.5

2.4

Wog (lO'ssec_‘)

2.3k
2.2

2. 6,= 426°42.7°

“40 41 a2 43 a4 45
85(°)
F16. 4. The region between the two curves corresponds to the
frequency and direction of the spontaneous emission in the plane

containing the crystal (NH,H,PO,) optic axis and the axis of the
pump7beam (A\»=4880 A). The pump beam spreads from 6, =42.6°
42

(2) For a fixed pump beam direction, the emission
frequency changes with the direction of emission. The
way the frequency changes depends upon the crystal
and the pump wavelength. Of the cases we studied, for
ADP and KDP pumped at 4880 and 5300 A, the
frequency decreases from the center toward the edge
of the emitted beam when wys>3w,; for ADP and KDP
pumped at 3472 & and LiNbO; at 4880, 5300, and
6943 A, the frequency increases from the center toward
the edge of the beam when wos > 3w,. The total change in
frequency could be very large even in the limit of a
very narrow beam, as can be seen from Figs. 2 and 3.
To cite another dramatic example, in the case of ADP
pumped at 3472 & in the direction of 6,=50.5°, the
total beam width is 5° and the wavelength varies from
6540 A at the center to 4700 A at the edge of the
emitted beam; thus, the emitted beam in this case would
vary in color continuously from red at the center to
blue at the edge. :

(3) There could be spontaneous emission due to
noncolinear interaction even beyond the colinear
tuning range. In this case, the spontaneous emission
would be emitted in a cone with a dark region near the
center when a narrow pump beam is used. Figures 2
and 3 show examples of this.

(4) If the pump beam width is finite, the spectral
width Aw,s(k,) of the spontaneous emission also changes
continuously with the direction of emission; when 8,
m/2, the spectral width is essentially constant. The de-
tailed manner in which the spectral width changes with
the direction of emission relative to the crystal optical
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axis could be very different, depending on the crystal
and the other parameters involved. Figure 4 shows
an example of the approximate region in the (wof;)
plane corresponding to the spontaneous emission in the
plane defined by the optical axis and the pump beam
axis of ADP pumped at 4880 A in the direction 42.6°<
0,<42.7° with a pencil beam. It is seen that there is a
substantial increase in the spectral width from the
edge nearest the optical axis to the farthest edge. It is
clear also that to measure Aw,; (k) the detector aperture
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C. Spontaneous Intensity

To calculate the spontaneously emitted power, one
must first evaluate the integral in Eq. (30). To do so
exactly is difficult due to certain complications involv-
ing the geometric factors of the beam. A very good ap-
proximation of the integral can, however, be obtained
by assuming %,-£,~1 in F and by neglecting the 6,
dependence in the limits of integration in the azimuthal
angle ¢,, when a narrow pencil-shaped pump beam is
used, which is always the case in the experimental

must be very small. studies. Thus, within the beam width and spectral

width of the spontaneous emission, or where the
equation F=0 can be satisfied, one obtains the ap-
proximate distribution function for the emitted power:

Most of these properties of the spontaneous emission
have not yet been, but could easily be, observed ex-
perimentally.

P(K,) dwodQ= do (&,)Ficos VN ,Cris™

-~ (Aer) 220505 @oitto (os) VN »C deond,

T 2002 (wod) AB[ 2 (ewnby) | OF /36, | Tr—o

~ (AEI) 2h2w084w05n0 (wos) VIVPC dwosde

T 20CH (o)1 (w0,B) A0, | In,/06, |5,

where V is the volume of the interaction region, 8, refers to the direction of the axis of the pump beam, and Ad,
is the corresponding linear width of the beam in the medium. This result is not valid when 8, is in the direction
where d#,/80,=0. In this particular case, F in the § function has essentially no angular dependence and the distri-
bution function for the emitted power should be

(Aer) 2205005 w0i0 (0205) VN »C

27C06 (Woi) 162 (wysT)

(31)

S(F) dewosdSs, (32)

P (k) dwosdQs =

where in terms of Eq. (28),
F=F(0,=3%r, ke lop=1).

For a fixed direction of ki, the spectral width of the spontaneous emission is typically fairly narrow so that all the
factors in these expressions, Eqs. (31) and (32), are essentially constant over the spectral width; one can, there-
fore, integrate these expressions in wo, and obtain the angular distribution of the spontaneous emission. For ex-

ample, the spontaneously emitted power varies with k;, as

(Aer) 220305 w0i110 (Wos) VN L
21 C*1o(woi) e (wpBp) A8y | e/ 00, |5,
from Eq. (31), where w,; is a solution of Eq. (29) for the particular value of k,. The emitted power per unit solid
angle is directly proportional to the spectral width Aw,s(k,) as a function of k,; when 6,=8,, the spectral width is
equal to the colinear tuning range corresponding to the given value of Af,. As can be seen from the example given
in Fig. 4 and the related discussions, the intensity is also expected to change with the direction of emission with
respect to the optical axis. In the case corresponding to Eq. (32), or 8,= 3=, there is no such a change for a typically
narrow pump beam and the angular distribution of the emitted power is a constant:
(Aer) 22005 woit0 (6os) VZ\_",,C dQs

21 Cn2H(wprm) Mo(woi) | 10(wos) =70 (w0i) |

Awos (K,) dS, (33)

f P(K,) duwonsd =

(34)

/ P(K,) doondS, =

where w,; is a solution of Eq. (29).
Finally, to facilitate direct comparison with the experimental results, we reexpress these results in the form of

the emitted power that would be measured by a detector:

(A€1) 2iwos woi LP pAwos (Ks) AQget
21 Cwptto(wos) 0 (wos) | e/ 90y | 5,A0inc
from Eq. (33), where AQqe is the solid angle subtended by the detector and we assume that AQqe is sufficiently

(35)

P=
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small so that the intensity variation within it is negligible. We have also used in this expression the incident pump
beam angle Af;y,, outside the medium in the free space. L is the length of the interaction region measured along the
pump beam; and P, is the total pump power. Similarly, for Eq. (34), we have

(Ael) Hiwos o LP. pAQdet

s

which does not apply at the degenerate point where
Wos=wo;. It must be emphasized that Aw,(k,) in (35)
is not the total bandwidth of the spontaneous emission
measured with a finite detector; it corresponds to the
bandwidth in the limit of AQget—0.

From an experimental point of view, these formulas
are the two most important new results of the present
theory on the quantum noise in the parametric scatter-
ing of intense light. We now apply these results to two
typical experimental situations.

D. Numerical Examples

Consider, for example, the case of ADP pumped at
3472 A; extensive data on the quantum noise for this
case are given by Magde and Mahr.® The colinear
tuning characteristics have already been discussed.
Consider now the emitted power at 7800 A. ADP has
a V4 point-group symmetry; in addition, when the
pump wave is an extraordinary wave while the spon-
taneously emitted waves are ordinary waves, the coef-
ficient A¢; defined in Eq. (17) becomes

Aer = 81X 22€20:0.

If the pump wave makes 8, with respect to the optical
axis, the 2 axis, and 45° with respect to the £ and §
axes of the crystal, we have e,=sind,, 0,=0,=1/V2
and, hence,

Ae; = 41X 20y 5In0,=21.7X 1072 sind, esu

from the data given in Ref. 22. The remaining param-
eters for the experiment of Ref. 5 are

7,~049.5°, L=1.15cm,
Aweos (0,) 1.2 X101 sec™,

ne(w,fp) R21.53,

| 91./36, |5,~0.05,
AQuetx1.5X 1075 s,

no(wos) %no(wgi)zl.SZ,
P=25X10°W,
AB;n 5.7 10738 rad.

2 R, W. Minck, R. W. Terhune, and C. C. Wang, Appl. Optics
5, 1595 (1966).

1 C10(0208) M (1) 12 (ph) | 0 (cns) —tto(c0z) |

(36)

From the formula for the spontaneously emitted power,
Eq. (35), one obtains P,=210"%W, which is exactly
the measured value. Furthermore, the frequency de-
pendence of the emitted power predicted by this
formula, Eq. (35), also agrees with that given in Fig.
3 of Ref. 5. Equation (35) obviously also has the cor-
rect length L dependence.

We consider also an example that requires the use of
Eq. (36). Consider LiNbO; pumped by the 4880 A
line of the Ar' laser at f,=%w. As pointed out earlier,
with a gas laser as the pump source, there is very little
gain. On the other hand, the spontaneous emission
could be sufficiently intense for the purpose of studying
the characteristics of the spontaneous emission. For
LiNbO; pumped by an extraordinary wave at 8,=
3, one has

Aer=8TX 22y€.0,0,~4.1X 1077 esu

using the data listed in Ref. 22. For the remaining
parameters, let us take

Wos =21 X 4.1X10* sec™?, L=0.5 cm,
70 (W05 ) R22.286, 10(wes) R52.197, ne(wp3m) 2225,
AQyetRI2.4X 1074 51, P,=1W.

Using these numbers, Eq. (36) predicts a spontaneous
power of

Py=2X10"10W

at 7300 A, for example, which is quite reasonable and it
is certainly adequate for the purpose of studying the
quantum noise in the parametric scattering of intense
light in LiNbOs;.
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