TABLE II. Table for a, β , and ϵ for $PN \rightarrow P'N$.

	λ1	λ_2	a	b	β	£	
e	$+\frac{1}{2}$ $+\frac{1}{2}$	$+\frac{1}{2}$ $-\frac{1}{2}$	0 1	0 1	$\alpha \stackrel{\alpha}{-} 1$	- +	

fortunately, except for $\pi^+ p \to \eta N^*$, the A_2 trajectory is masked by the π exchange in $\pi N \to \rho N$; $\pi N \to \rho N^*$ and $KN \to K^*N^*$, or it is accompanied by ρ exchange such as in $KN \to KN^*$. It would, therefore, be very helpful to have more detailed data for the reaction $\pi^+ \rho \to \eta N^*$.

ACKNOWLEDGMENTS

It is a pleasure to express my gratitude to Professor Reinhard Oehme, who suggested the present subject, for stimulating discussions, and for continued guidance and encouragement. I also would like to thank the Institute of Technology, Bandung, and the Center for Developmental Change, University of Kentucky, for their arrangements.

TABLE III. Table for a, b, β , and ϵ for $PN \rightarrow VN$.

λv	λ1	λ_2	a	b	β	E
+1	$\stackrel{+\frac{1}{2}}{+\frac{1}{2}}$	$^{+rac{1}{2}}_{-rac{1}{2}}$	1 0	1 2	$\substack{\alpha-1\\ \alpha-1}$	- +
0	$+\frac{1}{2}$ $+\frac{1}{2}$	$+\frac{1}{2}$ $-\frac{1}{2}$	0 1	0 1	$\alpha = 1$	+ +
-1	$+\frac{1}{2}$ $+\frac{1}{2}$	$+\frac{1}{2}$ $-\frac{1}{2}$	1 2	1 0	$\substack{lpha = 1 \\ lpha = 1}$	+++

APPENDIX

In Tables II and III we list values of a, b, β , and ϵ for $PN \rightarrow P'N$ and $PN \rightarrow VN$, respectively.

Asymptotic forms for $N_{\lambda_i,\lambda_f} {}^{\alpha}P_{\beta}{}^{(a,b)}(z)$ are the following:

$$\begin{split} & N_{0,0}{}^{\alpha}P_{\alpha}{}^{(0,0)}(z) \sim n_{\alpha}(2z)^{\alpha}, \\ & N_{1,0}{}^{\alpha}P_{\alpha-1}{}^{(1,1)}(z) \sim 2[\alpha/(\alpha+1)]^{1/2}n_{\alpha}(2z)^{\alpha-1}, \\ & N_{1,1}{}^{\alpha}P_{\alpha-1}{}^{(0,2)}(z) \sim 2[\alpha/(\alpha+1)]n_{\alpha}(2z)^{\alpha-1}, \\ & N_{1,-1}{}^{\alpha}P_{\alpha-1}{}^{(2,0)}(z) \sim 2[\alpha/(\alpha+1)]n_{\alpha}(2z)^{\alpha-1}, \end{split}$$

where

$$n_{\alpha} = (1/\sqrt{\pi}) \left[\Gamma(\alpha + \frac{1}{2}) / \Gamma(\alpha + 1) \right].$$

Errata

Radiative Corrections. I. High-Energy Bremsstrahlung and Pair Production, KJELL MORK AND HAAKON OLSEN [Phys. Rev. 140, B1661 (1965)]. The numerical values for F_1 given in Table I are incorrect. The correct values are as follows:

 ω_1/ϵ_1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $F_1 \times 10^2$ 0.095 0.19 0.30 0.43 0.60 0.80 1.08 1.50 2.30 We are indebted to Dr. H. D. Schulz for pointing out these errors to us.

 $K_{\mu3}$ and K_{e3} Form Factors at Finite Momentum Transfer, M. FITELSON AND E. KAZES [Phys. Rev. 159, 1236 (1967)]. Equation (23a) should read

$$(a_1^2C_1+a_2^2C_2)/\sqrt{2} = \langle \pi^0 | J''_{3^1}(0) | K^+ \rangle_{p=\infty}.$$

$$-\frac{\cos M a_1}{\cos M a_2} = \frac{B_2 - b_2 C_2 M \tan M a_2}{B_1 - b_1 C_1 M \tan M a_1}.$$

Castillejo-Dalitz-Dyson Poles and Asymptotic Fields, STANLEY JERNOW AND EMIL KAZES [Phys. Rev. 160, 1428 (1967)]. A typographical error appeared in Eq. (2.2) which gave the form of the interaction Hamiltonian. The equation should read

$$G^{\dagger} \equiv \int d\mathbf{p} f(\omega_p) \theta^{\dagger}(p), \quad \omega_p = (\mu^2 + p^2)^{1/2}. \quad (2.2)$$

Also, the left-hand side of Eq. (2.21) should be the time derivative of the field and should read $-\dot{\beta}_{j}^{\dagger}(t)$.