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A Regge-pole model for PN ~P'N and PN ~ VN is proposed. The model is based on the I;Scoupling
scheme and describes the coupling of the particles involved in the reaction to the trajectory having definite
quantum numbers J&0. The scheme determines the structure of the amplitude, which in turn characterizes
the decay density matrix of the produced resonance. Kinematical factors and the threshold behavior are
discussed on the basis of the analyticity assumption.

I. INTRODUCTION

KCENTI Y, Regge-pole models' have been suc-
cessfully applied to the analysis' of many elastic

and inelastic two-body processes. The aim of the present
paper is to develop a Regge-pole model for the reactions
I'g ~ I"E ' and I'E —& VÃ.4 The problem of general
spin effects has also been considered by other authors. '
%e have a different approach —in which the effect of
the quantum numbers J~g of the exchange trajectory
are taken into account by imposing the restrictions of
the I;5 coupling scheme on the amplitude. The present
paper is a continuation of our previous investigations. '

The notion of helicity amplitude~ and the use of their
crossing' and transformation properties have improved
the formulation of the model. Such a formulation has
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been proposed by Muzinich, ' and Gottfried and
Jackson. "In particular, the latter authors have pointed
out the relation between the decay dens'ity matrix of
the produced resonance and the exchanged quantum
numbers J~. They have also given the method for
calculating the density matrix, assuming that the ampli-
tude in the crossed-channel c.m. system is known. This
calculation is brieQy summarized in the next section,
together with the kinematics of the reaction and the
conventions adopted in this paper.

In Sec. III, we derive the Regge-pole contribution
which has been used in our previous work. ' In this ex-
pression for the Regge-pole contribution, there remains
an undetermined factor which exhibits the structure of
the helicity amplitude. By this structure, we mean the
relations between the components of the helicity ampli-
tude. This ambiguity is due to the fact that no infor-
mation about the quantum numbers J~~ of the ex-
changed trajectory has been put into the helicity
amplitude. In addition, there are momentum-dependent
kinematical factors. In our previous work, we intro-
duced an ad hoc assumption: namely, that the struc-
ture and the kinematical factors are taken into account
by the requirement that the Regge-pole contribution
reduces to the corresponding Born term when it is con-
tinued to the mass shell of the crossed channel.

In Sec. IV, we discuss the role of the J=S coupling
scheme in the Born term by studying some specific
examples. It is found that the quantum numbers J
of the exchanged particle determine the possible orbital
angular momenta I and total spins S in each vertex,
and that the I.-S scheme determines the structure of
the Born amplitude. This scheme can be naturally
incorporated in a Regge-pole model via the Sommerfeld-
VVatson transform.

In Sec. V, the I;S coupling scheme is introduced into
our model, replacing our previous ad hoc assumption.
The coupling coefficients in the angular momentum
plane give rise to kinematic cuts, which can be elim-
inated consistently. If the results of Sec. V are sup-
plemented by the kinematical factors obtained from the
Born term, we have a complete rule for writing down the
Regge-pole contribution.

I. J. Muzinich, J. Math. Phys. 5, 1481 (].964}."K.Gottfried and J. D. Jackson, Phys. Letters 8, 144 (1964};
Xuovo Cimento 33, 309 (1964)

i846



REGGE —POLE MODEL KITH L —S COUPLING

Pi
TAaLE I. Kinematics for I'N —+ VN.

FIG. 1. Diagram for the
reaction PN —+ VN.

Po

Channel Reaction

P+V-+N+N
I'+N —+ V+N

(Monmntum Helicity
(Energy) ' transfer) ' amplitude

S (& @2~A'~l v)—s (lu IF'
I
)21 v)

In Sec. VI, we discuss the kinematical factors and the
threshold behavior in connection with analyticity of
the amplitude. Effects of the unequal masses of the
mesons are discussed briefly within the frame of the
Freedman-Wang method. " Finally, the results are
summarized in Sec. VII.

II. KINEMATICS AND HELICITY
AMPLITVDES

We consider the production of a vector meson U,

P+1V —+ V+.V, (2.1)

p, '= —,
' (s—4M'),

k, 2 = [s—(m v—m p) ')[s—(m &+m p) ')/4„(2.2)

where M =nucleon mass, my ——vector-meson mass, and
mg= mass of the pseudoscalar particle.

The invariant t is related to the incident lab momen-
tum PL by

t =mp2+M'+2M(pL'+m p') "' (2.3)

and the invariant s is related to the production angle 8~

in the c.rn. system of the channel (2.1) through

s=-'[Q m' t (M' —mp'—)(M—'—mi 2)/t

X4p ~k g cos(l~),
pg2 ——[t—(M—m p) ')[t—(M+m p) 2)/4t,
kg2= [t—(M—mv) 2)[t—(M+mi )2)4t. (2.4)

where P represents a pseudoscalar particle and Ã the
nucleon. The channel, where the Regge pole appears
as an intermediate state, will be called the s channel;
and the reaction channel (2.1) will be called the t

channel. Since we are working with the helicity ampli-
tudes, ~ only the momenta in the c.m. system are rele-
vant. The notation used is shown in Fig. 1 and Table I.

The quantities in the s channel are used extensively,
and their relations to the invariants s and t are given by"

2t+s —P; m;2
s= cose, =

where

1
P =—P (m~F'~X $2)(2X $2~F2'[m'),

X &1&2

N= P ~(),~P'() R)~

(2.7)

For (2.6) and (2.7), it is understood that (s,t) has been
continued to the physical region of (2.1).

The helicity amplitude of the reaction (2.1), in
general, has 12 components. However, among these
components there are only 6 which are independent, due
to the P-conservation condition~

(—», —):IP'I )i)= ( 1)"—* "'(n~n~—/npny)

X()2,)2~P ~),), (2.g)

where q, is the intrinsic parity of x, X;=X»—) 2, and
Xy=X~. Note that P, and ) f are the third components
of the total angular momentum of the PV and NN
systems, respectively.

The structure of the helicity amplitude is shown in
Table II.The observable elements of the decay density
matrix' of U are ppp p», » and Rep»p. Their relation to

TABLE II. Structure of helicity amplitude of Ecl. (2.1).

where ~i) and
~ f) are specified by the helicity of the

initial and final states, respectively. This convention
corresponds to the normalization for the wave functions,
uN=1; Hv= —1; e„"e„"'=biz. The helicity amplitude
has the advantage that it transforms elegantly under
crossing" and Lorentz transformation. "This leads to
simple relations of the observables to the helicity ampli-
tude of the s channel. The observables we are con-
cerned with are the momentum-transfer distribution
and the decay density matrix. The momentum-transfer
distribution' "is given by

do. M' 1
~()„),~P ~),)[', (2.6)

ds 162rppt (2s;+1)»,», & v

and the decay density matrix of V in its rest frame is
given by»o

The helicity amplitude Il is de6ned by

(f ( S—1 ( i)= —(22r) 42'64(Pf —P;)
X [m/(24102~20)"'p. )(f~

P
~
2), (2.5)

+1
0—1

X1
X5
X3

1
2

X2
X6
X4

1
2

+2

X4
X6
X2

X.
21
2

+X3
X5

+X1"D. Z. Freedman and J. M. Wang, Phys. Rev. Letters 17, 569
(1966); Phys. Rev. 155, 1596 (1967).

'2 T. W. B.Kibble, Phys. Rev. 117, 1159 (1960). x3 G. C. Wick, Ann. Phys. (¹Y.) 18, 65 (1962),
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the helicity amplitude is explicitly given by

~vp»= lxtl'+ lxsf'+ lx8I'+ Ix41

,4'p, ,= 2 Re(x,X,*+x,x4*),

N Repio=Re[(Xi —Xs)Xs*X(xs—X4)xs*j (2 9)

If one uses the simple pole term then for x exchange,
only X&/0 which implies ppp=1, py, ]=Repro=0; and
for 1 exchange xs=x6=0 leading to p00=0, p~, ~NO,

pro=0. These examples show the correlation between
the density matrix and the structure of the helicity
amplitude. This structure has been shown to be related
to the quantum numbers J " and C-parity' of the
intermediate system in the s channel for physical values

of J.
In this paper, we wish to study the structure of the

helicity amplitude in the Regge-pole model, where J
may take unphysical values.

III. REGGE-POLE CONTRIBUTION

We shall discuss the Regge-pole contribution from
the point of view of the Sommerfeld-Watson transform,
following the approach of Ref. j.5 with certain modi-
6cations. Particular attention is paid to the continu-
ation from the s to the t channel. "The required analytic
properties of the rotation matrix d&„&„~(s) are sum-

marized in Appendix A.
In the spin-zero case one can apply the Sommerfeld-

Watson transform to the expansion of the amplitude
in terms of the representations of the rotation group
P&(s). When spin is taken into account P&(a) is replaced

by the appropriate representation: dq, .
&,~~(s).

The partial-wave expansion of the helicity amplitude
is given by

by the old-fashioned method of expanding the invariant
amplitude. "To remove these kinematical factors we

introduce f&,,&,,(s,l):

(& &,Xs
I
F

I
~v) = ~&,.&~[a'(1—s)3'&s

X[l(1+a)]"'f .(~,&) (3 2)
Then (3.1) becomes

f&~&„(s,t)= P (2J+1)PJ &„l o&(s)f'g, &, ,~(s), (3.3)

where

f~fi,'=S& g~ff~fi; (S) j

f&, &„J=(Xi4JMIFlhvJM)c&, f,. '.
In order to perform a Somerfeld-Watson transform on
(3.3), f&f&, ,'~(s, l) must be regular in the J plane. Other-
wise we would obtain contributions other than Regge
poles and the background integral, which would arise
from the kinematical branch cut in the J plane. This
kinematical branch cut comes from the normalization
of d&„&f~(s), and is fixed by the &r&f,.&&~ given in Appendix
A. This condition is known to be satis6ed for particles
(with spin) scattering in a potential that belongs to a
certain class."In this section we shall assume that the
condition is satisfied in general.

Using the symmetry property P„& «&(—s) = (—1)"
XP„&o '&(—a) (m= integer), we define:

P„"+( ) =-'[P ' ( )+P„' ' (—)j
=P„&~ s&(s) for e even (odd)
=0 for &s odd (even) .

Then, as in the spin case,"we split f&,~&f, into positive
and negative signature parts:

f~,&„(s,])= f&.,x,+(s,&)+f&,&„(s,&),

(&' X iIFs'I "v)= Q (2J+1)
J=~m fg, &„.+(s,t) =Pg (2J+1)P l~ '&+(s)f&, &, '~(s) (3 4)

where
X ()I iX.JM

I
1"

I
XvJM)d&„&r~(s), (3.1)

=max(l Xi I, I &s I) .

Applying the Sommerfeld-Watson transform to (3.4),
we obtain

In the following, we restrict ourselves to the s-channel

helicity amplitude; therefore the superscript will be
omitted. The explicit expression for dq,.&~ (s) is given by
(A1) and (A2). The s-channel helicity amplitude con-

tains the following kinematic singularities: (a) a com-

mon factor [-', (1—a)$'&'[—',(1+a)jo", where a=
I Xi—Xs

I

and b= I4+&sl; (b) kinematical factors denoted by
c),f),. They appear from the products of the helicity
wave functions. ' "Later we shall discuss these factors

'4 A. Bialas and B. E. Y. Svensson, Nuovo Cimento 46A, 59
(1966).

» F. Calogero and J. M. Charap, Ann. Phys, (N. Y.) 26, 44
{1.964); F. Calogero, J. M. Charap, and E. J. Squires, ibid. 25,
325 (&963).

'6 C.A.M., p. 170.
'~ M. S. Marinov and V. I.Roginskii, Zh. Eksperim. i Teor. Fiz.

46, 675 (1965) LEnglish trsnsl. : Soviet Phys. —JETP 21, 444
(1965)j.

~8 Y. Hara, Phys. Rev. 136, B507 (1964).

f,+(s,t) =-
27l Z

dJ(2J+1)f&,&„'~(s)

XPg &„&"&+(—a)/ sinvr(J —) )—P (2n++1)&rn'

"A. C. Hearn, Nuovo Cimento 21, 333 (1961).
~ J, M, Charap and E. J. Squires, Ann. Phys. (N. Y.) 25, 143

(1963); B. R. Desai and R. G. Newton, Phys. Rev. 129 1437
(1963); R. G. Newton, 1'he Complex J-Plane (%. A. Benjamin,
Inc. , New York, 1964), Chap, X&I,"C. A. M., pp. 142, 168,

where P(s)=n(s) —
& . The contour C' is chosen as

usual. " In (3.5) we have used (—1)"P„& s&+(a)

=P &o'&+(—s) to compensate the oscillating sign of
sin7rn (m= J—X„).Equation (3.5) is valid for the physi-
cal region of the s channel:

I
s

I
& 1.To obtain the Regge-
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pole contribution to the t, channel we have to continue
(s, t) into the physical region of this channel and s —b

s—i0, 1 —+ i+i0. In the physical region of the t channel
s~ —fs f

i—O, with fsf &1. Note that Pe(b )(s) has
a cut on the real axis for Res& —1. The behavior of
Pe(b ~)(s) near the cut" is given by (AS). This gives

jD (ba)+( s) Pe(ba)( s)t(1~e ~me)

—(1/s.)(—1)"' "~ sin)r8 Qe( '(—s) . (3 6)

When Eq. (3.6) is substituted into Eq. (3.5), both the
Regge-pole term and the background integral contain
a Q term. These two cancel each other, as can be seen
by applying the Cauchy theorem to fz~)„~(s)Qe(b )( s)—
along the closed contour formed by the infinite semi-
circle and O'. From (3.2) and (3.5), we obtain the Regge-
pole contribution to the t channel:

ptas f
Fg

f
Xv&= —(2n+1)sn'[(1+e ' e)/2 sin)rp]

XJ'e" '(—') [s(1—s)] "[-'(1+s)]"'
Xc ))„.R,,)„."(s) . (3.7)

From this equation we note that the signature factor is
helicity-independent and asymptotically Ps(b ')(—s)
~ (—s)e=(—s)" ~". In (3.7) the normalization factor
cV)„)„is absorbed in R),~)„.

' (s). In the physical region of
the s channel, the Regge-pole contribution can be written
as

()(t)(s
I
Fa

I
)(v&= (2o+1)so,"[(e' e+1)/2 sins p]

Xd)„.),, (s)R),,)„.(s)c)„)„, (3.S)

where R),~), ,'=lVx, .),~E),~q,. (s). In the spin-zero case, at
s=ns, ' (m,„=mass of the exchanged particle), the
Regge-pole expression coincides with that of the Born
term. This is the basis for the speculation that on the
mass shell the Regge poles appear as a particle or reso-
nance depending on whether the trajectory is real or
complex there. "In order to verify the analogous situa-
tion in the nonzero-spin case, we consider the expression
for the Born term in the s channel. The Born term is
given by

(e,)(,$,,fifo, ) v&
s ssg~

X (JM)(t)),s l
8

f
J'M')(v&(J'M'Xv

f
Xv, 0&, (3.9)

where (8,44f and (0,) vf are the helicity wave func-
tions of the initial and final two-particle system in the
s-channel c.m. frame. The matrix 8 depends on the
spin and the quantum members of the exchanged par-
ticle, and it contains the projection operator for the

'2C. A. M. , p. 170.
"C. A. M. , pp. 152, 171; G. F. Chew and S. C. Frautschi,

Phys. Rev, Letters 8, 41 (1962); R. Oehme, Phys. Rev. 130, 434
(1963).

where q=4-momentum of the intermediate state. If,
instead of (ts, we take —m' in the expression for 0)'",
then oR the mass shell 0~)'" is not a projection operator
and Eq. (3.10) is not valid in general. The similarity in
form of (3.8) and (3.11) allows us to extend the above
speculation to the general case. In (3.8), the c),~)„.
remain undetermined, because no information about the
quantum numbers of the intermediate state has been
put into the partial-wave expansion. We have proposed"
the identification

f
a=n= b),g),, (3.12)

in order to determine cy~q, , since b~~~,
' can be obtained

from the Born term and R&~z,. can be fixed by the
threshold behavior. It has been indicated before' that
the identification is meant to approximate the residue
near the pole n=a., and to take into account the re-
strictions imposed by the selection rule on the helicity
dependence of the residue. These restrictions are of a
kinematical nature. In the next section we shall discuss
another covariant description which can take these
restrictions into account.

IV. STRUCTURE OF THE BORN TERM

It is well known that there are two terms in the
coupling between p and 1UE. These are usually at-
tributed to the "'5-wave" and '"D-wave" couplings
of the p meson to the le system. We ask ourselves
whether such an interpretation is relativistically co-
variant and to what degree it is reasonable.

In relativistic kinematics there are two useful repre-
sentations: the canonical representation" and the
helicity representation. ~ "The single-particle canonical
is obtained from the rest state by applying the
I.orentz transformation. '4 On the other hand, in the
helicity representation, the single-particle helicity state
is obtained from the rest state by aligning the quanti-
zation axis along the direction of the momentum, and
then boosting this state in this direction. "Both rep-
resentations are relativistically covariant.

"H. Joos, Fortschr. Phys. 10, 65 (1962); A. J. Macfarlane,
Rev. Mod. Phys. 34, 41 (1962); J. Math. Phys. 4, 490 (1963)."E.P. Wigner, Rev. Mod. Phys. 29, 255 (1957).

intermediate state. By the property of the helicity
representation, (i)))(t)(sf JM4'4'&=&)„)„b)„),&~) (s)A',
where X= X&—X2, and by rotational invariance,

(JM)()4 f8 f

J'M') v&=by, b, ~bing 8g. , (3.10)

where 0- the spin of the exchanged particles; we obtain

() t)(s IF' l)(V&= 1/(~ —~-')», b, d~, ~, '(S) (3 11)

We note that Eq. (3.10) is correct only if we choose a
certain form for the propagator. For example, if we
have a vector-meson intermediate state, the projection
operator for the vector meson should be taken as
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In the canonical representation the orbital angular
momentum and the total spin of the two Par-1icle system
can be delned in the c.m. frame of these particles. ""
In the s channel, this frame is the rest frame of the
intermediate state and has a similar role to that of the
rest frame in the single-particle-state representations.
We denote the canonical state of incident and outgoing
particles by

~
Jli;L;5;) and I Jlr LrSr), respectively,

where Li(f) is the orbital angular momentum and Si(f)
is the total spin of the incoming (outgoing) particles
in the c.m. frame. The helicity states of the incoming
particles are denoted by

~
O, l«) and

~
8,X&4), respectively.

To separate the kinematical factors of the Born term,
we introduce Blrz,. related to bzri, .' of Eq. (3.11) by
b),f),- =c),f&,.B&f)„-'. Now, we decouple Bz~z,.' into the
canonical states, which gives

Blry ~ —P (OArxiA"
~

(re flL f5')((rlifLfss
~
B

~

gX 1'5 '')

TABLE III. Meson-nucleon coupling with T= 1.

Meson JPG

C
1 +
1++
1+
2+
2 +

2

0
0,2
1
1
13
2
2

+5
+P&PIJ
&50'@ver
'V A'p

+ppirsp pp»
PQ iud
QGPpPv

where

&=i u"4'u+i » 0»

j."=N[(g r+gr)V.+gr(P./M') 3~,

j.=2fk. (4 3)

p with L= 1.From Table III, we see thatiVX is coupled
to p in 'S and 'D states. The effective Lagrangian can
be written as

X (oA;L;5;joA;, lI.v). (4.1)
ki=-', (ki—kp) „, P„=,'(P —Pp)-„. (4 4)

It has been shown that the relativistic coupling coeffi-
cient (oArlb. i4

~
oArLrSr) is the same as the nonrelativistic

one, ' apart from an s-dependent factor, which appears
because of a difference in normalization between the
nonrelativistic and relativistic wave functions. Omitting
this factor, the general coupling coeKcient is given by

(JMLS
~
JMXi4) = [2L+1)/(2J+1)j"'
XC(L, 5, J; Xi—Xp)C(si, sp, 5; Xi, —Xp), (4.2)

and the helicity wave functions are

b ,
Pp+M) "'

2l~ip
b,.Pp+M

The helicity amplitude of the Born term is then

(XP,P
~

B
~
0)= 2fkuel„[(gr+gr)y»

+gr(P./M')led„(4 5)

2XpP

Pp+M
Pp+M) "'

!( 1)82—Xp

2M )(
)cos-', 0) (—sin20)

+irp=
I

&siner8) cos-', 8)

A straightforward calculation gives the following re-
lations for Birr, of Eq. (4.1):.

cppBpp= 2f[(grr+gr)k+ (gy'/M )P kj
cipBip= 2f[(grr+gr)k~2)(Pp/M) . (4.6)

From (4.1) and Appendix 8, we obtain

Bpp ——[]/2(2g+1)]'i [g'i (la —(0+1)' gl ijD
B,p» —[]/2(2g+1)gimp[(g+1)i&pba+gilpg j (4 7)

where bq and bD are the reduced matrix elements corre-
sponding to the 'S and the 'D states, respectively.
Comparing (4.6) and (4.7) with g=1, we see im-
mediately that the pu term in (4.6) represents the S-wave
coupling of ÃX to p. However, the term proportional to
p„ in (4.6) cannot be identified as the 'D wave coupling,
since this term has no component with Xf——1. The
presence of such a term is necessary due to the fact that
S= 1 and Ay=53. We saw that the LS coupling scheme
has a remarkable basis, so that the only way to restore

"A. McKerrel, Nnovo Ciniento 34, 128/ (1964).
» J. J. Sakurai, Ineariance Pnnciples and E'/ementary Particles

{Princeton University Press, Princeton, New Jersey, 1964), p. 223.

where C(j ij &,j i+j &,
' mim&) is the usual Clebsch-

Gordan coefTicient. The matrix element (oX~Lf j B ~

—.
oA,L;5;) is now helicity-independent; it is the reduced
matrix element, depending only on the orbital angular
momenta of the initial- and final-state systems. Eqs.
(3.11) and (4.1) give a covariant description based on
the LS coupling scheme. We shall study how far these
equations are satisfied by the Born term constructed
from the conventional effective Lagrangian.

We consider first the restriction imposed by G-parity
conservation. In the meson vertex, G-parity conserva-
tion tells us only whether the coupling is allowed or
forbidden. The situation in the nucleon vertex is dif-
ferent: Mesons with various quantum numbers J~~
can couple to iYX with different L and S. The allowed

and 5 are obtained from I' = (—1) +' and
G= (—1)~ + .' Using the known G parity, we select
a Dirac matrix I' in NI'v such that it has the required
transformation property under G conjugation. The
results are summarized in Table III. A priori, is it not
necessary that the two descriptions agree. To illustrate
the situation we consider two examples, the m-S charge
exchange scattering with p exchange and V production
with 2 + exchange.

In x-lV charge exchange scattering, xx is coupled to
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~=i». &"+i» &"
j»„~= f1k»p), + (fo/mp') k»k.k~. ,

J»v 757»Pv )
N (4 9)

where co„ is the polarization vector of V, and k„ is arbi-
trarily taken to be the P momentum. "The appearance
of fl and f3 in j»„~ is due to the fact that there are two
possible couplings between the mesons: the P- and the
I'-wave coupling. The )VX can only be coupled to the
2 + meson in the 'D state. Then the Born term is given
by

(X)X3~B~Xv)=[f1k„p),"'+(fo/mp)k„k, k op" j
X+3 351)Y57»'Pv'&X) )

where

P» »i —v(QM»» QHvt +Qw»v QHv» ) QH»vs» v (4 10)

is the spin-2 projection operator with Q~»" = [b„„—(p,+po)»(p, +po)„/(p, +po)'$. Using the N)„and the
31, given in (4.5), the vector-meson helicity wave

'8 K. J. Barnes, J. Math. Phys. 6, 788 (1965); the expression
for the vertices 2 NN used in this paper are P2I""I"'"'F„.„. instead
of I'„„.

the agreement is to change the effective Lagrangian.
In order to modify the 'D-coupling t:erm in (4.3) we use
the representations S= 1 ~ y» and L= 2 ~ (p„p„—ob»„P3). Then j»~ corresponding to 'D coupling is
represented by the inner product of these two repre-
sentations;

j."(D)= (gD/M')7 (P.P. 3b"—P')

Inserting this into Eq. (4.5), we obtain instead of Eq.
(4.6),

cooBoo=2fk(gs+3gDp /M ),
clpBM= 2fk(ga ogDp—o/M'(pp/M)~&. (4.8)

Comparison of (4.7) and (4.8) shows that the relative
magnitude and phase of the 'S and 'D to both helicity
components is consistent. We also note in (4.6) and
(4.7) that cplBpl contains an additional factor pp/M,
which arises from the product of the wave functions.
We shall take cpp=1 and clp ——Pp/M as kinematical
factors. The products of momenta which are multiplied

by g8 and g&, respectively, represent the threshold
behavior. We shall see that the same factors appear when
we write the invariant amplitude as T= A+iy»k»B. —

In the above example the possibility of restoring the
consistency of (4.6) and (4.7) depends on the equality
of the masses of the incoming and outgoing particles,
so that pl —po

——p can be used to represent the relat, ive
angular momenta of the AN system. Next we shall
examine what happens if the two incoming particles
have different masses as in vector-meson production.
We take anontrivialexample of a 2 + meson exchange,
which is allowed as far as selection rules are concerned.

The most general effective Lagrangian for this
process is

functions

p) +'= —'W2( —1, —i, 0, 0), o) '= 3V2(+1, i, 0, 0),

cp)gvBp)gv —0 5 (4.11)

The two terms in the expression for cj.pB~p do not have
a common kinematic factor. The second term, pro-
portional to kp(E)/m5; is due to the fourth component
of k„ in Eq. (4.9). If instead of the four-momentum of
P, for k„we take only the three-momentum, this term
will drop out. The three-momentum of P can be written
in a covariant form as

&„=-'3{(kg—k p) —[(mvo —m) ')/s](kv+kl )}.
From (4.1) and Appendix II, we obtain

Bll= [1/2(2)T+1)]' '(a+1)' 'b p+)r'~ b)v]

Blo= L1/ ( ~+ )0'"[(~)'"bp(~+ )'"b~3,
Bl, 1

——[1/2(2o+1)]'"[(a+1)'"bP+(a)'"bP],
&p, ~v=0 (4.12)

Again there is a discrepancy between (4.11) and (4.12).
The F-wave coupling contribution is absent in the
X&——+1 components. We may repeat the same trick.
In order to obtain the proper F-wave representation for
the second term in the expression for j„,~ we have to use

(fo/mp')op, [d»d„6 pk'(A»b. ,+D„b—,»+6 b»„)].

This represents L=3, because 6»= (k,0) where k is the
three-momentum of the incoming meson in the c.m.
frame. When this expression is introduced in Eq. (4.9),
we obtain

cllB1,1 /2, fl(p/M)pk 5~2fo(p/M—)—p(ko/mp ),
Cl,u 1,o= [2(3)"'fl(P/M) Pk+(6/5) (3)'"fo(P/M)

)&p(ko/mpo) 5[ko(U)/mv j,
,B, 1 nfl(p/M) pk '——v&f (p/M) p(k'/—m—o'),

co,zv~p, ) v (4.13)

(4.13) is now consistent with (4.12). This result
requires our choice of 6„for two reasons: to obtain a
consistent kinematic factor and to have the correct
representation for L =3. This is not very surprising,
since the same vector D„plays an important role in the
canonical representations. The threshold factor p ~kiev

as in Eq. (4.8) also appears in Eq. (4.13).
We have also done similar calculations for 0, 1+,

and 2+ exchange in V production. Our calculations indi-

o)o= (1/m)(0, 0,kp, ik),

we obtain after some calculation,

cl 1B11 flv2——(p/M) pk,
cloBlo= 2f1(3)

(p/M)pk[ko(U)/mph'

+2fo(P/M)pko[kp(U) —k.(P)j/m. ,

Cl, 1B1,—1 f1~&(P/M)Pk,
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cate consistency in all these cases, provided analogous
modification is introduced in the effective Lagrangian.
The threshold factor is also found to be Pzzk~".

The examples discussed in this section show that the
selection rules are taken into account by imposing the
L-5 scheme on the helicity amplitude of the Born term.

V. STRUCTURE OF REGGE RESIDUE

In the previous section we have shown the role of the
L-5 coupling scheme in the Born term. We note that the
helicity dependence of the Horn term comes only from
the kinematical factors and the coupling coefficient.
The kinematical factors are helicity-dependent because
they arise from the products of the helicity wave func-
tions. The L-5 coupling coefficients determine the re-
lations between the components of the helicity ampli-
tudes. Apart from these helicity-dependent factors, we
have a helicity-independent factor; the reduced matrix
element. In the Born residue, the reduced matrix ele-
ment is the product of the coupling constant and the
threshold factor Pz&kz*, and the dynamics enters into
the amplitude only via the reduced matrix elements.
We wish to introduce a similar separation of the dy-
namical from the kinematical part of the Regge residue.
To do this, we start from the partial-wave expansion,
where the L-5 coupling is exhibited explicitly, then
apply the S.W. transform. We keep the helicity repre-
sentation for the simplicity of crossing and Lorentz
transformations and wish to use the L-5 coupling to
take into account the selection rules.

The partial-wave expansion, after separation of the
kinematic factors, is given by (3.3). The L Scoupling-
scheme amounts to using the identity

(JMpipp IF I
JMlir)=Q (JMliihpl JMLfSf)

X (JM LfSz IF I
JML'5') (JML'5'

I
™v) (5 1)

for the partial-wave amplitude. The residue of

(JMyiyp
I
F

I
JMyr) w;ll be denoted by (JMy

X
I
JMXz), and will satisfy Eq. (5.1).

The coupling coefficients in (5.1) introduce more
kinematic cuts in the J plane, leading to unwanted
complications. In the potential scattering of particles
with spin, the partial-wave amplitude contains trajec-
tory-dependent factors which remove these kinematical
singularities. "On the basis of this result, we introduce a
factor yz,.zz(J)in the reduced matrix elements:

(JMLJ&zIR I
JML*S,)rz;rz(s) pz;zz(J). (5.2)

Notice that the helicity independence of &pz,.zz(J)
follows from the L Scoupling. The factors pz,.-zz(J) are
to be determined by the requirement that all the com-
ponents of the helicity amplitudes F),f)„. are free from
kinematic singularities in the J plane. In the reaction
PE ~ E'iV, we have two helicity amplitudes Fpp and

Ri, i,. ——P (nMXiXplnMLzSz)

X (nML;5;
I nMXv)rz„cz pz, z, , (5.4)

nX;Xz Rx, xz ZL I Wzh; (L) (5.5)

I'),zi„."(L)= (zzMl~ih, p I nMLzSz)

X (nML;5,
I nMXir)rz„z, pz, fz, . (5.6)

The condition to be satisfied by p z,.zz is that I'iz&„. (L)
is regular in the o. plane. For ~-X charge exchange
scat, tering, using Appendix B, we find

I"pp(L, = n —1)= ,'v2[n/(2-n+ 1)]'~'R p

I'ip(L= ~—1)= p~2[~/(2~+1)]'"(~+ 1)R-p --i",
r..(L= +1)=-;V&[( +1)/(2 +1)]R,&.„&-i,
I'ip(L =n+ 1)= -',&2[(n+ 1)/(2n+1) ]R+q ~+i &~&, (5.7)

where R~= R(L;= n; Lz= n+1).We note that the Table
in Appendix B is valid for any J, since if we use Wigner s
or Racah's closed expression for the Clebsch-Gordan
coefficient, the results depend only on whether

I
J—L

I

=0 or j., and that it is independent of the par-
ticular value of J. From Eq. (5.7) it follows that
p~ i ——[n(2n+1)]'i'and @~+i=[(n+1)(2n+1)]' This
is the simplest choice that satisfies the additional
property as n —+0 the residue of the L=e—1 coupling
vanishes. Therefore, we obtain

npppRpp = pv2[nR —(n+1)R~],

n, R, = ,'u2 ( +1)(-R +R ).
Similar calculation for all other isovector-meson ex-

changes in U production can be easily performed using
Appendix B. We shall write down the results for Eqz~,.

which will be needed later. For the exchange of a meson
with natural parity J~~=1 +, 2+, the trajectory de-

Fip, and there is only one function pz„zz(J.) available.
A priori, it is possible that y z, zz(.J), which removes the
kinematic singularities of I&'pp, does not remove those of
P&p. If this is the case, the requirement for the absence
of kinematic singularities in the J plane contradicts the
L-5 coupling. In the following we shall see that this
does not happen.

To show the n dependence of the Regge-pole con-
tribution, (3.1) is rewritten in the following form:

(&ilip
I
Fz

I &r) = —(2zz+1)urn'(0) [(1+e ' ~)/2 sin7rP]

X [-'(1—s)]"[-', (1—e)]"'circe,.ni,.i ~

XRi,z),, pe(b, a; —s), (5.3)

where we have used Eq. (3.5) and Eq. (A4). In this
equation pe(b, u; —e) is an entire function in the n
plane and the cuts can only come from m&,.),f E),f),,
According to (5.1) and (5.2),
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pendence of the residue is given by

Ro.+~ = sLu(u+1) j'"(R-+R+),
Ro, g

———-,'(u(u —1)]'I'(R +R~),
Ry, +y = —

t ( +1)R —uR

R, ,-= —,5(.+1)R —.R,j
Rgq, p =0.

The orbital angular momenta of SX system are
I-=J+1, and that of P, V system is I.=J.By G-parity
conservation 1 +(=p) can be exchanged in cu production
and 2+ (=As) can be exchanged in p production. As to
the mesons with unnatural parity, there are two classes
differing in their coupling to le in the singlet or triplet
state. Those coupled to &VX in the singlet state consist
of J~~= 1++, 2 . Both have the same residue structure
given by

VI. THRESHOLD BEHAVIOR AND UNEQUAL-
MASS EFFECTS IN V PRODUCTION

In this section we wish to study the threshold behavior
of the reduced residues R+ and the kinematical factors,
assuming analyticity for the amplitude. We consider
some specific examples.

The simplest case is that of ~7i- —+E¹By I.orentz
covariance the general form of the invariant amplitude
isRo,+i = s~2L(u(u+1)]"'(R-+R+)

Ro.o"= LuR —(u+1)R+j,
Ro, g" ',v2'[u(——u+-1)j' '(R +R )

Rg, y,. =0.

(6.1)T= —A+iB7 k,

where k„=-', (k~ —ko)„(k;=momentum of the or mesons
in the s channel c.m. system). The functions A and B
are assumed to be analytic functions and to satisfy the
appropriate dispersion relations. The s-channel helicity
amplitude is then given by

(5.9)

In this case the orbital angular momentum of the EX
system is J, and that of the meson system is J&1.

The mesons with unnatural parity of the second class,
coupled to i' in the triplet state, consist of mesons
with J~g= 1+, 2 +. The residue structure of this class
is given by

(X&X2~F ~0)=u)„L—A+i' k]st„, (6.2)

where uq, and sq, is given by Eq. (4.5). This gives

Eqs. (5.8), (5.9), and (5.10) give the u dependence of
the residues and the structure of the amplitude. In Kq.
(5.3) we observe that the momentum-dependent factors
cgf $ are left to be determined. For c~~g, we can use the
factors obtained in the previous section and we have to
add, to the reduced residue with orbital angular mo-
menta I.;, L,~, the threshold factor Ps~ks'. This consti-

(5.8) tutes a complete rule for writing down the Regge-pole
contribution.

Rg, p=-,'L(u+1)R +uR+7,

Rr, o ———,'42Lu(u+ 1))"'(R —R+),
Rg, g

———,'L(u+1)R +uRpj,
Rp y =0. (5.10)

The orbital angular momentum for the EX system is J,
and for the meson system J+1, as in the first class.
These exhaust all possible isovector-meson exchanges in
vector-meson production. Among these, those realized
in nature are the p mesons with J~0=1 + and the A2
with J~g= 2+ .The status of the mesons with unnatural

parity is not yet established. Possibly the A& is as-
sociated with J~~= 1+, and if the 8meson really exists
it can have the quantum numbers J~0=1++ or 2 +.
None can be associated with 2; however, its recur-
rence 0 is the well-established x meson.

If 0 is Reggeized, then its residue is described by
(5.9).On the mass shell, that is u= 0, it follows from Eq.
(5.9) that only Rop&0 and, among its terms, only the
one with J=1.+1 will survive. Such a structure would

lead to pj.~=0 or ppp=1. However, off the mass shell,
0,/0 and Rp, ~~ /0 because angular momentum is not
conserved. This means that, even if x alone is exchanged,

pj~ does not vanish if it is Reggeized. Apart from this,
the A2 can also contribute to the nonvanishing of p~~

as follows from Eqs. (5.8) and (2.9).

Poo= (p/M )A+ Bkdoo'(s),

P,o
——&2Bkdop'(s) (po/3I) . (6.3)

where

R+= [1/(2J+1)]'"(p—/N)A J kBJ,
R = p/(2J+1) j'I'(p/M)A J+kBJ+g (6.4)

ds APg(s),
(4') '"

BJ+$ ds BPJ+$(s)
(4n.)"' (6.5)

By substituting the dispersion relation for A and 8 in

"W. Frazer and J. Fulco, Phys. Rev. 117, 1603 (j.960).

The helicity amplitude Ii&~&,. satisfies the partial-wave
expansion (3.1). Following the treatment in Sec. III,
we may remove the kinematical factors cpp=1 and
ego= (po/M). These kinematical factors are the same
as those obtained in Sec. III.

In order to study the threshold behavior of the
reduced residue R~, we express R~ in terms of A and 8,
whose analytic properties are well known. From the
results of Frazer and Fulco" we find the following
relations:
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Eq. (6.5), we obtain the Froissart-Gribovso represen-
tation for A J and Bg. Then it follows from Gribov's
argument, "that near the threshold,

A s=a(2Pk/so) s, and Bz~t ——b+(2Pk/so) s+'.

Substitution of these expressions into Eq. (6.4) gives

R+= a(2Pk/so) s(P/M)+b+k(2Pk/so) s+',

R = b (2Pk/so) 'k+a(P/3I) (2Pk/so) s. (6.6)

Near the s-channel threshold only the lowest power in
the momenta is dominant, and it follows from Kq. (6.6)
that

R =c (2pk/so)s
—'k,

R~= c+(2Pk/s, )s 'k(P/M—)'. (6.7)

This is consistent with the assumed threshold behavior
in the previous section. We note that the physical
region of the t channel is not very close to the s-channel
threshold. We shall assume that even in the t-channel
physical region, the threshold behavior (6.7) is valid,
as is done in the scattering of spinless particles. In the
application of this model to the analysis of experimental
data, the threshold behavior (6.7) should be used.

In vector-meson production, the analog of Kq. (6.1)

of isovector trajectories with the quantum numbersJ"0=0,1++ will contribute only to Tj. Now we may
repeat the previous reasoning for T& to study the
threshold behavior and the kinematical factors involved
in the exchange of these trajectories.

The helicity amplitude of T& is then given by

J o,
——A &'&(po/M) pd, o'(s),

~os= (po/m) [ko(V)/mvj[A "&p+A &"kjdoo (s),
J o i——A &s&(Po/M)Pdio'(s). (6.11)

From Eq. (6.10) it follows that the kinematical factors
ale

cio= c io= (po/M), and coo= (po/M) [ko(V)/mb),

which are the same as those obtained from the calcu-
lation of the corresponding Born term. The reduced
residues of this class of trajectories, expressed in terms
of 3 (') and 3 (3), are given by

R+——[1/(2J+1)]'"kAs&"+pA j+ti",
R = [1/(2J+1)j"'kAz&'&+pAz ti". (6.12)

By the analyticity of A "' and 2 &'), as discussed before,
we arrive at the threshold behavior.

1S

T P OmA na (6.8)
R+= a+O'P(2Pk/so) s ', (6.13a)

where the basis (0™)is R =a P(2Pk/so)s '. (6.13b)

o =~,(~'), 04=o'(~ ~),
(p') o'= o'( ~)

Os=~, (~ e), O'=O(~ ~). (6.9)

In the expression for the Regge-pole contribution,
Eqs. (6.13) are multiplied by the asymptotic form of
&s o "&(s).For the case X;= 1, Xr= 0 we obtain the form

P(2Pk/b. )
—[(2 ) -+.(2.) -+

This differs from Ref. 32 in replacing the meson mo-
mentum by 6„.We And this convenient for the same
reason as in Sec. IV. In the general case, the situation is
more complicated and requires modi6cation of the basis
in order to arrive at a form for the helicity amplitude
that can be easily compared with the 1.-5 coupling
scheme. For simplicity we shall consider only the part
of the amplitude which represents the EN system in
the singlet state. Since u)„y5vq, transforms like a singlet
EXsystem, the part of the amplitude T&, corresponding
to EX in the singlet state, is given by

Tt ——A &'&y, (P,e)+A &s&y,(h, e) . (6.10)

If we maintain the basis (6.8), then upon„r& contains a
singlet component, and therefore, (6.10) represents the
amplitude with 1VE in the singlet state only if we remove
the singlet part from the other basis. We assume that
this has been done. According to Sec. V, the exchange

30M. Foissart, Invited paper at the La Jolla Conference on
%'eak and Strong Interactions, 1961 (unpublished); V. N. Gribov,
Zh. Eksperim. i Teor. Fix. 41, 1962 (1961) LEnglish transl. :
Soviet Phys. —JETP 14, 1395 (1962)j.

'~ V. N. Gribov, Zh. Eksperim. i Teor. Fig. 42, 1260 (1962);
LEnglish transl. : Soviet Phys. —JETP 15, 837 (1962)g; cf. also
C.A.M., p. 151.

"L.S. Lin and P. Singer, Phys. Rev.[135, 31017 (1964).

for the contribution from L=J—1, where pkz= 2t+s
—p;m;s. The second- and higher-order term of the
asymptotic expansion will lead to singularities at s=0,
a problem which has been solved by Freedman, Wang, "
and Jones" by introducing the daughter trajectories.
The daughter trajectories required for the present mass
configuration" are n~ ——rrr —2ts (n = integer), where
o.„=principal trajectory. Near s=0, the daughter tra-
jectories remove the singularities arising from the
higher-order terms in the asymptotic expansion. This
amounts to considering the first term of the asymptotic
expansion. However, at larger momentum transfer, the
daughter effect is proportional to t ' times that of the
principal trajectory„and therefore it can be neglected.
For the contribution from L=J+1 to this amplitude
there is a pole at s= 0, due to the factor k' in the expres-
sion for ~ in Eq. (6.13).This contradicts the analyticity
assumption for A &'& and A &s&, because from Kq. (6.11)
and the analyticity of A &2& and A &'~, it follows that the
helicity amplitude cannot have a pole at s=0. This

3' D. Z. Freedman, C. E. Jones, and J. M. Wang, University
of California Radiation Laboratory Report UCRL 17113
(unpublished)."We wish to thank Professor Freedman for a discussion on this
point.
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contradiction arises from the extrapolation of the thresh-
old behavior (6.13a) from the region near the s-channel
threshold to the t-channel physical region. A simple
possibility that retains the threshold behavior of the
L=J+1 contribution near the s-channel threshold and
that does not lead to poles at s=0, is to take a+= b+s.
Then the threshold behavior (6.13a) should be replaced
by

Ry= b+kssp(2pk/s())~ '. (6.13c)

These examples show that from the dispersion-theoretic
ansatz we obtain the same kinematical factors as those
obtained from the Born term. The analyticity of the
invariant amplitudes imposes an additional restriction
(6.13a). Presumably, these statements are also valid
for the exchange of other classes of trajectories. The
results for the threshold behavior of the reduced residues
and for the kinematical factors of the other trajectories
in V production are as follows.

The threshold behavior of the reduced residues for
the exchange of the trajectories with T—1, J"~=1+,
2+ 1S

R =a 'k(2pk/s())~ '

Rp ——a+'k(2pk/sp)~ '(p/M)',

with the kinematical factors

C01= CO,—1=+$2
Cll= Cl,-l = S/2M,

COO= C01=0;

(6.14)

(6.15)

and the threshold behavior of the reduced residue of the
exchange of trajectories with T= 1, J~ = 1 +, 2+ is

R =a "p(2pk/ss)~ '

R+——a„"p(2pk/so) ~—'(kss/m()'),

with the kinematical factors

cp, 1,=0, cl,pl= 1, cl()= kp(V)/Blv ~

(6.16)

The expressions for R+ are to be substituted into the
corresponding equation for R&fz,. found in the previous
section, to obtain the Regge-pole contribution.

VII. CONCLUSION

We have developed a Regge-pole model with L-S
coupling to describe the coupling of a trajectory, with
definite quantum numbers J~~, to the particles involved
in the reaction. This scheme determines the structure of
the s-channel amplitude, which in turn characterizes the
decay density matrix of the produced resonance.

The characteristics of the present model are as follows:
The reduced residues, in the sense of L-S coupling, are
helicity-independent. These residues are specified by the
orbital angular momentum L and the total spin S of
the particles coupled to the trajectory. The possible
orbital angular momenta L and total spins S are de-
termined by the selection rules from the known J~g

of the trajectory. This fact has been used to classify
the trajectories in Sec. V. The orbital angular momenta
L and the total spins S are meaningful only in the
s-channel c.rn. system. From the P conservation it
follows that for P'E —+ P'E and PN —+ VÃ, the orbital
angular momenta are L=J at one vertex and L=J&j
at the other.

When a particle is Reggeized, we expect the helicity
amplitude to change its structure as the total angular
momentum changes. For example, if 0 and 2 occur
in nature, then on the mass shell of 2, the helicity
amplitude must have a nonvanishing helicity-Qip com-
ponent. However, on the mass shell of its recurrence at0, this helicity-Qip component must vanish, since a
spin-zero particle does not carry any angular mo-
mentum to induce a spin Rip. Such a change of structure
is a direct consequence of the L-S scheme.

The kinematical factors have been studied using the
dispersion-theoretic and the Born-term approach.
Examples indicate that both lead to the same result.
Using the analyticity assumption, the threshold be-
havior of the reduced residues is studied. We find that
for L= J&1, the threshold behavior for the equal-mass
case is consistent with that obtained from the Born
term. For the unequal-mass case, the threshold of the
reduced residue with L=1+1 may lead to a pole at
s=0, and to comply with the analyticity assumption
this pole has to be removed by multiplying with s. In
a sequel to this paper, we mill apply our model to xX
charge-exchange scattering, g production, and or

production.
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APPENDIX A. ANALYTIC PROPERTIES OF
ROTATION MATRICES

For Xl—l(s&0 and Xi+As&0, the rotation matrix
d1212~(s) is defined byss

d1212'(s) = l~'1,12(~)[s(1+s)]'*'"' ""
X [2 (1 s) j)(11 )l2)/g 1 (11 )l2 ill+)l2)(s)

with

-r(y+ X,+1)r(y —X,+ 1)-'(2
~'1,12(&)= (A1)

r(J+Xs+1)r(J—As+1)

and P ( s)(s) is the Jacobi function defined below.

2' M. Andrews and J. Gnnson, J. Math. Phys. 5, 1391 (1964).



ln other cases of X1 and l/2, it is related to (A1) by the
symmetry properties

d» , ~(s)=(—1)»—
»///1 q ~(z)=(—1)»—»d q 1 ~(s)

=/f »„, „~(s). (A2)

The Jacobi function is given by

I'(n+ a+ 1)
p (a, o&(z)

r(n+1) r(ay 1)

XF(—n, n+a+b+1, a+1; -', (1—s)). (A3)

Analytic Properties in J Plane

From (A3) it follows that P„&' '& is an entire function
in the n plane; therefore, Pq &„&» "' "2+"2&(s) does not
lead to any singularity in the Jplane. In order to exhibit
the singularities in the J plane, (A1) is written as

d, , (s) =n, ,(J)p(a, b; s), (A4)

where p(a, b; s) =F( n, n+a+—b+1, a+1; —,'(1—s), a,nd
from (A1) and (A3),

near the cut can be expressed in terms of the Jacobi
function of the second kind, dehned by

1 1'(n+a+1) 1'(n+b+1)
0 '"(~)=-

2 r(2n+a+b+2)

/z
—

1)
" ' '/a+1)-'

X
& 2

XP(n+1, n+a+1; 2n+a+b+2; 2/(1 —s)). (A6)

It can be shown that as s —+ x+i0, for x on the cut, the
equation

P &"&(x+io)~,( 1——e~'~"P &' '&(—x)
—(—1)» "2(2/or) sin2rnQ„&o '&(—x) . (A7)

holds.
The asymptotic form for P &'o&(s) can be found by

expressing the Jacobi functions in terms of the Legendre
functions and using the asymptotic expansion of the
latter. These relations are to be found in the Appendix
of Ref. (36).

n»1, (J)=
1'(J+X1+1)1'(J+l12+1)

F(X1—l/, 2+1) 1'(J—l/1+1) F(J+l/, 2+1) A. Sg=o S2= j.

APPENDIX B. COUPLING COEFFICIENTS

The singularities in the J plane are completely deter-
mined by n»„„(J),which comes from the normalization
factor E&„»(L).Relevant e»»(J) for V production are
noo(J)=n11(J)=1, nro(J)=LJ(J+1)g'/2, and no 1(J)
=oJ(J+1). Only e1o(J) leads to kinematical cuts in
the J plane.

Analytic Properties in the z Plane

f J+] 1/2

1/2 (2J+1
J )1/2

2J+1j
1 J+1)'"

v2 2j+1j

L=J+1
( j )1/2

a~(2jyt]
/ j+1)1/2

(2j+1]
1( j

Equation (A3) is valid in the circle
~

1—s
~
(2, where

the hypergeometric series converges. A representation
valid for Res&0 is

p(a, b; s) = —,'(1+s)"
P( n, n+b;—a+b—; (s—1)/(s+1)). (A5)

This representation was used in Ref. 6, when we calcu-
lated the Regge-pole contribution for which ~s~ is
not very large, before the daughter trajectory was
discovered.

For noninteger n, the Jacobi function has a cut on the
real axis, where x( —1. The behavior of this function

S=O
L=J L=J

1

v2

+1 0

B. Sy —Sg=~

S=1
L=J—1

( J )1/2

~2 k2j+1)
1 f j+1)'/2

V2 (2j+1/

L=J+1
(J'+1) 1/2

~2 k2 j+1f
( j ) I/2

V2 (2j+1/&

"M. Gell-Mann, M. L. Goldberger, F. W. Lo~v, E. Marx, and
F. Zachariasen, Phys. Rev. 133, 8145 (1964).


