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where
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Sy —Syg

1—$12
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n(1 —xis) —x+xis

Evidently, this expression for p, e(s, t) is not a zero
function. In order that p, e(s, t) ==0 for all x and y, it is
required tha, t the coupling constant g for the 3g vertex
be zero. As a consequence, there can be no pole term
and no box-diagram singularity either. This means that
po(s, t) —=0. Therefore, the entire double density function
is also zero, p(s, t)= ps($ t)+pi(s, t)=0. From this point
on, the usual procedure will lead us to the conclusion
that there can be no scattering at all, provided there
are no production processes in the s channel.

ACKNOWLEDGMENT

I am indebted to Professor John S. Toll for his con-

tinued encouragement and for many discussions.

PHYSICAL REVIEW VOLUM E 166, NUM 8 ER 5 25 FE B RUARY 1968

Gribov-Pomeranchuk Phenomenon in N/D Approach

G. C. JOSHi AND R. RAMACHANDRANt

International Centre for Theoretical Physics, International Atomic Fnert y A gency, Trieste, Italy

(Received 28 July 1967)

A detailed study of the left-hand function of the Froissart-Gribov representation enables the integral
equation for the N function to be reduced to a form studied by Tarnarkin. This enables us to show ex-

plicitly that the N function develops an essential singularity and causes an infinite number of Regge poles
to accumulate at /= —1. When moving cuts are introduced, the integral equation, when again reduced to
Tamarkin form, gives conditions on the discontinuity across the cuts for eliminating the essential singu-

larity. The technique in the present form, however, is applicable only to the right-most singularity in the
complex angular momentum plane. Extensions of these techniques for m-N scattering (in the s channel)
are given as an example of the inclusion of spin effects.

1. INTRODUCTION

EVKRAL interesting relations have recently been
derived on the basis of superconvergence of strong-

interaction amplitudes. ' These have also been recogn-
ized as necessary, at least for the amplitudes involving
large helicity Aip, in order to satisfy the Froissart
bound' (a consequence of direct-channel unitarity) for
the total amplitude. The asymptotic behavior of these
amplitudes has been known for some time to be related
to the analyticity properties in the angular momentum

plane of the crossed channel. The superconvergence is a
consequence of a holomorphy domain in the angular
momentum plane larger than that suggested by the
Froissart-Gribov (F-G) representation. It was first ob-

* On leave of absence from Department of Theoretical Physics,
University of Manchester, England.

t Present address: Tata Institute of Fundamental Research,
Bombay, India.

'V. de Alfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.
Letters 21, 576 (1966); B. Sakita and K. C. Wali, Phys. Rev.
Letters 18, 29 (1967);L. K. Pande, Nuovo Cimento Letters 48,
839 (1967);R. Ramachandran, Phys. Rev. 166, 1528 (1968).

~ M. Froissart, Phys. Rev. 123, 1053 (1961); Y. Hara, ibid.
136, B507 (1964).

served by Gribov and Pomeranchuk' that if one at-
tempts to continue the partial-wave amplitude defined

by the I'-G representation, the presence of fixed poles
of the Qs function conflicts with elastic unitarity and
causes an accumulation of an infinite number of Regge
poles of positive signature at t= —1. A pole at l= —1
normally does not contribute to the asymptotic be-
havior, owing to the wrong signature factor, but, if it
becomes an essential singularity, will prevent analytic
continuation beyond this point and necessarily force an
asymptotic behavior 1/s' ' for any amplitude. Thus, in

order to ensure superconvergence, it is necessary to
take the mechanism that prevents essential singularities
more seriously, as it implies restrictions imposed by
unitarity in the direct as well as the crossed channels.

Mandelstam4 has shown that certain sets of dia-

grams can produce moving branch points in the complex
angular momentum plane, and that by the inclusion of

'V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2,
239 (1962}.

'S. Mandelstam, Nuovo Cimento 30, 1113 (1963); 30, 1127
(1963);30, 1148 (1963);V. N. Gribov, I. Ya. Pomeranchuk, and
K. A. Ter-Martirosyan, Phys. Rev. 139, 8184 (1965); J. C.
Polkinghorne, J. Math. Phys. 6, 1960 (1965).
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their effects the essential singularity can be avoided.
The Gribov-Pomeranchuk phenomenon is a result of
the convict between the singularities in the generalized
potential and unitarity, and therefore a formulation
such as the 1V/D technique is more suitable for such a
study. This has been recognized by Jones and Teplitz'
in a recent interesting paper, and they attempt to
discuss the existence of the essential singularity and the
Regge cut that shields it, using the conventional N/D
techniques. They have argued that the kernel of the
integral equation for N(l, s) has a pole at l= —1, and
that this leads to an essential singularity of S. How-
ever, this proof is not yet conclusive, since, as has been
pointed out by Mandelstam and Wang, ' it may well be
possible to choose the inhomogeneous term in such a
way as to avoid the essential singularity. In this paper
we will use methods parallel to those of Jones and
Teplitz, and study in detail the left-hand function. We
will then be able to reduce the integral equation for E
into an equation of the Tamarkin form. 7 Tamarkin has
studied a certain class of integral equations with regard
to their analyticity in the parameter plane, and has
shown the conditions necessary for the pole in the
kernel to imply an essential singularity in the resolvent
of the kernel. We will then utilize a theorem applicable
to a symmetric nondegenerate kernel in establishing the
conditions necessary for E to develop an essential
singularity. In particular, the proof is crucially de-
pendent on the threshoM behavior, and the conjectures
of Jones and Teplitz appear valid only for the right
most singularity in every process.

In Sec. 2, we consider equal-mass spinless particle
scattering. The left-hand function is studied, in par-
ticular, with respect to its singularity in the neighbor-
hood of l = —1.This is solely dependent on the existence
of the third double spectral function. In Sec. 3 the
appropriate X/D equations are then formulated; utiliz-
ing our full knowledge of the left-hand function, the
integral equation for X is reduced to Tamarkin's form.
An infinite number of Regge poles are found to accumu-
late at /= —1. Section 4 is devoted to the study of the
same integral equation in the presence of moving cuts.
As l approaches —1, those cuts that emerge through the
inelastic threshold into the physical sheet move to-
wards the elastic threshold and blanket the unitarity
cut. Using again the Tamarkin form, we obtain the
conditions on the discontinuity across the moving cut
required to avoid the essential singularity. As an ex-
ample of similar effects in higher-spin scattering, we
consider the partial-wave amplitude in the direct-
channel vr-E process. In a fermion process, the Gribov-

' C. E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271 {1967).
6 S. Mandelstam and L. L. Wang, Phys, Rev. 160, 1490 {1967).' J. D. Tamarkin, Ann. Math. 28, 127 (1927), In particular,

see Theorem II and the corresponding example on p. 152. It
may be noted that Tamarkin's example refers to a definite sym-
metric kernel. However, in our case it is sufficient that the kernel
be nondegenerate and symmetric.

Pomeranchuk phenomenon shifts to J=——,'.' The left-
hand function possesses a fixed pole at J=—~, whose
residue is again an integral over the third double
spectral functions of the invariant amplitudes. In Sec.
5, the integral equation for the appropriate E is con-
verted into Tamarkin form and we observe the de-
velopment of a similar essential singularity. The condi-
tions on the discontinuity across the moving cut needed
to shield this singularity are similar to those found in
the spinless case. We again find limitations imposed by
the threshold factor, in that it is possible to carry out
this proof only for the right-most singularity at J= ——,'.
In Sec. 6 we discuss the consequence of the absence of a
fixed pole and its connections to the bilinear unitarity
condition.

In Appendix A, we have collected together the prop-
erties of the left-hand function in m-E scattering needed
for the discussion of the integral equation. It may be
observed that the positive definiteness of the third
double spectral function is crucial for the existence of
the poles, 3 at least in the imaginary part of the left-hand
function. In Appendix 8, we have explicitly con-
sidered a scattering involving 2 units of helicity Qip
("p"+0 -+ "p"+~) to demonstrate such a property, at
least in the neighborhood of the boundary of the third
double spectral function.

ap(t, s) =
2

— " ( 2t
g, l

1+ la, (s,t)dt
~(s—4m') '+', 2 k s—4m'/

where

( 2u
Qil 1+ la„(s,u)du, (1)

s—4m21

p. ,(s', t) 1 "
p,„(t,u')

A, (s,t) =— ds' +— du', (2)
4m

p,„(s',u) 1 "
p,.(t',u)

A„(s,u) =— ds' +— dt' . (3)
S —S X 4

It is well known that the discontinuity across the left-
hand cut of (1) and also the left-hand function are de-
fined in the complex / plane, and the left-hand function
has fixed poles at negative integer values of l. We will
exploit the knowledge of the singularity structure of
these functions in obtaining the consequences of the

' Ya. I. Azimov, Phys. Letters, 3, 195 {1963).' Haridas Banerjee, Phys. Rev. 181, 1832 {1963).

2. STUDY OF THE LEFT-HAND FUNCTION

We begin with the Froissart-Gribov representation
for the partial-wave amplitude of equal-mass spinless
scattering:
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we have

4'(t,s) = (V'~(s))x(s)+ — ds'(V') (s))
s-(3+1) 4

-'

together with
s —s

4m 2
ds )I, (s) ix(s) i'(

4m, 4~2 2

x(s') —x(s) s

dsds'X(s) X(s')( ee . (16)
s —s

whose kernel is symmetric nondegenerate. Ke will now
use the theorem (see, for example, Pogorzelski"): A
symmetric kernel has infinitely many eigenvalues if and
only if it is nondegenerate. The characteristic values of
the equation have zero as the limiting point, so that
X=o is an essential singularity for the resolvent of
K(x,))/X. We now show that the kernel of Eq. (14) is
nondegenerate. Using Eq. (8), the kernel K(s,s') has
the form

s s

X 69
4m 2

pi~(t, g )
dl

(I' 4m'+s+ t) (I—' 4m'+ s'+ t)—
Since it is obviously not possible to express this in
the form

Z f (s)g (s)
j=1

where E is finite, this kernel is indeed nondegenerate;
it then follows that g (t,s) and, therefore, E(l,s) have an
essential singularity at l= —1. YVe should like to
emphasize here that it is not possible to conclude di-
rectly from Eq. (10) that X(t,s) must have an essential
singularity at I= —1, because it may happen that the
resolvent of a meromorphic kernel K(s,s', l) is analytic
in the whole / plane. For instance, if K(s,s', l) is the re-
solvent of another analytic kernel K'(s, s', I), then the

' W. Pogorzelski, Integral Equations and their A pplications
I,'PWN-Polish Scientific Publishers, Warszawa, Poland, 1966),
Vol. 1, p. 132. We are grateful to Professor R. I,. W@gnock for
clariRation of this pojnt,

The integral equation [note that it is not Fredholm
type because of the pole in the parameter (3+1)j is
now of the form studied in detail by Tamarkin. 7 As in
the example given by Tamarkin, consider the integral
equation

(17)

resolvent of K(s,s', I) coincides with K'(s,s', I) and is
analytic. These possibilities have been discussed by
Tamarkin, and from his discussion it follows that
1V(l,s) has an essential singularity only because one can
reduce the integral equation to the form of Eq. (17).
That this is possible in the present case is due to the
precise form of F(l,s).

Now, following Jones and Teplitz', one can show that
as s —+ee, the infinity many poles of E(l,s) imply
through Eq. (11) the accumulation of an infinite num-
ber of Regge poles at l= —1. As such, this implies the
existence of a Gribov-Pomeranchuck' essential singu-
larity at l= —1.

Similar G-P phenomena are known to occur at the
other negative integer values of l. However, we find that
our proof of essential singularity cannot be carried out
for the other fixed poles. It may be noted that where
t~& —ss, the conditions (15) and (16) cease to be valid
because of the threshold factor. Similar difhculties have
been encountered by Mandelstam" in connection with
analytic continuation" of partial-wave amplitudes with
the help of an auxiliary function. The functions
(s—4m')'+'I' in (15) and (16) give in the lower limit,

(s—4m') '+'~', which diverges for l &&ss. Thus the inhomo-
geneous term is not square integrable and the kernel is
not square summable. Since, these are the two essential
conditions in Tamarkins proof, the essential singu-
larity can be established by this technique only for the
right-most singularity at l= —1.

It may be noted that we have so far ignored the
question of the convergence at the upper limit of the
integration in (15) and (16), since the only relevant
point is that elastic unitarity holds over a finite region.
In a general situation the validity of (15) and (16) at
the upper limit of integration is not guaranteed. How-
ever, we may introduce an auxiliary function and impose
certain constraints on the asymptotic behavior of the
amplitude such that the boundedness conditions are
satisfied. The details concerning this procedure have
been given in Ref. 11.

Just as in the Gribov-Pomeranchuk arguments, the
manifestation of the essential singularity is crucially
dependent on the existence of a positive definite third
double spectral function p&„. Indeed, if this were absent,
as Jones and Teplitz also observed, the left-hand func-
tion would have no poles at t= —1.

4. INTEGRAL EQUATION IN THE PRESENCE
OF MOVING CUTS

In order to avoid the essential singularity, Mandel-
stam' has conjectured the presence of moving cuts. In
contrast to the diagram. techniques, the present forma-
lism is more transparent in following the consequences
of introducing such cuts. In essence, according to
Mandelstam's arguments, as l approaches —1, the
moving branch cut, envelopes the elastic unitarity cut. ,

n S. Mandelstg, in, Ann, Phys, (N. Y.) gl, 302 (1963).
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Sg(l)

F(l,s') —F(l,s) ( 1
ds' Ai iS(l,s'), (18)

s' —s ka (l,s')/

1 s &'& AT(l, s')X(l, s')
D(l,s) =1——

s —s

S,(l) is the reflection of the moving branch point in the
/ plane, and it coincides with the elastic threshold as
l —+ —1. Then, only the second integrals in both (18)
and (19) survive.

I.et us now assume the discontinuity across both
elastic and moving cuts of the inverse amplitude to be
given by

then

i= —g(s) at l= —1;
a(l,s))

(20)

yg, s) =X(s)(g&(s))+
2r(l+1) 4

2

X(s') —X(s)
(V'a(s))4 (~,s'), (21)

S —SI

where now

4 (t,s) = (~+1)&(l,s)(da(s)) (22)

With Eq. (21), Tamarkin's arguments again become
applicable, and there will again exist an essential
singularity in P(l,s), and therefore in E(l,s), at i= —1.
In order to avoid this trouble, the only other possibility
is that the total discontinuity across the right-hand cuts
must vanish at least as fast as (l+1), when / —+ —1.
Speci&cally,

1 1

i

—Z(s),
a (l,s) a (l,s)i

(23)

where 6, is the discontinuity across the moving cut.
If we assume for A(1/a(l, s)) the form

i

= —X(s) ((+1),
a(l,s)).,

thus preventing the fixed pole of Qi function from be-
coming an essential singularity.

Using methods parallel to those of Jones and Tep-
litz, we will now reduce the integral equation for
X(l,s) in the presence of cuts to Tamarkin form and
examine its consequences. Instead of Eqs. (10) and (11)
we now have

1 8 &o F(l,s') F(I,,—s)
E(l,s) =F(I,s)+ —ds' X(t,s') V(t, s')

s —sI

then

i= —7 (s)i.
'ka(f, s)&

In particular, the discontinuity across the moving cut
has precisely the same behavior as on the elastic cut."
We may note, in passing, that g(s), being the same as
X(s), satisfies the requirements of square integrability
and square summability of the kernel at l= —1 (since
l~&—2). Clearly these arguments cannot be applied to
the cuts shielding the poles at t = —3, —5 . It is also
clear that the vanishing of A(1/a(t, s)) by a higher
power like (l+1)"prevents a Regge pole from passing
through /= —1.

Thus, with the properties of the cut assumed, the
integral Eq. (21) reduces to an ordinary Fredholm
type, so that 1V(t,s) has a fixed pole at l= —1 due to
F (l,s), and D(l,s) has no such pole. Thus a(l, s) contains
this fixed pole whose residue, we may now recall, is
related to an integral involving the third double spectral
functions. This pole, of course, does not contribute to
the asymptotic behavior, l= —1 being the nonsense
point in the wrong-signature amplitude. Since the origin
of this pole is foreign to potential scattering, the residue
has a peculiar left-hand cut (—4m2&&s&~—~), in con-
trast to Regge poles, which are believed to have only a
right-hand cut.

Here, the left-hand function, which is somewhat more
complicated, has fixed poles due to Qj i/2 functions at
J=—~, —

~
- . In the neighborhood of the right-most

singularity, as in the spinless case, we could write, in
the notation of a paper" by one of us (G.C.J.) (see
Appendix A for details),

(27)

' R. Oehme, Phys. Rev. Letters 18, 1222 (1967}.
'~ S. Frautschi, M. Gelt-Mann, and F. Zachariasen, Phys. Rev.

126, 2204 (1962}.
'4 iy, C. Joshi, Phys. Rev. 141, 1471 (1966).

S. ~-N SCATTERING

That the Gribov-Pomeranchuk phenomenon occurs
in the scattering of particles with spin has been noted
by Azimov' and Mandelstam. 4 It is well known that
substantially the same effects occur at j=oi+o2—1,
where 0~ and 02 are the spins of the particles. Using the
general methods introduced for the spinless scattering
case, we will now show the accumulation point at
J=—~, in the xS partial-wave amplitude, as an ex-
plicit example of an application to situations with spin.

We shall study the even-signature, odd-parity ampli-
tude and define the form appropriate for an E/D
formulation. '5
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QQ

F4(J—-'„W)=— dl
(u+») 2

where

(N+») 2 s —s

(M+»)'
dg Qs i)2(s(s,N))P(Z —s—u, N)x'(s), (A6)

-
t x'(s)Q& v2(s'(s)N)) —x'(s')Qs v2(s'(s', I))]

x"'(s)1 x'(s) q'(s) q'(s)x"(s) =- =w ~=).(,) ~) -p.(,) ~j(w,~)4q' s s+'~' W—
(A'7)

4 dh (r, (t, Z —s—C).
4

(A9)

We may use similar arguments
~ ~

for all the other F's
(Fq to Fs) and linall obtain

(A10)
x(W)

F(J——',, W) =R(W)+
2

w ereh E(W) is analytic in (—~ &&W~& —(M+1)) and
form is not(~+1)~&W~& oo), and whose precise form

needed for our discussions. x(W) is given by

dCLq, (C, Z —s—C)

+(w —x)p, (c, z—.—«)j

dCCfpm(Z
—s—I, I)

The explicit forms of (F5—Fs) are not needed for our
discussion and are given in Ref. 15 ~~

as in (A7)). It should be noted that by taking arbi-
trarily large subtractions in (A1), the domain of validity
f F(J i W) in—the J plane can be extended to an

arbitrary large domain. We consider theh behavior of
the above representation at J=——,'; pin articular, we
take Eq. (A4). In this equation, for J= —2, the erst
integral does not contain any pole terms, because

lim Lx(s)Qs i(x(s(s, t))J~1/2
—x(s')QJ-in(s(s', C))j(p. ( i

=o

and the second term has a pole whose residue is given by

that in getting Eq. (A11) we have also taken into
account the nucleon pole term (which is in Fs), which
also has a axed pole at J=——',.

APPENDIX 3: DOUBLE SPECTRAL FUNCTION
POR cc tt+(r ~ (c~lt+(r

It '
ll known that in the case of xw scattering andis we

EE scattering, the double spectral functions .s. . o
the relevant invariant amplitude, where they exist,
have a unique sign. " We shaH demonstrate here a
similar property when a spin-1 particle is involved, as
for instance in pz scattering.

The simplest diagram that contributes to the d.s.f.
is a box diagram. We may avoid some inessential com-
plications arising from the negative parity of t e x

~ ~ ~ . The Gxedmesonson by discussing instead pr scattering.
poles, etc., in the t channel (o.+o ~ p+p) are related to
the third double spectral function p, „(s,N), the contri-
bution to which is obtained typically from a diagram

and d = (p2 —pi)= (qi —q, ), we define the amplitude"

T„.=A iP„P„+A2P„K„+A3P„A.
+BiK„P„+B2K„K„+B3K„A„
+CiA„P„+C26„K„+Cad„h„

(III)
where A, and B2 are the invariant amplitudes with two
units of hehcity Rip and with no helicity Rip, respec-

1 . The projection operators for A» an 82 are ob-
tained quite easily (especially since we consider
particular case when q» = q~ ——p an

M+») 2

qi

p I

I

I
I

I
I0'
I

+ (W—M)$2(Z —s—I, I)) t
I
I
I
I
I
l
I
I

P

q

+ L(w —m)/~j+c, (A»)

where c is an irrelevant constant and

1
rC2(C, Z s t) =——— (A12)

(sr' 1)~ I Z+s+C—
—d$',

fi~. (C',I)
C' —Z+s+I

Pi
1

it2(Z —s—I, rc)=— fp~ CC &7+ ~ CC )SFin. 1. The box diagram contributing to p,„for "p"+~ -+

and ~~ .It should be notedwit+imilar expressions for p2 an "S. Fubini, Nuovo Cimento 43, 475 (1966).
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are given by
K' ( K„K,)+.."'=—

I

—g"+, I+~"
K' &

and
P' ( P„P„)

6 =
i gpv+ i+~pv

(82)

(a3)

where

K.P
(K„P„+P„K„)+g„,

K'P„P„+P'K„K.

X= (P.E)'—P'E',
such that

(P„„~&T„„=33,

Since the contribution from diagram i to T„„is given by

T„„= de(2k —
qg) „(2k—q2

—2Pp) „

(m2 —k )(m (k —p—2) )(m' —(k—p2 —q2)'

X (m' —(0—qi)'), (a4)

it is easily seen that

d4k 0' ~'~'(2k —qg)„(2k —
q2

—2pm) „

&&8(m' —k)P(m' —(k —p )')8(m' —(k —p,—q,)')

X~(m' —(u —q,)2). (a5)

The transformation from the k integration to the inte-
grations over the arguments of the delta functions gives

a Jacobian J:
J= f /su —(m' —u')')$(s —4m') (u —4m')

(3m2 ~2)2))—1/2 (a6)

Using the projection operators and the 5 functions, the
integrations in (85) are trivially performed, result-
ing in

(s—u)'u'-
p,„"(s,u)= 2m +/4 +

Lsu —(m' —p')') t(t —4p, ')

~(t—4u')
(a7)

and
~(&—4u') s+u

p,P&(s,u) = 2m +Is
(su —(m' y')')— ,

(s—u)'-
(as)

The boundary of the region where the double spectral
function does not vanish is also given by the locus of
the zeros of J. In (87) the terms within the square
bracket are positive for 1&0, so p, „~& obviously has a
unique sign, wherever it exists. Similarly, p,„& has a
unique, sign when m'(u' (which is necessary in order to
avoid complications arising from anomalous thresholds).

For the real pz scattering, a typical box diagram that
could contribute to p,„is shown in Fig. 2. The complica-
tions due to the inclusion of isospin, however, do not
alter the arguments for a unique sign of the d.s.f.

Pi

FIG. 2. The box diagram contributing to p,„for "p"171 ~ "p"+m'.


