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Evidently, this expression for pio(s,f) is not a zero
function. In order that p;o(s,t)=0 for all x and y, it is
required that the coupling constant g for the 3¢ vertex
be zero. As a consequence, there can be no pole term
and no box-diagram singularity either. This means that
po(s,t)=0. Therefore, the entire double density function
is also zero, p(s,)=po(s,)+p1(s,t)=0. From this point
on, the usual procedure will lead us to the conclusion
that there can be no scattering at all, provided there
are no production processes in the s channel.
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A detailed study of the left-hand function of the Froissart-Gribov representation enables the integral
equation for the N function to be reduced to a form studied by Tamarkin. This enables us to show ex-
plicitly that the NV function develops an essential singularity and causes an infinite number of Regge poles
to accumulate at /=—1. When moving cuts are introduced, the integral equation, when again reduced to
Tamarkin form, gives conditions on the discontinuity across the cuts for eliminating the essential singu-
larity. The technique in the present form, however, is applicable only to the right-most singularity in the
complex angular momentum plane. Extensions of these techniques for =-N scattering (in the s channel)
are given as an example of the inclusion of spin effects.

1. INTRODUCTION

EVERAL interesting relations have recently been
derived on the basis of superconvergence of strong-
interaction amplitudes.! These have also been recogn-
ized as necessary, at least for the amplitudes involving
large helicity flip, in order to satisfy the Froissart
bound? (a consequence of direct-channel unitarity) for
the total amplitude. The asymptotic behavior of these
amplitudes has been known for some time to be related
to the analyticity properties in the angular momentum
plane of the crossed channel. The superconvergence is a
consequence of a holomorphy domain in the angular
momentum plane larger than that suggested by the
Froissart-Gribov (F-G) representation. It was first ob-
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served by Gribov and Pomeranchuk® that if one at-
tempts to continue the partial-wave amplitude defined
by the F-G representation, the presence of fixed poles
of the Qs function conflicts with elastic unitarity and
causes an accumulation of an infinite number of Regge
poles of positive signature at /=—1. A pole at /=—1
normally does not contribute to the asymptotic be-
havior, owing to the wrong signature factor, but, if it
becomes an essential singularity, will prevent analytic
continuation beyond this point and necessarily force an
asymptotic behavior 1/s~¢ for any amplitude. Thus, in
order to ensure superconvergence, it is necessary to
take the mechanism that prevents essential singularities
more seriously, as it implies restrictions imposed by
unitarity in the direct as well as the crossed channels.

Mandelstam* has shown that certain sets of dia-
grams can produce moving branch points in the complex
angular momentum plane, and that by the inclusion of
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Polkinghorne, J. Math. Phys. 6, 1960 (1965).



166

their effects the essential singularity can be avoided.
The Gribov-Pomeranchuk phenomenon is a result of
the conflict between the singularities in the generalized
potential and unitarity, and therefore a formulation
such as the N/D technique is more suitable for such a
study. This has been recognized by Jones and Teplitz®
in a recent interesting paper, and they attempt to
discuss the existence of the essential singularity and the
Regge cut that shields it, using the conventional N/D
techniques. They have argued that the kernel of the
integral equation for N(l,s) has a pole at I=—1, and
that this leads to an essential singularity of N. How-
ever, this proof is not yet conclusive, since, as has been
pointed out by Mandelstam and Wang,® it may well be
possible to choose the inhomogeneous term in such a
way as to avoid the essential singularity, In this paper
we will use methods parallel to those of Jones and
Teplitz, and study in detail the left-hand function. We
will then be able to reduce the integral equation for NV
into an equation of the Tamarkin form.” Tamarkin has
studied a certain class of integral equations with regard
to their analyticity in the parameter plane, and has
shown the conditions necessary for the pole in the
kernel to imply an essential singularity in the resolvent
of the kernel. We will then utilize a theorem applicable
to a symmetric nondegenerate kernel in establishing the
conditions necessary for N to develop an essential
singularity. In particular, the proof is crucially de-
pendent on the threshold behavior, and the conjectures
of Jones and Teplitz appear valid only for the right-
most singularity in every process.

In Sec. 2, we consider equal-mass spinless particle
scattering. The left-hand function is studied, in par-
ticular, with respect to its singularity in the neighbor-
hood of /= —1. This is solely dependent on the existence
of the third double spectral function. In Sec. 3 the
appropriate N/ D equations are then formulated ; utiliz-
ing our full knowledge of the left-hand function, the
integral equation for IV is reduced to Tamarkin’s form.
An infinite number of Regge poles are found to accumu-
late at /=—1. Section 4 is devoted to the study of the
same integral equation in the presence of moving cuts.
As ] approaches — 1, those cuts that emerge through the
inelastic threshold into the physical sheet move to-
wards the elastic threshold and blanket the unitarity
cut. Using again the Tamarkin form, we obtain the
conditions on the discontinuity across the moving cut
required to avoid the essential singularity. As an ex-
ample of similar effects in higher-spin scattering, we
consider the partial-wave amplitude in the direct-
channel -V process. In a fermion process, the Gribov-

5 C. E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271 (1967).

6 S. Mandelstam and L. L. Wang, Phys. Rev. 160, 1490 (1967).

7J. D. Tamarkin, Ann. Math. 28, 127 (1927). In particular,
see Theorem II and the corresponding example on p. 152. It
may be noted that Tamarkin’s example refers to a definite sym-
metric kernel. However, in our case it is sufficient that the kernel
be nondegenerate and symmetric.
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Pomeranchuk phenomenon shifts to J=—3%.3 The left-
hand function possesses a fixed pole at J=—3%, whose
residue is again an integral over the third double
spectral functions of the invariant amplitudes. In Sec.
5, the integral equation for the appropriate N is con-
verted into Tamarkin form and we observe the de-
velopment of a similar essential singularity. The condi-
tions on the discontinuity across the moving cut needed
to shield this singularity are similar to those found in
the spinless case. We again find limitations imposed by
the threshold factor, in that it is possible to carry out
this proof only for the right-most singularity at J=—1.
In Sec. 6 we discuss the consequence of the absence of a
fixed pole and its connections to the bilinear unitarity
condition.

In Appendix A, we have collected together the prop-
erties of the left-hand function in -V scattering needed
for the discussion of the integral equation. It may be
observed that the positive definiteness of the third
double spectral function is crucial for the existence of
the poles,® at least in the imaginary part of the left-hand
function. In Appendix B, we have explicitly con-
sidered a scattering involving 2 units of helicity flip
(“p” 40— “p”+0) to demonstrate such a property, at
least in the neighborhood of the boundary of the third
double spectral function.

2. STUDY OF THE LEFT-HAND FUNCTION

We begin with the Froissart-Gribov representation
for the partial-wave amplitude of equal-mass spinless
scattering:

2 ® 2t
1s)= 1 A4(s,0)dt
a(s) 1r(s~—4m2)’+1|:[;m2 Ql( +s-—4m2> ()

- 2
+ / Qz<l+ . )Au<s,u>du], W
4m? s—4m?
where

1 co Ps (S’,t) 1 oo P u(lyul)
At(s:t)=“/ ds’ : ) / du’ t, )
4 4

T am? s'—s  w)am? u'—u

172 pau(s’yw) 172 pu(tu)
Au(s,u)=— / ds'—— " | / dt NG

™ 4m2 S'—S ™ 4m2 i"—t

It is well known® that the discontinuity across the left-
hand cut of (1) and also the left-hand function are de-
fined in the complex / plane, and the left-hand function
has fixed poles at negative integer values of 7. We will
exploit the knowledge of the singularity structure of
these functions in obtaining the consequences of the

8 Ya. I. Azimov, Phys. Letters, 3, 195 (1963).
9 Haridas Banerjee, Phys. Rev. 131, 1832 (1963).
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unitarity condition through the conventional N/D
methods. To this end, we define

Fy(ls)=- ds’, (4)

s'—s

1/" Aay(ls")
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where subtractions are implied where necessary. Ex-
plicitly, using the techniques given in an earlier
reference,0-1!

F:i:(l;s)=F:l:1(le):i:F:!:2(l:s) )
with

pst(s,7t)r 1
ds’
s—s L (s—4m?)H1

TJ —w
2 0 ©
F(ls)=— / it /
7T2 4m? 4m?

péu(s 1t)

1
| 1+ -
© < s— 4m2) (s"—4m?) ’+1Ql

2t
]
s'—4m?

s'—s

+ f du /
and
N ) 1 o 21 ®
Fel)=— m[/m & Q’<l+§_—@_2)/4m2 "

From the above equations it is obvious that F(/,5) has
only the left-hand cut (—o <s<0) and is a holo-
morphic function of , except for the poles of Q; functions
at the negative integer values of /. The residues of such
poles in F,2(l,s) (F_2(l,5)) are associated with the exis-
tence of the third double spectral function pu, and
survive only for odd (even) negative integer values of /.
However, there is a further simplification for the right-
most singularity at /=—1, in that the contributions
arising from F4'(l,s) vanish identically:

1 2t
lim[ Ql<1+ >
1->—1 (S_4m2)l+1 S_4m2

24
+——)] -0 o
s'—4m?/ dpore)

Therefore, the residue X, (s) of the fixed pole at /=—1 of
F.(,s) is given (apart from some irrelevant con-
stants) by

Ptu(t M)
8
x()= / dt,[; u ——4m2+s+t ®

and similarly for F_(l,s) the residue X_(s)=0. In the
event that p;, is not zero everywhere, the residue sur-
vives at least in the imaginary part of X, (s), as was
first noted by Gribov and Pomeranchuk. In what
follows we shall confine our attention to the study of the
amplitude a, (I,5), since a parallel analysis for a_(l,s) is
quite similar. In the neighborhood of I=—1, therefore,

1
~———Ql(1
(SI_‘ 4m2) +1

F(l,5)~—-. 9)
41

=

o1+ ZM) 1 . 2u s
(o)) o

Ptu (t,%/)

u' —Am24-s+¢

* Ptu(t’:u)
=+ / du Qy <1+ > / di’
s—4m? mt L

— . (6
’—4m2+s+u:l ©)

3. FORMULATION OF N/D

The amplitude a(l,s) can be written as N (1,5)/D(l,s),
where D(l,s) carries the right-hand cut of a(l,s), and
N(l,s) the left-hand cut. With the knowledge of the
left-hand function, and assuming elastic unitarity, an
integral equation for N (J,s) can be written

1 F(s)—F(,
N5)=F(l,5)+— s TG

) im? s'—s
XNEN(@s), (10)
A(s)= (s—4m?)H12/\/s.
The D(l,s) function is then given by
1~ s
D(l,5)= 1——/ ds’ N(l,s"). (11)
T2 S'—S

In order to study these integral equations in the neigh-
borhood of /= —1, we utilize the information we ob-
tained about F(/,s) and write

() I X(S')—X(S)
N(ls)= s’
l+1 7r(l+1) am? s'—s
ASON (). (12)
Substituting
Y(,s)= (I+DN )W), (13)

10 For a detailed discussion on the subtraction in Eq. (4) and
the extension of the domain of validity of the representation of
F(l,5) see Appendix C of Ref. 9.

1 faridas Banerjee and G. C. Joshi, Phys. Rev. 137, B1576
(1965).
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resolvent of K(s,s’,]) coincides with K’(s,s’,]) and is
analytic. These possibilities have been discussed by
Tamarkin, and from his discussion it follows that
N(l,s) has an essential singularity only because one can
reduce the integral equation to the form of Eq. (17).
That this is possible in the present case is due to the
precise form of F(l,s).

Now, following Jones and Teplitz5, one can show that
as s—oo, the infinity many poles of N(J,s) imply
through Eq. (11) the accumulation of an infinite num-
ber of Regge poles at /=—1. As such, this implies the
existence of a Gribov-Pomeranchuck?® essential singu-
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we have
1 0
l,s)= s !
¥(,5)=(V/\( ))X(S)+7r(l+1) s ds'(v/\(s))
X(sH—X
KOO e, o

together with

fzauawmw<w, (15)

/ i / " asin@| PO (<. (1) ety ati=—1.
am? J am? §'—s

The integral equation [note that it is not Fredholm
type because of the pole in the parameter (I+1)] is
now of the form studied in detail by Tamarkin.” As in
the example given by Tamarkin, consider the integral
equation

1 b
MmhﬂWﬁ/KWM@%, (17)
ANa

whose kernel is symmetric nondegenerate. We will now
use the theorem (see, for example, Pogorzelski?): A
symmetric kernel has infinitely many eigenvalues if and
only if it is nondegenerate. The characteristic values of
the equation have zero as the limiting point, so that
A=0 is an essential singularity for the resolvent of
K (x,£)/N\. We now show that the kernel of Eq. (14) is
nondegenerate. Using Eq. (8), the kernel K(s,s’) has
the form

X(s)—x(s)
WAE)———C/NN)=—2DAGN () ]2
s'—s
£ o0 Piu t,u’)
X / d / du’ - :

wm? Jam® (' — 4w s+-8) (W' — dm2+- 5" 1)
Since it is obviously not possible to express this in
the form

2 fi(9)gi(s),

=1

where NV is finite, this kernel is indeed nondegenerate;
it then follows that ¢/(I,s) and, therefore, N (,s) have an
essential singularity at /=—1. We should like to
emphasize here that it is not possible to conclude di-
rectly from Eq. (10) that N (/,s) must have an essential
singularity at /=—1, because it may happen that the
resolvent of a meromorphic kernel K (s,5,!) is analytic
in the whole / plane. For instance, if K(s,s’,/) is the re-
solvent of another analytic kernel K’(s,s',l), then the

2 W. Pogorzelski, Integral Equations and their Applications
(PWN-Polish Scientific Publishers, Warszawa, Poland, 1966),
Vol. 1, p. 132. We are grateful to Professor R. L. Warnock for
clarification of this point,

Similar G-P phenomena are known to occur at the
other negative integer values of /. However, we find that
our proof of essential singularity cannot be carried out
for the other fixed poles. It may be noted that where
1< —%, the conditions (15) and (16) cease to be valid
because of the threshold factor. Similar difficulties have
been encountered by Mandelstam® in connection with
analytic continuation™ of partial-wave amplitudes with
the help of an auxiliary function. The functions
(s—4m2) 12 in (15) and (16) give in the lower limit
(s—4m?) 312 which diverges for I < £. Thus the inhomo-
geneous term is not square integrable and the kernel is
not square summable. Since, these are the two essential
conditions in Tamarkin’s proof, the essential singu-
larity can be established by this technique only for the
right-most singularity at /=—1,

It may be noted that we have so far ignored the
question of the convergence at the upper limit of the
integration in (15) and (16), since the only relevant
point is that elastic unitarity holds over a finite region.
In a general situation the validity of (15) and (16) at
the upper limit of integration is not guaranteed. How-
ever, we may introduce an auxiliary function and impose
certain constraints on the asymptotic behavior of the
amplitude such that the boundedness conditions are
satisfied. The details concerning this procedure have
been given in Ref. 11.

Just as in the Gribov-Pomeranchuk arguments, the
manifestation of the essential singularity is crucially
dependent on the existence of a positive definite third
double spectral function p,. Indeed, if this were absent,
as Jones and Teplitz also observed, the left-hand func-
tion would have no poles at I=—1.

4. INTEGRAL EQUATION IN THE PRESENCE
OF MOVING CUTS

In order to avoid the essential singularity, Mandel-
stam* has conjectured the presence of moving cuts. In
contrast to the diagram techniques, the present forma-
lism is more transparent in following the consequences
of introducing such cuts. In essence, according to
Mandelstam’s arguments, as ! approaches —1, the
moving branch cut envelopes the elastic unitarity cut,

S, Mandelstam, Ann, Phys, (N. Y.) 21, 302 (1963).
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thus preventing the fixed pole of Q; function from be-
coming an essential singularity.

Using methods parallel to those of Jones and Tep-
litz, we will now reduce the integral equation for
N(l,s) in the presence of cuts to Tamarkin form and
examine its consequences. Instead of Egs. (10) and (11)
we now have

1 850  F(l,s")—F(,s)
N({,s)=F(,s)+- ds'————

T am?

N, )N (1,s")

s'—s

1 p= F(l,;s")—
/ ds’ al F(Z’S)A< ! )N(l,s'), (18)
s'—s a(l,s")

1/5c<“ N(,s)\(,s")
4

TJ 8e(l)

and

D(l,s)=1—-

T ’

m? s'—s

1=  NOs) ;1
4 f ds’ A(—-—). (19)
m)say  §'—s \a(ls)

S¢(l) is the reflection of the moving branch point in the
I plane, and it coincides with the elastic threshold as
!— —1. Then, only the second integrals in both (18)
and (19) survive.

Let us now assume the discontinuity across both
elastic and moving cuts of the inverse amplitude to be

given by
1
A(a (l,s)) =—g(s) at I=-—1; (20)
then
1 0
V0, =X() (Vg + / 45'(/g())
™ (l+ 1) 4m2
X(sH—x
x%ﬁm W), (1)
where now
Y(,5)=(+1)N(1,5)(\/g(5)). (22)

With Eq. (21), Tamarkin’s arguments again become
applicable, and there will again exist an essential
singularity in ¢(l,s), and therefore in N(I,5), at I=—1.
In order to avoid this trouble, the only other possibility
is that the total discontinuity across the right-hand cuts
must vanish at least as fast as (/4+1), when [— —1,

Specifically,
1 1
A< >=Ac< >—A<S);
a(l,s) a(l,s)

where A, is the discontinuity across the moving cut.
If we assume for A(1/a(l,s)) the form

1
v =—A(s) (41
A(a(l,s)) M) (1),

(23)

(24)
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Ac(a(; )

,S

then

)=—)\(s)l. (25)

In particular, the discontinuity across the moving cut
has precisely the same behavior as on the elastic cut.!
We may note, in passing, that g(s), being the same as
A(s), satisfies the requirements of square integrability
and square summability of the kernel at /=—1 (since
12> —3%). Clearly these arguments cannot be applied to
the cuts shielding the poles at {=—3, —5- .- . Itis also
clear that the vanishing of A(1/e(l,s)) by a higher
power like (/41)™ prevents a Regge pole from passing
through /= —1.

Thus, with the properties of the cut assumed, the
integral Eq. (21) reduces to an ordinary Fredholm
type, so that N(l,5) has a fixed pole at I=—1 due to
F(l,5), and D(l,s) has no such pole. Thus a(l,s) contains
this fixed pole whose residue, we may now recall, is
related to an integral involving the third double spectral
functions. This pole, of course, does not contribute to
the asymptotic behavior, /=—1 being the nonsense
point in the wrong-signature amplitude. Since the origin
of this pole is foreign to potential scattering, the residue
has a peculiar left-hand cut (—4m2> s> — «), in con-
trast to Regge poles, which are believed to have only a
right-hand cut.

5. =-N SCATTERING

That the Gribov-Pomeranchuk phenomenon occurs
in the scattering of particles with spin has been noted
by Azimov® and Mandelstam.* It is well known that
substantially the same effects occur at j=o140s—1,
where o1 and o are the spins of the particles. Using the
general methods introduced for the spinless scattering
case, we will now show the accumulation point at
J=—1, in the 7N partial-wave amplitude, as an ex-
plicit example of an application to situations with spin.

We shall study the even-signature, odd-parity ampli-
tude and define the form appropriate for an N/D
formulation.!®

167 W
he(J—3%, W) a(J—3%, W)——. (26)
E+M

- (4q2).l——1/2

Here, the left-hand function, which is somewhat more
complicated, has fixed poles due to Qs_y/» functions at
J=—%, —%- .. . In the neighborhood of the right-most
singularity, as in the spinless case, we could write, in
the notation of a paper's by one of us (G.C.J.) (see
Appendix A for details),
x(W)
F(J—3 W)= I

+RW), )]

1
P 2

4 R. Ochme, Phys. Rev. Letters 18, 1222 (1967).

16 S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev.
126, 2204 (1962).

18 G, C. Joshi, Phys. Rev. 141, 1471 (1966).
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where

4 0 0
X(W)=——{/ dt/ du’
wlJ4 (M+1)?

Ptu (t7u’)+ (W_ M)ptu (t,u’) ® ®
X ; / du / ar
(M4+1)? 4

u—24-s+1
N (') + (W —M)puu (V' 1)
V—Z+s+u

and the precise form of R(W) is irrelevant for our pur-
poses. It is obvious that X(IW) cannot vanish in the
presence of the third double spectral functions p;, and
pep of the invariant amplitudes of 4 and B. Further-
more, since X(IW) has a unique sign, at least in the
neighborhood of the boundary of the double-spectral
function (as can be shown from the lowest possible box
diagrams'?), there is no possibility that the integrals in
(28) vanish. These are then sufficient conditions to
write V/D equations analogous to (10). Defining

%(W—M)-H}, (28)

he(J—3, W)=N(J,W)/DJ,W), (29)
we have
1 —00 0
N(J,W)=F(J,W)+—[/ +/ ]dW’
wLJ (1) (M+1)
F(JW)Y—FJ,W)
X ANLWON (W), (30)
wW'—w
with
\N(J W)—E+M(4 2)J—1/2
’ —1 aW 1 1
and i -
D(J,W)=1——[/ +/ ]
wlJ a4y (M+1)
NI, WHNJ, W’
i WONTW) s

’

In the neighborhood of J=—3%, Eq. (30) can be con-
verted into one with a symmetric kernel in the form of
Eq. (17). With

YW= T+HNITW)WNW)),

we get

V(I W)=x(W)(VAW))+

T(J+3)

— ° X(W")—x(W)
x[ / + / ]de__—
—w+y  J vy w'—w

XINWONW) 2 (T W7). - (32)

As before, by similar arguments, N develops an essential

17J. Charap, E. Lubkin, and A. Scotti, Ann. Phys. (N. Y.)
21, 143 (1963).
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singularity, and consequently an infinite number of
Regge poles accumulate at J=—% as W — d .

To shield this essential singularity, it is again neces-
sary to introduce two Regge cuts such that at J=—3%
their branch points coincide with the elastic threshold
#+(M+1). In addition, the combined discontinuity
across the Regge as well as the unitarity cut must
vanish:

(o) Gz
=—(J+5H\W)

Ac(m>=—(f—%)>\(W)-

The threshold behavior of the two cuts is identical.
Just as in the 77 case, the extension of this proof to the
other negative half-odd-integer J seems impossible on
account of the breakdown of square integrability for
J< —1, due to the threshold behavior (¢2)7.

A similar analysis for the right-most singularity in
every process is now straightforward, and depends solely
upon the existence of the third double spectral function.

(33)

or

(34)

6. DISCUSSION

To summarize, using the detailed knowledge of the
left-hand function, it is always possible to reduce the
integral equation for NV (/,s) in the neighborhood of its
right-most singularity in the J plane into Tamarkin
form. In this form it is transparent that N(J,s) de-
velops an essential singularity unless appropriate
moving cuts are introduced. This mechanism then
eliminates the essential singularity and substitutes a
wrong-signatured fixed pole in the amplitude. This
restores the possibility of superconvergence of the maxi-
mum helicity-flip amplitude.!®

Though such fixed poles do not contribute to the
asymptotics, their absence leads to some interesting
consequences. For example, they give rise to super-
convergence relations, valid separately for the right-
and left-hand cuts, as has been noted by Schwarz.!®
That these relations are not found valid is an indication
of the presence of the fixed poles, which are to be ex-
pected as a result of the third double spectral function
in relativistic scattering.

The poles of Q function that give the fixed pole of
our amplitude are easily seen to be related to the
possibility of writing a decoupled bilinear form of the
unitarity condition. Indeed, if the scattering amplitude
is decomposed instead in terms of Khuri amplitudes,?

18 However, in order to satisfy the Froissart bound, a higher
order of superconvergence is necessary for the amplitude with
higher helicity flips.

1 7, H. Schwarz, Phys. Rev. 159, 1269 (1967) ; 162, 1671 (1967).

20 N. Khuri, Phys. Rev. 132, 914 (1963).
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the corresponding left-hand discontinuity is an entire
function in the » plane. Since the representation corre-
sponding to the F-G representation for Khuri ampli-
tudes is given by

1 b
c(v,s)=—/ dti714,(s,1) (35a)
™ J 4m?

1 0
b(y,s)=—/ du w14 4 (s,m) (35b)
4m?

m™

the left-hand discontinuity (s<0) is

1 —s
Ac(v,s)=—/ dt i, (¢, dm2—s—1t),  (36a)
4m?

™

1 —s
Ab(v,s)=— / du w7y, (Am2—s—u, u). (36b)
4m?2

™

The integrals being finite, just as in the F-G represen-
tation, the left-hand discontinuities are defined every-
where in the » plane. Furthermore, they are analytic in
the entire » plane. The absence of poles in the left-hand
discontinuity is, however, accompanied by the absence
of a simple decoupled bilinear unitarity condition. The
presence of fixed poles in the partial-wave amplitude as
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a dynamical consequence of the left-hand function
seems observable only in the presence of a simple
unitarity condition.

The study of the G-P phenomenon and the cut
mechanism through the formalism of N/D techniques is
particularly suitable for introducing unitarity effects.
However, in the present form, it is confined to the
right-most singularity alone, as a consequence of limita-
tions imposed by threshold behavior. This limitation, in
fact, first appeared in the work of Mandelstam,!t!3
where the threshold behavior prevents the strip-by-
strip analytic continuation of the partial-wave ampli-
tude beyond /= —3%.
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APPENDIX A: GENERALIZED POTENTIAL FOR =-N SCATTERING

In this Appendix we calculate the left-hand function of 4¢(J —

1 W), and then study its behavior in the neighbor-

hood of J=—1.
The left-hand function is defined by®
1 [-@r=n/u an(J—%, W) 1 pore ar(J—3%, W)
Fe(J—%, W)=— / W— 4 / aW'———"
(M%42)1/2 w—-w (M2-1)/M w—-w
1 oy J=L, W) v 7 =50 1 ™ a(J—3,9)
+—/ I 4 / ido— . / dy— . (AD)
T J —(M—-1) w'—-Ww TJo Wele—y wJ_ y-l—iW
Following Ref. 16, we obtain
8
Fe(J—5,W)=X Fx*(U—3, W), (A2)
E=1
where
Pst(s ) , ,
Fy(J—%, W)=- f di / X ()Qr-1/2(z(5,0)) =X (s)Qr-1/2(3(5",))
<M+11>2 s'—s w
3 [ U0l enlt 2=s=XE), (A
(') “
Psu U
Fu(J—3, W) == / du / (0173 (5, =X (") Qe (7)) ]
(M+1)2 (M+1)2 s'—s "
+4/ Q71202 (5,0) )2 (Z—s—u, u)X(s)du, (A4)
(M4+1)?
ﬁsl(s,)t)
Fa(J—43, W)-——/ dt/ (X (5)Qr—1/2(z(5,8)) =X’ (s)Qr-1/2(2(s",1)) ]
(M+1)2 s'—s .
+4 f Qs (5,)) Pty T—s—DX'(5),  (AS)
4
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, Psu (s’,u)

s'—s

4 0 00
FiJ—3, W)= / du / ds
™ J (M41)2 (M+1)2

where
1 X’
(s (s)
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¢*(s)
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X ($)Qu—1/2(7’ (5,4))— X' (s")Qs—1/2(z' (s"su))]

+4 [ 01t Qoo (50 W E—s—1, wX'(s),  (A6)
(M41)?

7(s) X'"(s)

14

The explicit forms of (Fs—Fs) are not needed for our
discussion and are given in Ref. 15 [with X(s)’s defined
as in (A7)]. It should be noted that by taking arbi-
trarily large subtractions in (A1), the domain of validity
of F(J—%, W) in the J plane can be extended to an
arbitrary large domain.? We consider the behavior of
the above representation at J= —3%; in particular, we
take Eq. (A4). In this equation, for J=—%, the first
integral does not contain any pole terms, because

Jljfllﬂl:x (9)Qr-1/2(z(s,1)
—X(5)Qr—1/2(2(5",1)) Jpore)=0;

and the second term has a pole whose residue is given by

(A8)

4 f " it oalt, Z—5—1). (A9)

We may use similar arguments for all the other F’s
(F5 to Fs) and finally obtain

x(W)
T+

F(J—3, W)=R(W)+ (A10)

where R(W) is analytic in (—w W< —(M+1)) and
((M+1)SXW<L ), and whose precise form is not
needed for our discussions. X(W) is given by

x(W)=4r{/°° dif oo(t, Z—s5—1)
+(W—M)ps(t, Z—s—1)]

0

+ du[Ys(E—s—u, u)

(M+1)?
(W= MYGa(E—s—1t, )]
+[(W—M)/ﬂ+c}, (A11)

where ¢ is an irrelevant constant and

| Pu(tyu,)

02(t, S—5—1)=— f T g, (A12)
w J a2 ' —2Z4-s+1¢
1 Pu(t,;u)

Vo (Z— s—u, ) =~ / S (A13)
wJy '—Z+st+u

withlsimilar expressions for @; and ¥». It should be noted

T[4g(s) N WM [E(s)—MF

= . (A7)
LE@s)—MT (W+M)

that in getting Eq. (A11) we have also taken into
account the nucleon pole term (which is in Fg), which
also has a fixed pole at J=—1.

APPENDIX B: DOUBLE SPECTRAL FUNCTION
FOR ‘¢9”+0. — “0”__,_0.

It is well known that in the case of =7 scattering and
NN scattering, the double spectral functions (d.s.f.) of
the relevant invariant amplitude, where they exist,
have a unique sign.” We shall demonstrate here a
similar property when a spin-1 particle is involved, as
for instance in pr scattering.

The simplest diagram that contributes to the d.s.f.
is a box diagram. We may avoid some inessential com-
plications arising from the negative G parity of the =
meson by discussing instead po scattering. The fixed
poles, etc., in the ¢ channel (¢+0 — p+p) are related to
the third double spectral function p,,(s,%), the contri-
bution to which is obtained typically from a diagram
such as in Fig. 1. With P=231(p1+p2), K=1(1+g2),
and A= (ps—p1)=(g1—¢s), we define the amplitude

Tuy=A\P, P4 AP, K,+AsP,A,
+BiK P+ BoK K ,+B:K A,
+C1A,PA4-CoA K 4-C3A A,
+Dgy», (B1)
where A, and B, are the invariant amplitudes with two
units of helicity flip and with no helicity flip, respec-
tively. The projection operators for 4, and B, are ob-

tained quite easily (especially since we consider the
particular case when ¢=go?=y? and p2=p>=m?) and

9y k Py
WW\M~----------’ -------- B Alaintuii o=
] o ! c
p ) H
1 1
| 1
Lo o
| 1
1 ]
1 1
a ' o : [4
el oL LETE % Sy g —b\/\/\’yvv
P 9

Fic. 1. The box diagram contributing to ps, for “p” 4o — “p”’ 0.

21 S. Fubini, Nuovo Cimento 43, 475 (1966).
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are given by
KZ Kqu
(PuvA1=_l:<_’ )"I'Ruv] (BZ)
)‘ 2
and
P? P,P,
o m:—[( >+R,w], (B3)
A
where
K-P
Ry= ZI:_T(KMPV"_P#K”)_i_gW
K?P,P,+PK,K, AL,
1
' N A2 ]
and
A= (P-K)*—PK?,
such that
yvAlTpv=Als
(Puy 2Tp,v B2

Since the contribution from diagram 1 to T, is given by

y / &% (2k— 1) u(2k— g2 2p2),

x[<mz~k2>(m2— (b $2)?) (2 — (b pr—gs)"
X (mi— <k—q1)2)] . (B4)
it is easily seen that

psFA'Bz=] d*k (P“Al'Bz(Zk——ql)"(Zk—qg—2172),,

(k—pa—g2)?)
(k—q1)?).

The transformation from the % integration to the inte-
grations over the arguments of the delta functions gives

(k= p2)?)d(m*—
Xo(m?—

X 8(m2— k)5*(m*—

(B3)
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q k Py

P 92

F16. 2. The box diagram contributing to ps, for “p” 4 — “p” .

a Jacobian J:
J={Lsu— (m*—p?)*J[ (s—4m?) (u—4m?)
— Bm2— 22312, (B6)

Using the projection operators and the § functions, the
integrations in (BS) are trivially performed, result-

g i (—42) (s—
J(t—4u? —u)?
suAl S, —_ 2 2 7
R 2 My 4m>] (57
and
(s0) = J(@—4u®) T s+u
A e
_(s_”)z]. (BS)

The boundary of the region where the double spectral
function does not vanish is also given by the locus of
the zeros of J. In (B7) the terms within the square
bracket are positive for 1<0, so p,,4! obviously has a
unique sign, wherever it exists. Similarly, p,,2? has a
unique, sign when m?<u? (which is necessary in order to
avoid complications arising from anomalous thresholds).
For the real pr scattering, a typical box diagram that
could contribute to p,. is shown in Fig. 2. The complica-
tions due to the inclusion of isospin, however, do not
alter the arguments for a unique sign of the d.s.f.



