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Equating Eq. (11) to Eq. (12), we obtain

—1 —1

dsgdhsE' (ssgss) La (tsar)b (tss)+ b (tsar)a (tss) j

dsidssE'(ssqss)b (tsar) b(tzs) =—0. (13)

g h(stt)+ C&1ds2K (SZ1$2)dt(tsl)dt(tss)

the sixth-order contribution is not zero unless the pole-
pole contribution vanishes also, and that under such an
assumption the double density function, along with the
scattering amplitude itself, is also zero.

The contribution to the full density function from the
box diagram, Fig. 1, is given by

p (,t) =16 'g' d'q b(q' —td')b((q —
q )'—td')

If we rewrite this as

g'Lg'm(s, t)+2g'n(s, t)+l(s, t)1=0,
then either

g2= 0

where g is the "renormalized" coupling constant of the

(14) 3tt vertex, and all the lines are considered to lie on the
mass shell,

q2 —q12 —q22 —
q 42 —+2 ~

or
n(s, t) (n(s, t) ' t(s, t)

m(s, t) km(s, t) m(s, t)

In the c.m. system of the s channel, P=ps+ pd
= (Qs,0,0,0), so that 5(2q P—s) =b(2qsgs s) T—he.

(16) integration over ltll' and qo can be carried out im-

mediately to give
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That this is not the case can be seen from the explicit
expressions for a(s, s), b(s,s), and h(s, s). We therefore
must have g =0. As a consequence, the pole-pole
contribution p~~(s, t), along with the scattering ampli-

tude and its absorptive part, is identically zero, and we

regain the result that the absence of production implies
the absence of scattering.

III. AN ALTERNATIVE PROOF THAT THE
ABSENCE OF PRODUCTION IMPLIES

THE ABSENCE OF SCATTERING

The fact that a pole-pole contribution alone to the
double density function is inconsistent with elastic
unitarity is also clear from a diagrammatic approach,
because low-order singularities will generate higher-
order singularities through the unitarity relation. Con-
versely, if all singularities higher than the pole-pole
term are zero, the pole-pole term itself must also be
zero. Thus a pole term in the scattering amplitude will

lead to the box and higher-order ladder diagrams whose
contributions to the double density function can be
computed by Cutkosky's method. ' %e will show that

I'IG. 1. Kinematics of the box diagram.
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where we have used the kinematic relations

where cos8= x1——j j1 and x2 ——j j3.The angular integral
dQ~ can be evaluated using a coordinate system defined

by
qq= (0,0,1),
qs ——(0, (1—x')'t', x),
q = (sin8 costt, sin8 sintt, cos8),

and changing variables from (x~,ttt) to (x~,xs), where

xs ——q qs
——(1—x')'" sin8 sinttt+x cos8. Then
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and we obtain

' R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
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As expected, pp(s, t) is manifestly symmetric in s and t,
and it is seen to be equal to p~„ in Eq. (4). The Landau
curve associated with po is given by

=L-p

or
(t 4p—') (s, 4p—') , 4p—4= 0

t=4p'+ 4p4/(s 4—p'), (21)

FIG. 2. Kinematics of the sixth-
order ladder diagram.

k-q,

, , k-p

which has asymptotes t=4p, ' and s=4p, ', and is also
symmetric in s and t.

If we now subtract pp(s, t) from p(s, t) and call the
resulting double density function p1 (s,t) =p(s, t) —pp(s, t),
then p, (s,t) is again symmetric in s and t, and is zero
until the next Landau curve is reached. From our
premise that there are no production processes in the
s channel, it follows that contributions to p1(s, t) from
Fig. 2 will be the only lowest-order term of p1(s,t). We
shall call it prp(s, t). By a method similar to that used for
p1(s,t), the function prp(s, t) can be calculated by
Cutkosky's method:

prp(s, t) =42rpgP d4k8(k2 —p2)8((k —q1)'—p')

X8(k —p')8(2kqr —p')8(2k P—s)I(xpxpk), (23)
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and we are in the c.m. system of the s channel defined
by P=qr+q2 ——qp+q4= (s'/', 0,0,0). The integration on
d4k may be carried out similarly to what has just been
done for the box diagram, and we obtain

// 1 s—4ppi ' 8(1—y2 —xp —x'+2yx x1) 8(1—x' —x22—xp'+2xxpxp)
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and Eq. (25) becomes
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(x1—y) (4x1'—3x1—y) =0.

(2&)

x~—y=0 gives t=p, ', which is not interesting becaues
prp(s, t) is known to be zero at t= p2, as is evident from
the step functions in the integrand of Eq. (24).

For 4m~' —3m~ —y=0, we have
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Singularities of prp(s, t) will occur if the singularities
of the two factors in the integrand pinch together, which
happens when

This is the explicit form of the erst Landau curve
pertaining to p1(s, t), and pr(s, t) is zero before this Lan-
dau curve is reached. As expected, it is asymmetric in
s and t, and has asymptotes

t= 9p',

s= 4'.

s—4p'
prp(s, t) = 42rg' —,',

s (1 x 2)1/2 (1 y2)1/2

/8(+v)

(~2 1)1/2

X
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(29)

From the asymmetry of the Landau curve just ob-
tained, and the symmetric character of pr(s, t), it
follows from the usual analysis that p1(s,t)=0. In
particular, prp(s, t)=0, since it is the only contribution
to p1(s, t) before the next Landau curve for pr(s, t) is
reached.

On the other hand, we have obtained for prp(s, t)
Eq. (24), which in general can be transformed into the
standard form of an elliptic integral,
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where

1—xi' —y' —2xi'y~ L(xr'+y)' —4xi'(xi —y)j"'
xi(xi-y)

(1—xis) its

yes

Sy —Syg

1—$12

n(x —xis) —1+xis

n(1 —xis) —x+xis

Evidently, this expression for p, e(s, t) is not a zero
function. In order that p, e(s, t) ==0 for all x and y, it is
required tha, t the coupling constant g for the 3g vertex
be zero. As a consequence, there can be no pole term
and no box-diagram singularity either. This means that
po(s, t) —=0. Therefore, the entire double density function
is also zero, p(s, t)= ps($ t)+pi(s, t)=0. From this point
on, the usual procedure will lead us to the conclusion
that there can be no scattering at all, provided there
are no production processes in the s channel.
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Gribov-Pomeranchuk Phenomenon in N/D Approach

G. C. JOSHi AND R. RAMACHANDRANt

International Centre for Theoretical Physics, International Atomic Fnert y A gency, Trieste, Italy

(Received 28 July 1967)

A detailed study of the left-hand function of the Froissart-Gribov representation enables the integral
equation for the N function to be reduced to a form studied by Tarnarkin. This enables us to show ex-

plicitly that the N function develops an essential singularity and causes an infinite number of Regge poles
to accumulate at /= —1. When moving cuts are introduced, the integral equation, when again reduced to
Tamarkin form, gives conditions on the discontinuity across the cuts for eliminating the essential singu-

larity. The technique in the present form, however, is applicable only to the right-most singularity in the
complex angular momentum plane. Extensions of these techniques for m-N scattering (in the s channel)
are given as an example of the inclusion of spin effects.

1. INTRODUCTION

EVKRAL interesting relations have recently been
derived on the basis of superconvergence of strong-

interaction amplitudes. ' These have also been recogn-
ized as necessary, at least for the amplitudes involving
large helicity Aip, in order to satisfy the Froissart
bound' (a consequence of direct-channel unitarity) for
the total amplitude. The asymptotic behavior of these
amplitudes has been known for some time to be related
to the analyticity properties in the angular momentum

plane of the crossed channel. The superconvergence is a
consequence of a holomorphy domain in the angular
momentum plane larger than that suggested by the
Froissart-Gribov (F-G) representation. It was first ob-

* On leave of absence from Department of Theoretical Physics,
University of Manchester, England.

t Present address: Tata Institute of Fundamental Research,
Bombay, India.
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Letters 18, 29 (1967);L. K. Pande, Nuovo Cimento Letters 48,
839 (1967);R. Ramachandran, Phys. Rev. 166, 1528 (1968).

~ M. Froissart, Phys. Rev. 123, 1053 (1961); Y. Hara, ibid.
136, B507 (1964).

served by Gribov and Pomeranchuk' that if one at-
tempts to continue the partial-wave amplitude defined

by the I'-G representation, the presence of fixed poles
of the Qs function conflicts with elastic unitarity and
causes an accumulation of an infinite number of Regge
poles of positive signature at t= —1. A pole at l= —1
normally does not contribute to the asymptotic be-
havior, owing to the wrong signature factor, but, if it
becomes an essential singularity, will prevent analytic
continuation beyond this point and necessarily force an
asymptotic behavior 1/s' ' for any amplitude. Thus, in

order to ensure superconvergence, it is necessary to
take the mechanism that prevents essential singularities
more seriously, as it implies restrictions imposed by
unitarity in the direct as well as the crossed channels.

Mandelstam4 has shown that certain sets of dia-

grams can produce moving branch points in the complex
angular momentum plane, and that by the inclusion of

'V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2,
239 (1962}.

'S. Mandelstam, Nuovo Cimento 30, 1113 (1963); 30, 1127
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K. A. Ter-Martirosyan, Phys. Rev. 139, 8184 (1965); J. C.
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