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A pole-pole contribution alone to the double density function in a neutral scalar field without pairing
symmetry is shown to be inconsistent with the unitarity condition, so that the absence of production implies
the absence of scattering, even though the pole-pole term gives rise to a Landau curve symmetric in s and #.

I. INTRODUCTION

T was shown by Aks! that production amplitudes are
necessary for a neutral scalar field with pairing
symmetry; this result was subsequently extended by
Cheung and Toll? to the scattering of any two stable
particles. The method of proof was based on the inter-
connection between the unitarity and crossing relations.
If there are no production processes in one channel, say
the s channel, then the Landau curves in the real s-¢
plane, on which singularities of the double density
functions lie, will be asymmetric in s and {; in general,
the double density functions, or linear combinations
thereof, are symmetric in s and £ These requirements
are incompatible with each other unless the double
density functions vanish identically. From this it can
be shown that the scattering amplitudes themselves are
zero. Therefore for nontrivial scattering, production
processes must occur.

This line of proof makes the case of a neutral scalar
field without pairing symmetry a particularly interest-
ing one, because now there may be a pole singularity in
the scattering amplitude, and the pole-pole contribution
to the double density function p(s,t) gives rise to a sym-
metric first Landau curve in the real s-¢ plane, so that
the argument based on the incompatibility between the
symmetry of p(s,f) and the asymmetric character of the
Landau curves breaks down as it stands. The usual
argument does give the result that all contributions to
p(s,t) other than the pole-pole term must vanish. We
will show in the following that a pole-pole contribution
alone to the double density function is incompatible
with the unitarity condition. Self-consistency then
demands that the pole-pole term, along with the
scattering amplitude itself, must vanish if there are no
production processes.

II. PROOF THAT THE ABSENCE OF
PRODUCTION IMPLIES THE
ABSENCE OF SCATTERING

Although our results may follow directly from the
axioms of the quantum field theory, we shall assume for
simplicity that the scattering amplitude for a neutral
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scalar particle satisfies the analyticity and crossing
property of an unsubtracted Mandestam representa-

tion,?
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where g is the residue of the pole at p? If we assume
that no production processes can occur, then the elastic
unitarity in the s channel will be valid for all s with
4utls< o !
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where s is the c.m. energy squared and 2z the c.m.
scattering angle, with z=1+42¢/(s—4u?) and
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where as usual
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K(Z,Z1,Z2) =

and use has been made of the symmetry between the
variables ¢ and #. The pole-pole (p-p) contribution to
o(s,f) can now be obtained by taking only the pole term
g2 (3 (s—4p2) (1 —2)+-p?) for ¢.(s,2) in Eq. (3):

3 The results we obtain will be independent of subtractions made
in the Mandelstam representation for ¢(s,f). The Mandelstam
representation used here actually follows from the axioms, since
we assume that elastic unitarity is valid for all energies in one
channel. See Ref. 2.
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As expected, the pole-pole contribution to p(s,f) is
manifestly symmetric in s and ¢ and is singular along
the curve

(s—4p?) (t—4p*) —4p*=0, ()
which in fact is the Landau curve associated with
pr—p(5,t). It is also symmetric in s and ¢ and has asymp-
totes s=4u? and {=4u?.

We next show that p,_,(s,f) is the only contribution
to p(s,t) in the whole real s-¢ plane. If we denote the
remaining contributions other than the pole-pole term
by pi(s,t), then

P1(s)=p(5,) =pp—p(s,1) - (6)

Since both p(s,) and pp—p(s,f) are symmetric in s and ¢,
so must be their difference p;(s,f). Now p;(s,f) becomes
zero before the next Landau curve #5+(s) is reached. If
we assume that no production processes may occur
along the ¢ channel, #;*(s) will be asymptotic to s=4u?
and ¢=9u? and hence asymmetric with respect to s and
¢t. The usual argument for a neutral scalar field with
pairing symmetry or that for pion-pion scattering can
now be carried over to pi(s,t). We then see that the
asymmetry of #5+(s) is incompatible with the symmetry
of pi(s,t) unless p;(s,{)=0. We therefore arrive at the
result that

Po—p(S,t)=p(s,t) (7)
for all real s and ¢, as we intended to show.

We will now show that a double density function
consisting only of the pole-pole term is inconsistent with
the unitarity condition.

From Eq. (1), the Mandelstam representation for
¢(s,t,4) now becomes

1 /”/ sl pp—p(s't)
’ ’__
i (s'—s)(¢'—1)

2
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from which the s-channel absorptive part may be
obtained :

" (s")=7“1r ﬁ‘”’d,pp-p(l ) L / p,,_,,( ,)’ ©)

where we note that the pole at s=pu? does not contribute
to the absorptive part ¢,(s,f) because it is below the 4u?
threshold.

When the value of p,_p in Eq. (4) is substituted into
Eq. (9), we get
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The point to be made here is that the integral is inde-
pendent of g. We denote it by A4(s,t), so that

b(s,0)=g'h(s)t), (11)

On the other hand, ¢,(s,) is also given by the elastic
unitarity integral (2), which together with Eq. (8)
gives
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Equating Eq. (11) to Eq. (12), we obtain

g“l:—h(s,l)-{— / / dz1dz.K’ (zzm)a(tzl)a(lzz)]
—1Ja
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-1/
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+g / / da1dnaK (sa)b (15 (2)=0. (13)
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If we rewrite this as

glg'm(s,t)+2¢n(s,1)+1(s,1) ]=0, (14)
then either
§=0 (15)
or
n(s,t) n(s,O\2 I(s,t) 72
§ —m(s,t)—Ll:(m(s,l)) _m(s,t)] ' (16)

For Eq. (16) to be true, the right-hand side must be
independent of s and #, which requires at least that for
all s and ¢

n(s,t)=Fkim(s,t) =kl (s,t). a7

That this is not the case can be seen from the explicit
expressions for a(s,z), b(s,2), and k(s,z). We therefore
must have g=0. As a consequence, the pole-pole
contribution p,_,(s,f), along with the scattering ampli-
tude and its absorptive part, is identically zero, and we
regain the result that the absence of production implies
the absence of scattering.

III. AN ALTERNATIVE PROOF THAT THE
ABSENCE OF PRODUCTION IMPLIES
THE ABSENCE OF SCATTERING

The fact that a pole-pole contribution alone to the
double density function is inconsistent with elastic
unitarity is also clear from a diagrammatic approach,
because low-order singularities will generate higher-
order singularities through the unitarity relation. Con-
versely, if all singularities higher than the pole-pole
term are zero, the pole-pole term itself must also be
zero. Thus a pole term in the scattering amplitude will
lead to the box and higher-order ladder diagrams whose
contributions to the double density function can be
computed by Cutkosky’s method.® We will show that

B a-q q/

9-94-9,

q =q-p

Fic. 1. Kinematics of the box diagram.

q-q;
q G

5 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).

FRANKLIN F. K. CHEUNG

166

the sixth-order contribution is not zero unless the pole-
pole contribution vanishes also, and that under such an
assumption the double density function, along with the
scattering amplitude itself, is also zero.

The contribution to the full density function from the
box diagram, Fig. 1, is given by

po(s,)= 1677+ f 0t 5(g—2)3((g—gu)—u)

X[(g—gs)*—w*16((g— p)*— 1Y),

where g is the “renormalized” coupling constant of the
3¢ vertex, and all the lines are considered to lie on the
mass shell,

(18)

P=qi=qt=qi=p.

In the c.m. system of the s channel, P=ps+p4
=(4/5,0,0,0), so that §(2g-P—s)=06(2¢o\/s—s). The
integration over |q|? and ¢o can be carried out im-
mediately to give

— A2\ 1/2
po(s,)= 27rzg4<s e ) /dSZ
) q
N

X 8(3s—12—2|q|2x1)8 (35— u2—2| q| %5)

(19)

where cosf=x;=§-§; and xs=§- §3. The angular integral
df2, can be evaluated using a coordinate system defined
by

Q= (010:1) )

é3= (0: (1—‘:”2)1/2’ x) )
¢ = (sinf cosg, sinf sing, cosd) ,

and changing variables from (x1,¢) to (#1,42), where
xe={- 3= (1—a*)2 sinf sing-+« cosf. Then
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dx 1d¢ =
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b
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and we obtain
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e
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(20)
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As expected, po(s,) is manifestly symmetric in s and ¢,
and it is seen to be equal to p,_, in Eq. (4). The Landau
curve associated with pg is given by

(t—4p?) (s—4p?) —4u*=0
or
t=4u*-4pt/ (s—4u?) , (21)

which has asymptotes {=4u? and s=4u?, and is also
symmetric in s and £

If we now subtract po(s,f) from p(s,f) and call the
resulting double density function py(s,£) = p(s,t) — po(s,2),
then p;(s,?) is again symmetric in s and ¢, and is zero
until the next Landau curve is reached. From our
premise that there are no production processes in the
s channel, it follows that contributions to p;(s,f) from
Fig. 2 will be the only lowest-order term of p;(s,t). We
shall call it p1o(s,f). By a method similar to that used for
p1(s,f), the function pio(s,f) can be calculated by
Cutkosky’s method :

pro(s,f) = 4n%gs / S (B )5 (g1 — i)
X3((h—PY—p) / 5P u)5((— g5 — i)

Xo((I—=Py—p?)s((—k)1—p?), (22)

pr(s,t)=4mg,
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F16. 2. Kinematics of the sixth- —™
order ladder diagram. . k-p
k-q,
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S
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where
0(1— 22— 22— w2+ 2x05%3)
I (xox3k)=

1— a2 —x? — 4 2wacows) /2 4y gy (3s—2u®) /212,

and we are in the c.m. system of the s channel defined
by P=q1+¢2=¢s+qs=(s2,0,0,0). The integration on
d*k may be carried out similarly to what has just been
done for the box diagram, and we obtain

0(1—y*—al—a’+2yw w1) O(1—aP—wld—w+ 2awws)

(24)

1 s—4u\ !
G

64 N —1
Singularities of p1o(s,f) will occur if the singularities

of the two factors in the integrand pinch together, which
happens when

1—yP—xP— o+ 2yrix=0,

1—2x2— x4 20%,2=0, (25)
so that
x= (%1+7y)/ 221, (26)
and Eq. (25) becomes
x1ty\? %1+
< Y ) —z< Y )x12+2x12—1=0 7
2x1 221

or
(21— ) (42— 32— 9)=0.

x1—y=0 gives {=p? which is not interesting becaues
p10(s,?) is known to be zero at =2 as is evident from
the step functions in the integrand of Eq. (24).

For 4x*—3x;—y=0, we have

2u\3 2u? 2t
4(1-!——) —3<1+——)— (1+——>= 0
4¢? 4¢? 442

12u 16u®

1
s—dyt (s—4ud)?
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tst(s): (=9%u*+

(28)

X
(1—9y2—x2— 224 2y 211/2) (1— 22— x> — 565>+ 2092 3) 12 41 gy gm 1t (w2200l umtit/2l ) -

This is the explicit form of the first Landau curve
pertaining to p;(s,f), and p;(s,?) is zero before this Lan-
dau curve is reached. As expected, it is asymmetric in
s and ¢, and has asymptotes

t=9u2,
s=4u?.

From the asymmetry of the Landau curve just ob-
tained, and the symmetric character of pi(s,t), it
follows from the usual analysis that p;(s,f)=0. In
particular, p10(s,f)=0, since it is the only contribution
to pi(s,t) before the next Landau curve for p;(s,) is
reached.

On the other hand, we have obtained for pi(s,f)
Eq. (24), which in general can be transformed into the
standard form of an elliptic integral,

e R e
p10(s,t) = 4mg’s s (l—aR)2 (1—y)2 o
(a2—1)112 a¢

X :
[B“’(a+v2)—1]”2/o (=) =g U—/are]
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where

1—af—y2—2usfy=£ [ (v’ +y)*— 4o’ (01— y) '*

a= ,
w1 (21— )
1—x\ 172
62(1 2) ’
-y
xf"—xly
Y=
1—0612
a(z—a?)—1422
a(l—x12)——x—|—x12
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Evidently, this expression for pio(s,f) is not a zero
function. In order that p;o(s,t)=0 for all x and y, it is
required that the coupling constant g for the 3¢ vertex
be zero. As a consequence, there can be no pole term
and no box-diagram singularity either. This means that
po(s,t)=0. Therefore, the entire double density function
is also zero, p(s,)=po(s,)+p1(s,t)=0. From this point
on, the usual procedure will lead us to the conclusion
that there can be no scattering at all, provided there
are no production processes in the s channel.
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A detailed study of the left-hand function of the Froissart-Gribov representation enables the integral
equation for the N function to be reduced to a form studied by Tamarkin. This enables us to show ex-
plicitly that the NV function develops an essential singularity and causes an infinite number of Regge poles
to accumulate at /=—1. When moving cuts are introduced, the integral equation, when again reduced to
Tamarkin form, gives conditions on the discontinuity across the cuts for eliminating the essential singu-
larity. The technique in the present form, however, is applicable only to the right-most singularity in the
complex angular momentum plane. Extensions of these techniques for =-N scattering (in the s channel)
are given as an example of the inclusion of spin effects.

1. INTRODUCTION

EVERAL interesting relations have recently been
derived on the basis of superconvergence of strong-
interaction amplitudes.! These have also been recogn-
ized as necessary, at least for the amplitudes involving
large helicity flip, in order to satisfy the Froissart
bound? (a consequence of direct-channel unitarity) for
the total amplitude. The asymptotic behavior of these
amplitudes has been known for some time to be related
to the analyticity properties in the angular momentum
plane of the crossed channel. The superconvergence is a
consequence of a holomorphy domain in the angular
momentum plane larger than that suggested by the
Froissart-Gribov (F-G) representation. It was first ob-
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served by Gribov and Pomeranchuk® that if one at-
tempts to continue the partial-wave amplitude defined
by the F-G representation, the presence of fixed poles
of the Qs function conflicts with elastic unitarity and
causes an accumulation of an infinite number of Regge
poles of positive signature at /=—1. A pole at /=—1
normally does not contribute to the asymptotic be-
havior, owing to the wrong signature factor, but, if it
becomes an essential singularity, will prevent analytic
continuation beyond this point and necessarily force an
asymptotic behavior 1/s~¢ for any amplitude. Thus, in
order to ensure superconvergence, it is necessary to
take the mechanism that prevents essential singularities
more seriously, as it implies restrictions imposed by
unitarity in the direct as well as the crossed channels.

Mandelstam* has shown that certain sets of dia-
grams can produce moving branch points in the complex
angular momentum plane, and that by the inclusion of
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