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Superconvergence Sum Rules for Meson-Meson Scattering
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Superconvergence sum rules have been obtained for pseudoscalar mesons scattered by spin-2+ mesons.
Results for A2-x and E**-m scattering have been compared with experiments. In general, saturation by
low-lying single-particle intermediate states is found to be poor.

I. INTRODUCTION
' 'N a scattering process involving high-spin particles,
~ ~ the kinematical structure of the physical amplitude
in terms of invariant amplitudes is such that unitarity,
coupled with the assumption of a constant shape of the
diffraction peak, demands that some of these invariant
amplitudes be superconvergent, i.e., they vanish faster
than 1/s at large s and fixed momentum transfer t,
where s is the energy variable. A fixed-t dispersion
relation for superconvergent amplitude, free of kine-
matical s singularities, allows a superconvergence sum
rule (SC rule) which can be used to obtain interesting
physical results. In particular, the assumption of
saturation of the resulting dispersion integral by a few
low-lying single-particle intermediate states gives
relations among various coupling constants and masses.
de Alfaro et a/. ' have obtained bounds for the invariant
amplitude of p-m scattering from the Regge-pole model,
and have also constructed SC rules. ' In particular, by
assuming that these sum rules at t=0 are saturated by
w, ~, and q intermediate states, they obtain interesting
results, ' viz. , g,„'=0 and g,„'=4g, '/nt, '. This tech
nique of extracting physical information from super-
convergent invariant amplitudes is very attractive and
has recently been the subject of widespread study.

In the present paper, we outline in Sec. II the
unitarity arguments necessary to obtain bounds on the
invariant amplitudes of a two-body scattering process.
In Sec. III, the elastic scattering of pseudoscalar
mesons by 2+ mesons has been considered. The high-
energy behavior of the various invariant amplitudes
occurring in this process has been studied by using (1)
unitarity arguments along with the assumption of a
constant shape of diGraction peak, and (2) Regge-pole
phenomenology. Possible SC rules from fixed-t dis-
persion relations for superconvergent amplitudes have

explicitly been written down. In particular, unitarity
bounds permit three SC rules for K**-m scattering and
five SC rules for A2-x scattering. Regge-pole bounds are
stronger, and permit seven SC rules for K**-m scattering
and nine sum rules for A2-x scattering. It is found that
pseudoscalar and vector mesons, in general, fail to
saturate SC rules. However, the SC rule for the ampli-
tude having strongest convergence seems to be fairly
saturated by 0 and 1 mesons for both K**-x and
A~-w scattering. The sum rules obtained for E**-m-
scattering from unitarity bounds when saturated with
K and E*only, give good results. Further, it is argued
that consistent solutions to all the sum rules could be
obtained if an infinite number of intermediate particle
states is used for saturation.

s= (p+tt)', st= (p—h')' t= (p —p')'. (2)

The differential cross section in the c.m. system is
given by

do. E
dQ S spins

where, for fixed t, I& is a constant in the limit s —+~. So,
for large s and fixed t, we have

II. UNITARY REQUIREMENTS

The S matrix for the two-body scattering process
A+B~C+D is defined by

S=1 s(2sr)—4(Po&oPo'&o') ' 'fi(P+k P' h—')T—, (1)

where T is the rea, ction matrix, p and )'t are the four-
momenta of the initial particles 3 and 8, and h' and p'
are those of the final particles C and D. The usual
Mandelstam variables s, I, and t are defined by

I V. de Alfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.
Letters 21, 576 (1966). This paper will be referred to as AFRF.' AFRF assume that the Regge parameter a(0) is negative for
the isotopic-spin-2 channel. This enables them to show that
their B' amplitude is superconvergent. But the presence of Regge
cuts might not allow such superconvergence, because the I=2
trajectory will have the leading edge at ap+ap —1, which may not
be negative. See I.J. Muzinich, Phys. Rev. Letters 18, 381 (1967};
R. I. N. Phillips, Phys. Letters 24$, 342 (19M).' If AFRF had considered the sum rule J'v ImA'(v)dv=0, they
would have obtained the trivial result gp —

gpss =gppz 0.

g ~T('dt(c osnt)( 'a" 's.
spins

Inequality (3) is just the requirement of unitarity
and can be used for obtaining bounds on the invariant
amplitudes for the process 2+8 —+ C+D. AFRF have
used this inequality along with the assumption of a
constant shape of the diGraction peak for obtaining
1822
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bounds on the invariant amplitudes of p-m scattering.
We shall use similar arguments for obtaining unitarity
bounds for the invariant amplitudes of 0 -2+ elastic
scattering.

III. ELASTIC SCATTERING OF PSEUDOSCALAR
AND TENSOR MESONS

T=Q A;(s, st, t)I;&""&e„„ex,'t, (4)

where e„„and e~p are the polarization tensors of initial
and Anal spin-2 mesons. 4 The nine invariant amplitudes

A, (s,u, t) are the scalar functions of the usual Mandel-
stam variables s, tt, and t defined by Eq. (2). Now k

and k' stand for the four-momenta of the initial and
final pseudoscalar mesons, and p and P' for the four-

momenta of the corresponding 2+ mesons. I;&""p are the
Lorentz covariants constructed from the available four-
momenta (k, k', P, and p') and the covariant tensor g&",

and are as dehned below:

where

Igj"v"P =P'I"PvP"PP
)

I,"~p=R~R R~R p
7

I pvip —ppgviRp+Rpgvxpp

yves p PlttgvgP p
)

Ig"")tP=RggvxR )

I61"" p= P&E."P'"E.p
7

I &"'~=P~R"R'R&+ R&R"R"P~

Is"""'=P&P"P"R'+R&P"P"P&,

I )ttvhp gvt gyp

P= ', (p+P') and -R= -', (k+k').

(S)

Note that such a choice of Lorentz covariants does
not introduce any kinematical s or t singularity in an

obvious manner because of the following identity':

4 For the spin-2 polarization tensor e„„, we have e„„=e„„,
e„&=0, e„„pv=0; Pv is the four-momentum of the corresponding
spin-2 particle.' After the completion of our investigations, we received a copy
of work by N. J. Papastamatiou and S. Pakvasa /Phys. Rev. 161,
1554 (1967)g in which they have independently noted a similar
identity and hence the choice of Lorentz covariants. However,
in their identity, a few numerical factors are incorrect )for this,
compare our Eq. (6) with their expression for tA6'»tt„, ).

A. Invariant Amplitudes

From the invariance arguments, one can easily see
that there will be nine independent helicity amplitudes
for 0 -2+-meson elastic scattering. A simple analysis
enables us to write the following decomposition of the
T matrix:

It is easy to see that the amplitudes 33, A7, and A8
with symmetric combinations of isotopic spin in the 3

channel, and the others with antisymmetric combina-

tions, will be odd under crossing from the s to the I
channel.

B. Unitarity Bounds

Using the requirement of unitarity, Eq. (3), along
with the assumption of the constant shape of the diffrac-
tion peak (under this assumption, the total cross
section at high energies will be constant), for large s
and at t= 0, we obtain the following bounds for A;(s,O):

~As(s, 0) i
(constXs ',

~Ar(s, 0)
~
(constXs ',

iAs s(s,0)
~

(constXs ',
~As s(s,0)

~

(const,
iAi 4 s(s,O)

~

(constXs.

(7)

We have used heuristic arguments for obtaining the
bounds (7). However, we hope that as in the spinless

case, systematic application of unitarity will give
similar results apart from logarithmic factors on the
right-hand side. In view of this, we note that As(s, O),
sAs(s, O), and Ar(s, O) are superconvergent.

C. Regge Behavior

For obtaining SC rules from Axed-t dispersion
relations, we must consider the amplitudes which are
free of kinematic s singularities. The problem of
kinema tic-singularitity-free amplitudes has been studied
in a general manner, ' although the procedure involved
is somewhat cumbersome. Hara and Wang7 have shown

that. the amplitude

Ai, x, , x.x„——Fx,g, . x.x„i(cos-,'0)~ "+&~(sin-', 0)~" &~ (8)

is free of kinematical singularities in s, where Fq,y,

6 D. Hall and A. S. Wightman, Kgl. Danske Videnskab. Selskab,
Mat. -Fys. Medd. 31, No. 5 (1957). For a more recent discussion
of the problem, see also G. C. Fox, Phys. Rev. 157, 1493 (1967),
and the references quoted therein.' Y. Hara, Phys. Rev. 136, 8507 (1964); L.-L C. Wang, ibid.
142, 1187 (1966). See also T. L. Trueman, Phys. Rev. Letters 17,
1198 (1966).

Q Ig /Vga
p

'A tg—""g»+2t (4m' t)R—&g""R'

+2[t (4m ' t)—+A jPI g""PI'+ 16(2m' t)—PI R"P"R&

2vt—[P~g""R~+P~g""R~j
16'—(P~P"P"R~+RsP"P"P~)

+16m'(PI P"R"R&+R&R"P"P&)

+16(4m '—t)P&P"P"P&=0, (6)
where

A = v' —(t 4m—') (t—4m')
and

p=S—N.
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the various SC rules independently. Sum rules obtained
from unitarity bounds, Eqs. (12a)-(12e), are more
reliable, and if we assume that they are saturated
by 0 and 1 mesons, we obtain the following results for
E**-m scattering:

gz**rcr —mrc'* gx'*x'r =0, (15a)

vtrgx**trr —vx"mrc'* gtr"sc*r =0, (15b)

grc**rc.'——,
' (mrs*"2 —mrc*'+ m.')grc-r~*„'= 0, (15c)

where
V = (m ' m—rCe*g m—').

It is straightforward to write all of the 6ve sum rules,
Eqs. (12a)—(12e), for Ag-7r scattering. For the sake of
clarity, below we write down for'Eqs. (12a) and (12e),
respectively,

g~sg '+g~sx' '—m~,'g~„'= 0, (16a)

,')g„„'=0. (16b)

Here, the coupling constants g2+pp. and g2+yp
have been defined through the following interaction
Hamiltonians":

H2+PP' g2+PP'kvr8 QPB QP'+H c

K+vP= gg+vP+ea8P18rr8 rfsPe" +H c

where QP P, V1, and 4'„„are the wave functions for
J~=O, 1, and 2+ mesons, respectively.

It is interesting that the sum rules (15a)-(15c)
predict the ratio of decay widths I'(E**-+E*+7r)/
I'(K**-+E+7r) as 0.19, 0.28, and 0.64, respectively.
The experimental value for this ratio, as reported at
the Berkeley Conference, '4 is 1.10&0.86. For A2-m

scattering, the sum rule (16a) gives"

I'(Ag ~ n+q)/r(A2 ~ n+ t7) =0.22,

which is to be compared with the experimental value"
0.12&0.08. However, the sum rules (12d) and (12e)
are badly violated. Inclusion of the 1+ meson does not
improve the situation. The other two sum rules for
A2-x scattering when saturated with 0 and 1 single-
particle states only give reasonably good results.

The saturation of the sum rules obtained from
Regge-pole phenomenological bounds, in general, is

"We have suppressed the isotopic-spin structure of the inter-
actions, which can be easily written for the specinc cases. The
coupling constants g~+p~ and g~+yp can be related to the partial
decay widths, namely,

P {2+~P+P') = lg'/60m) (gs+PP '/me+2)
and

r(2+ ~ V+I ) = (q~/40m) g;yg~.
'4 See G. Goldhaber, in Proceedings of the Thirteenth Annual

International Conference on High Energy Physics, Berh-etey, I966
(University of California Press, Berkeley, Calif. , 1967), p. 103.» To estimate the coupling constant gg,x0vr, we use the nonet
model Lace, e.g., R. J. Rivers, Phys. Rev. 150, 1256 (1966)g, i.e.,
taking octet and singlet together as a nonet Pe=Pe+ (1/%3)X 1,
where I'8 is the 0 octet in which g has been replaced by q cos8—X sin8, and X =g' sine+X cos8. Here 8 is the mixing angle,
which is known to be small ( 10 ).

6 S. U. Chung, Q. I. Dahl, L. M. Hardy, R. I. Bess, J. Kirz,
and D. H. Miller, Phys. Rev. Letters 18, 100 (1967).

poor. Further, a 6nite number of intermediate single-
particle states cannot saturate the SC rules for the full
range of I,. However, an infinitely large number of
single-particle intermediate states couM give nontrivial
solutions. We hope that further understanding of the
saturation problem of SC rules will give us a good
way of understanding strong interactions.
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APPENDIX

Ke give here the explicit expressions of the ampli-
tudes Aq, ~,, q, ),„ free of kinematical s singularities, in
terms of the invariant amplitudes A;($,l, t). Explicit
wave functions for spin-2 particles for possible helicity
states have been given by Gotsman and Frishman. "
We will work in the c.m. system of the t channel. Let
p and q be the magnitudes of c.m. momentum of 2+
and 0 mesons, respectively. It is easy to see that
4pq cos8=24 —$ p= (-', t—m')'t' q= (-,'t —m„')'", and
co= (st)'tg, where 8 is the scattering angle, and co is the
meson energy. It is straightforward to obtain the
following relations:

Bt($,t)=Ago; 2 —2=4q A2,

Bg($ t) =mAoo, 2 1——q'to(4q cos8A2+2pA7),

Bs($,t) = (+2')Ao o, 2 o
——q'Laq'As+As —(vto'/2m')A7),

B4($ t) = (m/tcq)AO 0; 21 q cos8( q' sin8A2+A—s)

+pA2 —spq S111 8A7,

Bs($~t)= 4Ao o; 22= q' sin 8(q' sin'8A2 —2As)+4Ag,

Bo($,t) = (m /to q )Ao o; 1 1=4q COS 8A2+P Ao

L(P'+~')/—~'jA 2 vA7, —
B7($ t) = (+6)mA o o., 1 o= 2q'aoo cos8A 2

—&oqL2(P +o&2)/mg —1j(PA2+q cos8As)

+coPq (4co cos 8/m +a)A7
+2(oospgq/mg) (q cos8 A 2+pA, ),

Bs($ t) =4m'Aoo, 21= —cog(qg sin28L4qg cos'8A2

+P'Ao+ (mg/tog)Asj —2q'A, —P2A4

+t 4(P'+cog)/cog)Ag+ v(A2 —q' sin'8A 7)),
Bg($ t) = 6A o o; o o= (2cog/mg)((2p A 1

—vAs)toop /mg

f(P'+~')/m''j(2P' A4—vA2+2q' «s'8A )—
+-', vL(cogv/4mg) A 2

—
aqgA 7$)

+q a'A2 —q' sin'8Ao

+2)2[(4og+ p')/m'j' —1)Ag,
where

a= —sin'8+ {2co'Jm') cos'8.
» P. Friyhtnan and F.. Gotsman, Phys. Rev. 140, B1151(1965),


