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Superconvergence sum rules have been obtained for pseudoscalar mesons scattered by spin-2* mesons.
Results for A2-r and K**-rr scattering have been compared with experiments. In general, saturation by
low-lying single-particle intermediate states is found to be poor.

I. INTRODUCTION

N a scattering process involving high-spin particles,
the kinematical structure of the physical amplitude
in terms of invariant amplitudes is such that unitarity,
coupled with the assumption of a constant shape of the
diffraction peak, demands that some of these invariant
amplitudes be superconvergent, i.e., they vanish faster
than 1/s at large s and fixed momentum transfer ¢,
where s is the energy variable. A fixed-¢ dispersion
relation for superconvergent amplitude, free of kine-
matical s singularities, allows a superconvergence sum
rule (SC rule) which can be used to obtain interesting
physical results. In particular, the assumption of
saturation of the resulting dispersion integral by a few
low-lying single-particle intermediate states gives
relations among various coupling constants and masses.
de Alfaro ef al.! have obtained bounds for the invariant
amplitude of p-7 scattering from the Regge-pole model,
and have also constructed SC rules.? In particular, by
assuming that these sum rules at {=0 are saturated by
m, », and ¢ intermediate states, they obtain interesting
results,? viz., g,o,2=0 and g,o.2=4g,x+>/m 2 This tech-
nique of extracting physical information from super-
convergent invariant amplitudes is very attractive and
has recently been the subject of widespread study.

In the present paper, we outline in Sec. II the
unitarity arguments necessary to obtain bounds on the
invariant amplitudes of a two-body scattering process.
In Sec. III, the elastic scattering of pseudoscalar
mesons by 2+ mesons has been considered. The high-
energy behavior of the various invariant amplitudes
occurring in this process has been studied by using (1)
unitarity arguments along with the assumption of a
constant shape of diffraction peak, and (2) Regge-pole
phenomenology. Possible SC rules from fixed-¢ dis-
persion relations for superconvergent amplitudes have

1V. de Alfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.
Letters 21, 576 (1966). This paper will be referred to as AFRF.

2 AFRF assume that the Regge parameter «(0) is negative for
the isotopic-spin-2 channel. This enables them to show that
their B? amplitude is superconvergent. But the presence of Regge
cuts might not allow such superconvergence, because the I=2
trajectory will have the leading edge at a,4-a,—1, which may not
be negative. See I. J. Muzinich, Phys. Rev. Letters 18, 381 (1967);
R. J. N. Phillips, Phys. Letters 24B, 342 (1967).

3If AFRF had considered the sum rule /» ImA2(»)dy =0, they
would have obtained the trivial result gyrr=gppr =gpur=0.
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explicitly been written down. In particular, unitarity
bounds permit three SC rules for K**-r scattering and
five SC rules for 4»-m scattering. Regge-pole bounds are
stronger, and permit seven SC rules for K**-r scattering
and nine sum rules for 4,-7 scattering. It is found that
pseudoscalar and vector mesons, in general, fail to
saturate SC rules. However, the SC rule for the ampli-
tude having strongest convergence seems to be fairly
saturated by 0~ and 1~ mesons for both K**-r and
Ao-w scattering. The sum rules obtained for K**-r
scattering from unitarity bounds when saturated with
K and K* only, give good results. Further, it is argued
that consistent solutions to all the sum rules could be
obtained if an infinite number of intermediate particle
states is used for saturation.

II. UNITARY REQUIREMENTS

The S matrix for the two-body scattering process
A+B— C+4D is defined by

S=1—i(2m)*(pokopo' k') *8(p+k—p'— )T, (1)

where T is the reaction matrix,  and k are the four-
momenta of the initial particles 4 and B, and &’ and p’
are those of the final particles C and D. The usual
Mandelstam variables s, #, and ¢ are defined by

s=(p+kP, u=(@—k7 t=0p-pr. ()

The differential cross section in the c.m. system is
given by

§ spins

where, for fixed 7, K is a constant in the limit s — . So,
for large s and fixed ¢, we have

> | T|2dt<const X gtots?,

spins

©)

Inequality (3) is just the requirement of unitarity
and can be used for obtaining bounds on the invariant
amplitudes for the process 4+ B — C+D. AFRF have
used this inequality along with the assumption of a
constant shape of the diffraction peak for obtaining
1822
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bounds on the invariant amplitudes of p-r scattering.
We shall use similar arguments for obtaining unitarity
bounds for the invariant amplitudes of 0—-2% elastic
scattering.

III. ELASTIC SCATTERING OF PSEUDOSCALAR
AND TENSOR MESONS

A. Invariant Amplitudes

From the invariance arguments, one can easily see
that there will be nine independent helicity amplitudes
for 0—-2+t—meson elastic scattering. A simple analysis
enables us to write the following decomposition of the
T matrix:

9
T=3 Ai(su,f)]# eeuen,T )

=1

where e,, and e),” are the polarization tensors of initial
and final spin-2 mesons.* The nine invariant amplitudes
A.(s,u,t) are the scalar functions of the usual Mandel-
stam variables s, %, and ¢ defined by Eq. (2). Now %
and &’ stand for the four-momenta of the initial and
final pseudoscalar mesons, and p and p’ for the four-
momenta of the corresponding 2+ mesons. ,#"*# are the
Lorentz covariants constructed from the available four-
momenta (&, &/, p, and p’) and the covariant tensor g~,
and are as defined below:

I, o= PuprPApe
I#=RrR'RR?,
I3uv)\p=P}lgV)\Rp+R.ugVRPp ,
[4#v7\p=Pugﬁ\Pp ,
I = Reg™Re | 5)
Igwro=PrR'P \R?
I;# = PrR'RMRo+ RER'RMPP
Ig# o= PrP?P Re+ REP?PAPr
Tgeho= ghgue
where
P=3(p+4) and R=}(+k).
Note that such a choice of Lorentz covariants does

not introduce any kinematical s or ¢ singularity in an
obvious manner because of the following identity®:

4For the spin-2 polarization tensor eu, we have eu=¢,,,
e,*=0, e,p*=0; p* is the four-momentum of the corresponding
spin-2 particle.

5 After the completion of our investigations, we received a copy
of work by N. J. Papastamatiou and S. Pakvasa [Phys. Rev. lgl,
1554 (1967)] in which they have independently noted a similar
identity and hence the choice of Lorentz covariants. However,
in their identity, a few numerical factors are incorrect [for this,
compare our Eq. (6) with their expression for £48,,8,s].
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TAigrgh
=3A1ggre+20(4m*— () Ry R?
+ 20t (42— 1)+ A JPrgPo4-16 (2m* — 1) PrR* PMR?
— 20t Prg™Re+ Prg”R+]
— 169 (P+P*PRo-+ RuP*PMP)
1+ 16m2(PP*RANR?+ RuR*P P?)
1-16(dm2— 1) PLP* P Pe=0, (6)
where
A=12— (t—4m,?) ({—4m?*)
and
y=5—1u.

It is easy to see that the amplitudes 43, 4+, and 43g
with symmetric combinations of isotopic spin in the ¢
channel, and the others with antisymmetric combina-
tions, will be odd under crossing from the s to the u
channel.

B. Unitarity Bounds

Using the requirement of unitarity, Eq. (3), along
with the assumption of the constant shape of the diffrac-
tion peak (under this assumption, the total cross
section at high energies will be constant), for large s
and at t=0, we obtain the following bounds for 4(s,0):

| 42(5,0)| <constXs™3,
[A44(s,0)| <constXs2,
| A5,6(s,0)| <constXs™, )
| 43,5(s,0)| <const,
| A1 4,9(s,0)| <constXs.

We have used heuristic arguments for obtaining the
bounds (7). However, we hope that as in the spinless
case, systematic application of unitarity will give
similar results apart from logarithmic factors on the
right-hand side. In view of this, we note that 4.(s,0),
sA4(s,0), and A44(s,0) are superconvergent.

C. Regge Behavior

For obtaining SC rules from fixed-¢ dispersion
relations, we must consider the amplitudes which are
free of kinematic s singularities. The problem of
kinematic-singularitity-free amplitudes has been studied
in a general manner,’ although the procedure involved
is somewhat cumbersome. Hara and Wang? have shown
that the amplitude

A s rara=Frn: aarg/ (cos0) Mol (sing6) A=l (8)

is free of kinematical singularities in s, where Fa,; aog

8 D. Hall and A. S. Wightman, Kgl. Danske Videnskab. Selskab,
Mat.-Fys. Medd. 31, No. 5 (1957). For a more recent discussion
of the problem, see also G. C. Fox, Phys. Rev. 157, 1493 (1967),
and the references quoted therein.

7Y. Hara, Phys. Rev. 136, B507 (1964); L.-I. C. Wang, tbid.
142, 1187 (1966). See also T. L. Trueman, Phys. Rev. Letters 17,
1198 (1966).



1824 I.

is the t-channel helicity amplitude, 6 is the scattering
angle in the ¢ channel, A=X,—X,, and p=X,—N\,.
For large s and fixed ¢,%

[ Axangs Aaral ~constX Py apng/s* ™0, (9)

where 7(A\,u) is the maximum between A and p. The
factor s»®# in Eq. (9) is responsible for the better
convergence of some amplitudes, since all F’s behave in
the same way for large s and fixed ¢ In the Appendix,
we have given the relations between various Ax,; aag
(or B;) and the invariant amplitudes 4 ;¢* 9, Following
standard Reggeization procedure,’ it is straightforward
to obtain the following asymptotic behavior for
the kinematical s-singularity-free amplitudes B; (or
Axngs rara) :

B~ yi(f)sxi®—4i, (10)

where A;is the helicity change (Aj=4, Ay=3, Ay=A¢=2,
Ay=A7=1, Ay=Ag=0Ay=0), and v;;(¢!) are the Regge
residues which are functions of ¢ alone. «;;(f) are the
usual Regge parameters (0<a;;(#)<1) depending upon
the internal quantum numbers of the trajectory. To
this end, we remark that for 4o- scattering, the /=2
trajectory does not necessarily demand «;;<<0.1° In fact,
if Regge cuts are present, then it may be that a;;>0.1

D. Superconvergence Sum Rules (SC Rules)

It is easy to see that for a superconvergent amplitude
B(v,t) which does not have any kinematical s singu-
larity and is odd under crossing from s to # channel,’? a
sum rule of the type

0

f ImB(»,t)dv=0, (11)

called a superconvergence sum rule, would follow from
the fixed-# dispersion relation. In the preceding sections,
we have studied the high-energy bounds of the ampli-
tudes from unitarity arguments and Regge-pole
phenomenology. Certainly, unitarity bounds are more
reliable, and we expect three sum rules for K**-r
scattering, namely,

]

/ Tmd (s, )dv=0, (122)
0

]

/ v ImA4 $*(v,0)dv=0, (12b)
0

8 For large s and at fixed ¢, cosf — s, so the denominator of Eq.
(8) goes as sHMIul+ilA=ul

¢ M. Gell-Mann, M. Goldberger, F. E. Low, E. Marx, and F.
Zachariasen, Phys. Rev. 133, B145 (1964).

10 In many recent papers (see, e.g., Ref. 1), an assumption o; <0
for I=2 trajectory has been made. If Regge cuts are present,
appropriate care should be taken.

1T am thankful to Professor V. N. Gribov for a discussion on
this point.

2If the amplitude is even under crossing symmetry [ie.,
B(s,u,t) = B(u,s,t)], then sum rule (11) would be trivially satisfied.
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and

0

/ Tmd (v, )dv=0, (120)
0

where the superscript on the invariant amplitudes
A(v,t) refers to the isotopic spin in the ¢ channel. For
Ao~ scattering, in addition to these three SC rules, we
have two more sum rules, namely,

)

/ y TmA (s, 0)dv=0 (12d)
0

and

o«

/ TmA (v {)dv=0. (12¢)

These sum rules have been written down for {=0 only.

From Regge-pole high-energy behavior and fixed-¢
dispersion relations for the superconvergent amplitudes
v*B,T (v,t), where a is a positive integer (including zero)
and T the isotopic spin in the ¢ channel, we have seven
sum rules for K**-r scattering, namely,

0

/ ImB;!(»,t)dv=0,
0

0

[ v ImBy!(v,0)dv=0,
0

/ ImBL(»,t)dv=0,
’ (13a)

0

/ »2 ImB1(v,))dv=0,
0

0

/ v ImBy! (v,t)dv=0,
0

0

/ Tm Bl (v,0)dv=0, / TmBel(n,0)dv=0.
0 [

For A, scattering, besides the above, we have two
more, namely,

0

/ y TmB2(s )dv=0, / TmB2(s,)dv=0. (13b)
0 0

Further, for 4,-7 scattering, if the I =2 trajectory has
a;;(#) <0 for some range of ¢, then six more sum rules
would follow, namely,

0 0

/ v ImB2(v,t)dv=0, / v ImB2(v,t)dv=0,
0 0

0

fuImBsz(V,t)dv=0, /VImBsz(V,f)dl'=O, (14)
0 0

0

/ ImB42(v,t)dv=O,
0

0

/ ImB2(v,t)dv=0.
0

E. Saturation

It would be hard to expect to get saturation of all SC
rules by a few one-particle intermediate states. Further,
it is very difficult to see how one can obtain a solution
for various values of ¢ with only single-particle states.
In spite of these well-known difficulties, we discuss here
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the various SC rules independently. Sum rules obtained
from unitarity bounds, Egs. (12a)-(12e), are more
reliable, and if we assume that they are saturated
by 0~ and 1~ mesons, we obtain the following results for
K**- scattering:

gK**K':r2—mK**2gK**K*1r2=0, (153,)
VEER* K+ — VEM R gt =0, (15b)
grr k2 — 5 (mpt—mg?+m2) grregr2=0, (15c)

where
Vo= (ME—mr+>—m,?).

It is straightforward to write all of the five sum rules,
Eqs. (12a)-(12e), for As-w scattering. For the sake of
clarity, below we write down for Egs. (12a) and (12e),
respectively,

Baga" T84, x07" —Malgay" =0, (16a)

At gaxottE(mat—m2 4 ma?)ga,-2=0. (16b)

Here, the coupling constants gstppr and gotve
have been defined through the following interaction
Hamiltonians':

Hytppr=gotpp¥,,,0°¢ p0dpp+H.c.
and
Hyryp=gov PV a0, V20,0% pe***+H.c.,

where ¢p,p/, Vy, and ¥,, are the wave functions for
JP=0", 1~, and 2% mesons, respectively.

It is interesting that the sum rules (15a)-(15c)
predict the ratio of decay widths I'(K** — K*+x)/
T'(K**— K4r) as 0.19, 0.28, and 0.64, respectively.
The experimental value for this ratio, as reported at
the Berkeley Conference,* is 1.104-0.86. For A
scattering, the sum rule (16a) gives!®

T(4e— 7+9)/T(4ds— 7+p)=0.22,

which is to be compared with the experimental value!
0.124-0.08. However, the sum rules (12d) and (12e)
are badly violated. Inclusion of the 1+ meson does not
improve the situation. The other two sum rules for
Ao scattering when saturated with 0~ and 1~ single-
particle states only give reasonably good results.

The saturation of the sum rules obtained from
Regge-pole phenomenological bounds, in general, is

13 We have suppressed the isotopic-spin structure of the inter-
actions, which can be easily written for the specific cases. The
coupling constants gz*pp and gatvp can be related to the partial
decay widths, namely,

I'(2* — P+ P')=(¢5/60x) (g2*ppr?/ma+?)

T'(2* = V+P) = (¢°/407) ga*vr2

14 See G. Goldhaber, in Proceedings of the Thirteenth Annual
International Conference on High-Energy Physics, Berkeley, 1966
(University of California Press, Berkeley, Calif., 1967), p. 103.

15 To estimate the coupling constant ga,xor, we use the nonet
model [see, e.g., R. J. Rivers, Phys. Rev. 150, 1256 (1966)7, i.e.,
taking octet and singlet together as a nonet Py= P+ (1/V3)X.1,
where Ps is the 0~ octet in which 4° has been replaced by 5° cosf
—X°sing, and X«=n°sinf+X° cosf. Here 6 is the mixing angle,
which is known to be small (=~<10°).

16S. U. Chung, O. I. Dahl, L. M. Hardy, R. I. Hess, J. Kirz,
and D. H. Miller, Phys. Rev. Letters 18, 100 (1967).

and
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poor. Further, a finite number of intermediate single-
particle states cannot saturate the SC rules for the full
range of & However, an infinitely large number of
single-particle intermediate states could give nontrivial
solutions. We hope that further understanding of the
saturation problem of SC rules will give us a good
way of understanding strong interactions.
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APPENDIX

We give here the explicit expressions of the ampli-
tudes Axa,;aang free of kinematical s singularities, in
terms of the invariant amplitudes A4.(s,u,t). Explicit
wave functions for spin-2 particles for possible helicity
states have been given by Gotsman and Frishman.!’
We will work in the c.m. system of the ¢ channel. Let
p and ¢ be the magnitudes of c.m. momentum of 2+
and 0~ mesons, respectively. It is easy to see that
4pq cosb=u—s, p= (F—m) 2, q= (31—m.>)'?, and
o= (%)}2, where 0 is the scattering angle, and w is the
meson energy. It is straightforward to obtain the
following relations:

Bi(s,f)=Aoo; 2—2=4¢"4>,
Ba(s,t)=mAoqo; 2—1=¢*w(4q cosbA+2pA7),
By(s,)=(v/$)Ao0; 20=¢[ag? Aot As— (w?/2m*) A7 ],
B4(S,t) = (m/wq)Ao 0; 21=¢ COSﬁ(—q2 sinBA 2+A5)
+pAs—3pg? sin?0A4,
Bs(S,l) =44, 0; 225 q2 sin%g (q2 sin%0A,—24 5)+4A9 N
Be (S,t) = (m”/wzqz)A 00; 1—1= 4{]2 C0520A2+P2A5
—[(*+o?)/?14s—vA,
By(s)t)= (\/6)on 0; 10=2¢%aw cosfA,
—wg[2(p*+w?)/m?—1](pA s+q cosfA5)
+wpgd(4e? cos’6/mP+a) A,
+2(w*p?q/m?)(q cost As+pAs),
Bg(s,0)=4m?A ¢, 11= —*{¢® sin?6[4¢? cos?04 ,
+ P Aet (m?/ o) As]—2¢°A5s— p? A4
F4(pP+o?) /e ]Ao+v(A3—¢? sin?044)},
Bg (S,l) = 6Ao 0; 00~ (2w2/m2){ (2P2A1""' uAg)w2p2/m2
—[(*4?)/m2](2p2 A4 s— vA 3+ 2¢? cos?0A4 )
+ 3o @/ Am?) Ag—ag? A7 T)
+ q40,2A 92— q2 sin204 5
+202[(+p")/m* P—1]4,,
where
v=S—1u
and
a= —sin?0+ (2w®/m?) cos*d.

1Y. Frishman and E. Gotsman, Phys. Rev. 140, B1151 (1965),



