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Equal-time current commutators [J (x),J’(x’)] should be calculated as suitable equal-time limits of ordi-
nary current commutators. Since this calculation is usually ambiguous or impractical, we propose instead to
define them as limits of [J (x; £),J’(x’; £)] for £,&' — 0, where J (x; £) is a suitable nonlocal expression in
the fields which converges to J (x) for £ — 0. This alternative should be more reliable than the usual ones,
such as taking equal-time limits inside of spectral representations or taking limits of time-ordered products
from positive and negative time differences. The former procedure is invalid when the spectral function is
nonintegrable, and the latter when equal-time § functions are present. An analysis of two-point func-
tions is presented which illustrates the above effects. In this connection, it is shown that the commutator
(0|Cjr441]0) in electrodynamics has a 9xA8(x—x’) term in addition to the usual 8:5(x—x') term. Our
definition is shown to give correct results in a number of soluble models. It is then used to calculate com-
mutators for electrodynamics in all orders of perturbation theory. The main new result is that, contrary to
previous assertions, the commutator [ji(x),7s(x))] is a g-number—essentially e*:A?:9;8(x—x’) in the
Gupta-Bleuler gauge. This result, together with a similar one for [ jx(x),A:(x")], is shown to be consistent
with gauge invariance and to be suitable for use in equal-time commutators which arise in reduction formulas.
Finally, reduction formulas are used to explicitly establish the correctness of our results in fourth order.
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1. INTRODUCTION

HE recent successful calculations based on
ETCCR’s! strongly support the usefulness of
Gell-Mann’s idea? that such relations should be ab-
stracted from field-theoretic models and postulated as
correct in the real world. The situation is analogous to
the previous suggestion that dispersion relations, etc.,
should be similarly abstracted from quantum field
theory. A serious problem arises, however, in that these
ETCCR’s cannot in general be correctly calculated
directly from the canonical ET field CR’s. Thus, which,
if any, ETCCR’s are valid in the perturbation solu-
tions of a particular field theory is not @ priori known.
There will in general be extra noncanonical dynamical
terms present in addition to the canonical ones.?* This
is analogous to, and related to, the question of sub-
tractions in dispersion relations. In this paper, we shall
propose, investigate, and illustrate a simple method for
calculating these extra terms to all orders in any re-
normalizable field theory.5

A. Standard Commutator

Let us consider a particular matrix element of the
commutator of two relatively local Wightman field
operators A (x) and B(y):

Cag?®(x; y)=(a|[A(2),B(y)]|B)- (1.1)

* Supported in part by the U. S. Air Force under Contract
No. AFOSR-500-66.

1 We use the following abbreviations: equal time (ET), equal-
time commutator (ETC), equal-time current commutator
(ETCC), commutation relation (CR), current commutation
relation (CCR), vacuum expectation value (VEV).

2 M. Gell-Mann, Physics 1, 63 (1964).

3T, Goto and T. Imamura, Progr. Theoret. Phys. (Kyoto) 14,
396 (1955).

4 J. Schwinger, Phys. Rev. Letters 3, 296 (1959).

& A preliminary account of this work appeared as University of
Maryland Technical Report No. 643, 1966 (unpublished).
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The most natural and reliable way of investigating the
ET properties of this distribution is to smear it with a
testing function fn(x— 7o), where { f»} is a sequence of
functions in 8 ¢ which converges to the & function in the
topology of §':

s/
Ja(r) = 8(r). (1.2)
If the limit (considering C as a distribution in x-+y
and x—y)

lim / dyo fu(xo—y0)CagA®(x; y) = Eag*?(x,y; %0) (1.3)

exists for each sequence {f.} and has a value indepen-
dent of the sequence used, then it is clear that the ET
limit of (1.1) is well defined and is given by (1.3). We
shall refer to this as the orthodox definition of an ETC,
and to (1.3) as the orthodox value of the ETC.

Although theoretically appealing, the definition (1.3)
is practically inappropriate for (at least) the following
three reasons.

(i) The limit (1.3) will, in most cases of interest,
depend on the chosen sequence {f.}. It is then not
clear which, if any, sequence to use in order to define
the ETC. It might be argued that in this case the ETC
simply does not exist. Since ETC’s do seem to exist
in nature, however, we shall take the point of view
that there should exist criteria for the choice of a
suitable sequence. These criteria might arise, for ex-
ample, from a consideration of how the ETC’s are to
be employed.” One should, of course, choose a sequence

¢ For definitions of $ and §’, see, e.g., [. M. Gel'fand and G. E.
Shilov, Generalized Functions (Academic Press Inc., New York,
1964), Vol. 1.

7 The situation seems analogous to that existing in perturba-
tion theory before renormalization was introduced. There,
ambiguities arose which were later resolved by employment of
observability and invariance criteria.
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such that the limit will exist and will be antisymmetric
under interchange of 4 and B.2 A large amount of
arbitrariness can, however, still remain, Consider, for
example, the simple but important case

C(x7y) = 5(x_y)+R(x,y) ) R(xat))’;l) =0.
Then

(14)

E(x,y)=8(x—y) lim £.(0). (1.5)
Now lima.. fa(0) can be anything in the range
(—w,+ 7], so that (1.5) is completely ambiguous.
One might argue that in this case one really has C(x,y)
=0 X §(x—y), so that the ETC does not exist in the
usual sense. The point is that there may be a criterion
for choosing a particular lim f,(0)< «. The definition
(1.3), however, does not seem to lead to one.

(ii) The explicit distributions (1.1) needed to
evaluate (1.3) will not in general be known. In perturba-
tion theory, one is given matrix elements of time-
ordered products:

Tap*P(; y)=(a| T(A (%) B(5))|8).

These, however, are usually ambiguous at x=y, just
the point of interest. One can add suitable distributions
with support at =y to (1.6) without changing the
content of the theory. This is related to an aspect of re-
normalization invariance and to the arbitrariness of
off-mass-shell extrapolations of the S matrix.%"1!
Mathematically, it corresponds to the fact that the
product 8(x—9)A (x)B(y) is generally ill-defined. Even
if one chooses a definite renormalization prescription
and takes (1.6) to be given by the corresponding sum of
renormalized Feynman diagrams, there is no simple
method to determine (1.1).12 Furthermore, even if a
method were chosen, one could not hope to have ex-
plicit enough knowledge of (1.1) for all matrix elements
in all orders to calculate (1.3). Thus operator relations
valid in all orders could not be deduced.

(iii) Because of distribution-theoretic subtleties pres-
ent in (1.1), the calculation (1.3) can be rather intricate.
We shall see, in fact, that even for the simple case of
vacuum expectation values of Wick products of free
fields, these subtleties are such as to render most of
relevant considerations in the literature incomplete.

(1.6)

B. New Commutator

In an effort to overcome these difficulties, we shall
propose a new method for calculating ETC’s of current

8 With ETC’s defined by (1.3), or any similar limiting process,
the Jacobi identity will only be valid provided an interchange of
limits is possible. This will be discussed in Sec. 6.

9N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quantized Fields (Interscience Publishers, Inc., New
York, 1959).

10 M. C. Polivanov, in Proceedings of the ICTP Lectures, Trieste,
1965 (International Atomic Energy Agency, Vienna, 1965).

11 A detailed discussion of these matters will be given in Sec. 6.

12]. Ruelle, Nuovo Cimento 19, 356 (1961); O. Steinmann,
Helv. Phys. Acta 36, 90 (1963).
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operators. To all orders in the perturbative solution of
any renormalizable field theory, each renormalized
current operator A(x) can be explicitly written as a
weak limit

Ax)= 1;2} A(x; 8), (1.7)

where A(x;§) is a function of the renormalized local
operators X;(x), X;(x+£) of the theory evaluated at
time x0.13~1% Qur proposal is, roughly, to define!®

[4(),B()]=, lim | [A@9,856)]  (19)

and to evaluate the right side by using the known
ETCR’s satisfied by the fields X;. We shall make Eq.
(1.8) more precise in the following, but let us emphasize
here the fact that it is a definition. We shall not prove
(1.8) in this paper but will only show that it leads to
simple, reasonable, and relatively unambiguous results.

Let us indicate how the definition (1.8) removes each
of the difficulties (i)-(iii) mentioned above.

(") Our definition (1.8) amounts to a natural way of
choosing a sequence {f.}. Specifically, we require that
the sequence be chosen so that the usual field ETCR’s
are valid and so that the interchange of xy’— %y and
£— 0 limits implicit in (1.8) is allowed.'” As evidence
for the reliability and effectiveness of this choice, we
shall find that it defines an ETC with the following
desirable properties: (a) It agrees with the orthodox
ETC in cases when the latter leads to unambiguous
results; (b) it gives correct results in low orders of
perturbation theory; (c) it is consistent with the relevant
field equations and invariance properties; (d) it is
suitable for ET commutators arising in formal manip-
ulations with reduction formulas. This latter property
is especially important since it is in this context that
ETCR’s are employed in practice. Consider, for ex-
ample, the amplitude

T(k)=/dx e~ {a| TA(x)B(0) |B). (1.9)
Formally, one finds
kol (k)=1 f dx e % =(a| {T A (x) B(0)
+8(x0)[4(x,0),B(0)]}8). (1.10)

When the orthodox ET commutator does not exist, it
is not clear which definition of ET commutator to use

18 R. A. Brandt, Ann. Phys. (N. Y.) 44, 221 (1967).

14 R. A. Brandt, University of Maryland Technical Report
No. 673 (unpubished). We shall refer to this work as I.

16 W, Zimmermann, Commun, Math. Phys. 6, 161 (1967).

16 Throughout this paper, we shall take xo=1¢'.

17 There is, of course, no guarantee that such a sequence will
exist. This will be discussed below.
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in (1.10).18 We shall show that it is consistent to use
our definition (1.8).

(ii") The operator structures of the current operators
(1.7) are explicitly known both (exactly) for the ex-
plicitly soluble models'*~27 and (to all orders of perturba-
tion theory) for the renormalizable field theories.!*-15
Thus the calculation of (1.8) can be simply and ex-
plicitly performed in these theories. For the soluble
models, (1.8) will be seen to agree with the known
results. In perturbation theory, in view of the am-
biguities discussed in (ii) above, we must in general be
content with the fact that (1.8) possesses the desirable
properties mentioned in (i’) above. In fourth-order
quantum electrodynamics, however, we shall be able
to explicitly verify our results.

(iii") In cases where a comparison can be made, (1.8)
will be seen to reproduce all the results of (1.3) with
much less effort. Furthermore, exact operator ex-
pressions are obtained, rather than simply the matrix
elements of such provided by (1.3). Thus (1.8) does not
appear to discard any of the distribution-theoretic
aspects of the formalism. These aspects are, in fact,
made considerably more natural and transparent
through use of (1.8).

In view of (I")-(iil"), we feel that (1.8) is a sensible
replacement for (1.3) in places where the latter is
impractical or ambiguous. It is very possible, of course,
that (1.8) may also entail some ambiguities. The value
obtained could, for example, depend upon the net
{A(x; £)} chosen to represent 4(x) or upon the way in
which the limits £ — 0, £ — 0 are taken. Both of these
difficulties will actually arise in some perturbation-
theoretic examples we shall consider. The former is,
however, easily resolved by an appeal to covariance
properties, and the latter by imposing the requirement
that the commutator reproduce the well-defined free-
field results in the limit of vanishing coupling constant.
We shall establish these free-field Wick product results
in Sec. 3.

A more serious difficulty which could arise is the
possibility that the orthodox commutator (1.3) might
exist (in the sense that it is sequence-independent) and
be different from (1.8). This is possible in view of the
unjustified interchanges of limits and use of weak con-
vergence involved in (1.8). Again we appeal to (i")-(iii")
for evidence that this does not occur. Another pos-

18 The point is that (1.9) can be well defined but not the in-
dividual terms in (1.10). In other words, (1.9) will not depend on
the sequence {0.(f)} converging to 6(!), whereas each term in
(1.10) can have such a dependence.

19 R. Haag and G. Luzzato, Nuovo Cimento 13, 415 (1959).

20 P. Federbush, Progr. Theoret. Phys. (Kyoto) 26, 148 (1961).

2 K. Johnson, Nuovo Cimento 20, 773 (1961).

22 C. Sommerfield, Ann. Phys. (N. Y.) 26, 1 (1963).

28 1. S. Brown, Nuovo Cimento 29, 617 (1963).

(1;464‘? Thirring and J. E. Wess, Ann. Phys. (N. Y.) 27, 331

25 B. Klaiber, Nuovo Cimento 36, 165 (1965).

% F. Schwabl, W. Thirring, and J. Wess, Ann. Phys. (N. Y.)
44, 200 (1967).

27 C. R. Hagen, Nuovo Cimento 51A, 1033 (1967).
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sibility is that (1.3) might be sequence-dependent, but
there exists no sequence {f.} which is such that it
reproduces (1.8). We feel that this situation is unlikely,
since we expect, by analogy with the fact that a suitable
rearrangement of a conditionally convergent series can
make it converge to any desired sum, that if (1.3) is
sequence-dependent, there should exist a sequence ap-
propriate to (1.8). In any case, any serious descrepancy
between a sequence-dependent (1.3) and (1.8) would
probably require a detailed investigation of questions
concerning applicability before its significance could be
understood.

We therefore feel that (1.8) provides a suitable
method for calculating ETCR’s in quantum field
theory. These relations could then be abstracted and
incorporated with those suggested by Gell-Mann in
order to make the latter consistent with perturbation
theory. The added information should allow a far wider
range of applicability. Our results will of course be
model-dependent, so that a suitable model from which
to abstract must also be specified. An interesting pos-
sibility is the renormalizable quark model suggested
by Johnson and Low.?® In this paper, however, we shall
be concerned with illustrating and justifying our method
rather than with seriously suggesting commutators to
be used for practical applications.

In addition to the possibility of abstraction, there
are numerous other reasons for wanting to possess
ETCR’s valid in perturbation theory. Such relations
would contain valuable information, useful in deriving
sum rules, low-energy theorems, Ward identities, etc.
Even in ordinary quantum electrodynamics, the proof
of the generalized Ward identity based on ETCR’s is
far simpler than a rigorous direct proof. Furthermore,
such relations are useful for actually specifying current
operators® and for concisely expressing principles such
as gauge invariance. Some concrete realizations of
these possibilities will be discussed in Sec. 6.

There are, of course, in addition to (1.8), a variety of
other possible definitions of ETC’s. We shall give a
critical discussion of these in Sec. 2 and compare them
to (1.3) and (1.8). We shall conclude that (1.8) appears
to be the simplest and most reliable alternative to (1.3).

C. Summary

In Sec. 2, we give a more precise version of our pro-
posal (1.8) and compare it with other possible alterna-
tives to (1.3). The methods of taking ET limits inside of
spectral representations and of taking ET limits of
time-ordered products from positive and negative time
differences are criticized. The former procedure is invalid
when the spectral function is nonintegrable and the
latter when ET é functions are present. In Sec. 3, we
present a careful analysis of the ET behavior of spectral

28 K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)
Suppls. 37, 74 (1966) ; 38, 74 (1966).
297, Sec. IX.



1798

representations and illustrate both of the effects. The
ETCC {0|[j74]]0) in quantum electrodynamics is
shown to have, in all orders of perturbation theory, a
9xA8(x—x’) term in addition to the usual 9;86(x—x’)
term. We also discuss other calculations of ETCCRs,
including the perturbative calculations of Johnson and
Low and of Langerholc.

We test our proposal in Sec. 6 by using it to calculate
known ETC’s in the extended Thirring model of
Sommerfield, the four-dimensional derivative coupling
model, and the free-field Wick product model. We ob-
tain perfect agreement, except that the coefficient of
the above-mentioned 9;A8(x—x’) term in the latter
model is not quite specified.

The field ETCR’s and current operators valid in all
orders of quantum electrodynamics (Gupta-Bleuler
gauge) are exhibited in Sec. 5 and used, after some
simplifications are introduced, to compute ETCR’s by
our method (1.8). We find, for example, the usual result
[Ja@) ¥ (=) ]= —iep(x)d(x—x’) and the new result

127 2Z 3% jr(x),74(x") = — 0 918 (x—x') — 9 AS(x—X')
+e[:A2:9,+2:4;A-V:]o(x—x). (1.11)

This expression was made unique by the requirement
that it reproduce the correct free-field result for e — 0.
It is exact in fourth order but may require an over-all
constant multiplier in higher orders.

Section 6 is devoted mainly to a discussion of (1.11).
We show that it is consistent with gauge invariance and
is suitable for use in reduction formulas. Then, assuming
reduction formulas, we show explicitly that it is correct
in fourth order. There the 42 term corresponds to the
usual finite subtraction required by the photon-photon
scattering amplitude. Previous suggestions that the
commutator is a ¢ number are criticized.

2. DEFINITIONS OF ETC’S

In this section, we shall state more precisely our
proposed definition of ETC’s and compare it with other
possible definitions. The current operators 4, B are
defined by field equations,® e.g.,

(O—pDa(x)=gA(x), 21)
(O—)b()=hB(). 2.2)

Some current operators are actually defined by their
coupling to other (leptonic) currents, but this is irrele-
vant for our considerations. The currents can be repre-
sented as the weak limits

A@)=lim A(x; §),

B(y)=1ﬂi§3 B(y;m),

(2.3)

(2.4)

30 Notation: Greek indices are summed from 1 to 4, Latin indices
from 1 to 3. Spatial vectors are written in boldface. Thus p2= p;p;
+papa=p2+pii=p2—po2 Also 0=0,8,=A-+38.2=A—09%
A=9:9;=V?2 We write 98/9x,F(x)=09,F(x)=F, .(x), 8D(x)
=6(x), 6®(x)=6(x), Sd%=Sdx, and Sd%x= fdx.
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where £ and 7 are spacelike vectors, say &=(0,),
n=(0,). Now, A(x) is an operator-valued distribution
in x, and A (x; &) is one in x and &, so that (2.3) really
means

/ dx 6(x) (] 4(2)|8)
~lim / dEdx k,(D9() (el A(v; DB  (2.5)

for any suitable states |a), |B), for any testing function
¢(x), and for any sequence {x,(£)} of testing functions
converging to 6(£) in §’. Similarly,

[arvoralBos)
~tin, [niy ) el B8, 26)

with Xs(n) — 8(xn).
Now the quantity

/ dady $(@)(y)(e| [4(x),B(5)]I8)

is well defined, and the orthodox value of the cor-
responding ETC is obtained by setting

() =0(X)n(@e—1), Yu(N)=YIWa(yo—1),
where ¢.,(r) = 8(r) and yY.(r) — 8(7), and calculating

2.7)

i [ dady buA Ol A GBS 29

We note that this is necessarily equal to*

lim lim / dédn dxdy KN sPmn
X{a|[4(x;8),B(v;n)]|B). (2.9)

Our definition of ETC is obtained by interchanging the
two limits in (2.9):

lim lim / d&dn dxdy kNP
X{a|[4(x; 8),B(v;0)]18).

We thus see that going from the orthodox definition
(2.8) to our definition (2.10) involves an unjustified
interchange of spacelike and timelike limits. This
operation, however, might be expected to have validity
in a relativistic theory.

In any case, as emphasized in the Introduction, (2.10)
appears to resolve the ambiguities and other difficulties

(2.10)

3 This assumes that the states are suitable. We shall ignore
such domain questions in this paper.
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connected with (2.8) and to be much more manageable.
There are, of course, other possible alternatives to (2.8),
and in the remainder of this section, we shall critically
consider some of those which have been proposed.

Let us first consider the possibility of making use of
the fact that the Wightman functions are boundary
values of analytic functions.®? In this way, distributions
need not be explicitly considered. Wightman?? has
shown that the free-field canonical commutation rela-
tions are equivalent to a certain relation between the
n- and (n—2)-point Wightman functions involving a
contour integral. In more singular cases, however, this
is not appropriate, and direct consideration of the
singularities involved is required. In realistic cases,
moreover, the relevant calculations seem to be more in-
volved and to require more information than the
orthodox one (2.8).

Another possibility for reducing the effort involved in
computing the orthodox ETC (2.8) is to introduce the
Jost-Lehmann-Dyson (JLD) representation3® for the
matrix element of the commutator. We shall consider in
detail the simplest case of the vacuum expectation value
and the corresponding Killén-Lehmann representa-
tion.?4=3¢ We note that in practice one is only interested
in the “truncated” commutator

Furthermore, from a theoretical point of view, the ET
limit of (2.11) is much more likely to exist than that of
the ordinary commutator [4,B]. We shall nevertheless
explicitly consider the VEV, both because it simply
illustrates the properties of more interesting matrix
elements and because, even when its ET limit does not
exist, it contains well-defined information which will be
of considerable use to us later on.
We write

(O[CA(x),B(»)]]0)

=5 [ dpila) 00)AG—y;0), (2.12)

=1

where the dp;(¢) are measures, the 0;(d) are poly-
nomials in 4 with vector and/or spinor indices cor-
responding to those of AB, and A(x;e) is the usual
commutator function with mass 4/a¢. Now, the 0,(9)
XA(x—y;a) have simple and easily computable ET
properties, and it is tempting to assume that the ET
limit of (2.12) could be taken inside the integral. Con-
sider, for example, the usual case where one has

/ dp(a) doA(x—v;a),

32 A, S. Wightman, Phys. Rev. 101, 860 (1956).

3 R. Jost and H. Lehmann, Nuovo Cimento 5, 1598 (1957);
F. J. Dyson, Phys. Rev. 110, 1460 (1958).

34 G. Killén, Helv. Phys. Acta 25, 417 (1952).

35 H. Lehmann, Nuovo Cimento 11, 342 (1954).

3 M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954).
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with p a positive measure bounded by a power.3? The
integrand has a well-defined (orthodox) ET limit

oA (%; @) | zpmo=—0(x). (2.14)
Thus one often concludes that the ET limit of (2.13) is
—08(x) f"dp(a). This is only correct, however, provided
JSdp(a)< . In the alternative case, the conclusion
that the ET limit of (2.13) is — 0 §(x) is incorrect for
two reasons. It is misleading®? [since the correct
infinite coefficient of &(x) actually arises in a com-
pletely different way], and it is incomplete [since
higher derivatives of 8(x) may be present]. We shall
illustrate these remarks in Sec. 3.

A similar situation exists with regard to the JLD
representation. Assuming suitable spectral functions, it
has been used to present a rigorous derivation of the
Adler-Weisberger relation,®” to derive mass relations,?®
and also to study possible noncanonical terms in
commutators.’*4? Here, however, there need be no
simple connection between bad spectral-function be-
havior and nonexistence of ET limits.*!

As another means for resolving in perturbation
theory some of the ambiguities described in (i)-(iii) of
Sec. 1, we mention the possibility of explicitly perform-
ing the intermediate sum implicit in (1.1).42 Each of the
factors (a|A(x)|vy) and {y|B(y)|B8) is well defined for
all x and y, and ambiguities occur only in connection
with the possible divergence of the sum over inter-
mediate states |v). These can be handled, moreover, in
analogy with the procedure in conventional renor-
malization theory. Unfortunately, this method is quite
tedious and becomes effectively impossible to perform
in higher orders.

In certain circumstances, some of the difficulties
described in (i)-(iii) of Sec. 1 may not be present. Let
us suppose that difficulty (i) does not exist, so that (1.3)
is sequence-independent and, furthermore, that the
same is true for the ET limits of each of the Wightman
functions

W ag*®(x,y) = (| A(x)B(y) | 8) (2.15)
Was*®(2,y) = {(a| B(y)A (%) |8).

It then follows that much of difficulty (ii) can be
avoided. Indeed, choosing suitable sequences {f.(¥)}
which satisfy

Ja® () = 8(7),

37 B. Schroer and P. Stichel, Commun. Math. Phys. 3, 258

and
(2.16)

[2®(Fr)=0 for >0, (2.17)

(1966).

3 A.H. Vilkel, University of Pittsburgh Report No. NY0-3829-6
(unpublished).

3 J. L. Gervais and M. LeBellac, Nuovo Cimento 47A, 822,
(1967).

0] W. Meyer and H. Suura, Phys. Rev. 160, 1366
(1967).

41 B. Schroer and P. Stichel, Phys. Rev. 162, 1394 (1967).
(“R. A. Brandt and Y. S. Kim, Phys. Rev. 161, 1473
1967).
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we can write
E(x,y; xo)=li£tn / dyo [W (%,9) £ (xe—y0)
—W(2,) fn (20— 0)]
=lim / dyo T(M)

XL (xo—y0)— fa O (20— 30)]. (2.18)

Here only the time-ordered product (1.6) appears and,
furthermore, in a way which is independent of its
ambiguities at x=7y.

Whether or not the above situation prevails, however,
can only be determined after computing the limits (1.3)
and corresponding ones involving (2.15) and (2.16).
Thus difficulties (i) and (ii) are not really avoided. One
might, of course, choose to define ETC’s by (2.18). This
need not correspond to choosing a definite sequence in
(1.3) but is nevertheless an attractive possibility in
view of its avoidance of much of difficulty (ii). We
feel, however, that this definition neglects important
aspects of the ET behavior of the commutator and
need not correspond to a meaningful notion of ETC.

Namely, if the commutator function (1.1) contains
distributions with support at xo=7vo, these will be
completely overlooked by (2.18). When this is the
case, the result of the orthodox calculation (1.3) will in-
volve a dependence on the numbers f,(0) for some
7’s, as in Eq. (1.5). We shall then say that (1.1) has
“discrete ET support” or contains ‘“discrete ET
singularities.” This situation is far from academic and,
as we shall see, frequently occurs. If such terms are
present in (1.1), then they apparentily constitute a
significant aspect of its ET behavior which should play
a role in its ET limit. Thus, in this case, (2.18) does not
really seem to correspond to the ETC of 4 and B.

We would like to emphasize that the existence of a
discrete ET singularity does not mean that a meaningful
ETC will not exist, although the definition (1.3) will
clearly not lead to one for a general sequence. The point
is that a definite regularization procedure, dictated,
say, by the way in which the ETCR’s are to be used,
can be employed. This could correspond to a definite
choice for the sequence {f.}, which would assign
definite values to the lim, f,?(0). Equation (2.18)
does, of course, amount to a regularization procedure
which completely disposes with all discrete ET sin-
gularities. We shall see in Sec. 6, however, that (2.18)
is not always suitable for use in reduction formulas.
We take this to imply that the associated regularization
is not useful.

A related consequence of the definition (2.18) is that
it cannot take all the effects of renormalization into
account. Indeed, many renormalization subtractions
are proportional to 8(x—y)=35(x—y)d(xo—7yo) and its
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derivatives and therefore do not contribute to (2.18).

Often in the literature, one finds ETC’s defined by
the formal counterpart of (2.18):

E(xy;xo)= lim W(sy)— lim Wiwy)

=( lim —
Yo—>zo—

lim )7(x,y). (2.19)
yo—~>xo+

This definition only makes sense when W is a function
for yo in some open interval (xo,xo+e€), and W is a
function for y, in some (xy— €,xp). This is not even the
case for free scalar fields. Thus the calculation of
(2.14) from the behavior

Ap(x;a)=~—(1/4m)8(x?), «2=0 (2.20)

by means of (2.19) is completely ambiguous, whereas
(2.18) immediately gives (2.14), as does (1.3) from

A(x; @)~ —(1/27)e(x0)d(x2), x2=0. (2.21)

Moreover, even when (2.19) does make sense, it still
possesses the inadequacies mentioned above when dis-
crete ET singularities are present. In some simple
model field theories, however, the singularities of the
Wightman functions are mild enough to permit ap-
plication of (2.19). We shall comment further on this
in Sec. 3.

As a final example of an approach to ETC’s, we shall
consider the functional differentiation formalism. Let us
specifically consider quantum electrodynamics. Here
itisargued®-# that, as a consequence of gauge invariance,

—i[j°(), 74" ]=0x(85'j'(x") /8 4(x)), (2.22)
and that, as a consequence of Lorentz covariance,
85'j1(2") /0 A k(%) = —d(x—x)p*(x)  (2.23)

for some symmetric operator p. Now, although the
three-dimensional functional derivations in (2.22) are
rather formal operations, this equation appears to
constitute a definition of ETC which, at least in
quantum electrodynamics, possesses many of the
advantages of the one which we have proposed. Thus
(2.22) can be computed directly from our electric-
current operator, assuming that the differentiation can
be interchanged with the local limit £— 0. Although,
as we shall see, (2.22) and (2.23) are violated in second-
order perturbation theory (i.e., for free fields), (2.22)

appears at least to reproduce the correct form of the
ETC.

3. CALCULATIONS OF ETCR’S
A. Introduction

In this section, we shall discuss the calculations of
ETC’s which have appeared in the literature. We shall
also use the orthodox definition to calculate the vacuum

43 J. Schwinger, Phys. Rev. 130, 406 (1963).
# L. S. Brown, Phys. Rev. 150, 1338 (1966).
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expectation values of ETC’s of some Wick products of
free fields. The results of this calculation will be useful
in assessing the validity of some of the approaches
(including our own) summarized in Sec. 2.

The simplest examples of ETC’s with noncanonical
values are provided by the soluble “relativistic’” two-
dimensional models.** In most of these models, the
formal expression (2.19) gives results in agreement with
the orthodox definition (1.3) of ETC. In Sec. 4, we shall
show that our definition (1.8) also gives correct results.
We shall do likewise for the four-dimensional derivative
coupling model.

A matrix element of an ETC in the Lee model has
been calculated using (2.19).46 This commutator was
found to have its canonical value when a cutoff was
present but to differ from that value by a multiplicative
constant for the theory with no cutoff. This corresponds
to a é-function noncanonical term. The same results
are obtained* using the orthodox definition (1.3). How-
ever, in applying these results to derive low-energy
theorems, the orthodox method*” must be employed in
order to avoid ambiguities which arise from formal
manipulations. We shall not apply our definition (1.8) to
this model, since we do not expect the associated space
and time interchanges to be valid in nonrelativistic
situations.

The first example which exhibited noncanonical terms
in ETC’s was given by Goto and Imamura® in 1955.
They considered essentially the spectral representation

F(x)=/w da 1(a)9eA(x; @), (3.1)

with 7(a) a positive function,®® and brought the ET
limit inside the integral to obtain

F(x,0)=— / da m(@)5(x) (3.2)

whereas the canonical CR’s give F(x,0)=0.
Wightman?®? pointed out in 1956 that the conclusion
(3.2) is valid only for S'daw(a)< . He showed that
for m(a)=1/+/a, (3.2) is misleading. We shall see below
that for m(a)=1, (3.2) is incomplete, since a term
A8(x) must then also be present. Nevertheless, varia-
tions of the above formal argument have often sub-
sequently appeared in the literature.**~* In most of

4 For a complete and useful critical survey of these models,
with references to the original literature, the reader is referred to
the lectures of Wightman (Ref. 55).

46 J. S. Bell, Nuovo Cimento 474, 616 (1967).

4 R. A. Brandt and C. A. Orzalesi, Phys. Rev. 162, 1747 (1967).

“8 In the cases we shall consider, =(a) will be a measurable func-
tion or a § function. In the general case daw(a) can represent a
more complicated measure.

49 K. Johnson, Nucl. Phys. 25, 431 (1961).

80 G. Pécsik, Nuovo Cimento 434, 541 (1966).

81 S. Okubo, Nuovo Cimento 444, 1015 (1966).

52L. S. Brown, Phys. Rev. 150, 1388 (1966), Appendix A.

% D. G. Boulware, Phys. Rev. 151, 1024 (1966).

¥ D. G. Boylware and S. Deser, Phys. Rev. 151, 1278 (1966).

APPROACH TO EQUAL-

TIME COMMUTATORS 1801
these cases, however, the authors were probably con-
cerned only with the case f'da w(a)< .

B. Spectral Representations
General Results

The quantity fdaw(a) is almost always infinite in
renormalized perturbation theory, and so we shall
undertake a detailed study of the ET behavior of (3.1)
in this situation. We shall consider the case for tem-
pered fields in which (@) is positive and bounded by a

power>5®
A

/ da w(a) <CO-+\) (3.3)

for some C and L. For ¢(x)E8(R?) and f,({)ES(RY) =S,
we have

1
(F (x),riJ(X)fn(t)>=(—2-;)—4 / daw(a) / dp (—ipo)

where carets denote Fourier transforms, so that
[\(p;a)=/dx e 2A(x; @)= —2mid(p*+a)e(p).  (3.5)
Thus
/ dp (—ipo)A(p; @)§(—p)fa(—po)
(2m)* )
=— dp &(—p)f-((p? u2) - (3.6
(27)3/ p $(—p)f2((0*+a)V?), (3.6)
where )
Far@) =3I a0)+Fu(—2)]. 3.7
Now we set
dp=p*d|p|dQ=%|p|dp*dQ, b=p* 3.8)
and
1
¢(0)=—— / dQ 362%¢(—p), (3.9
(2m)3

so that (3.4) becomes

(F(x),0(x) fa(0))
= / da / db w(a)p(d)fo((a+0)12). (3.10)

For any positive integer R, we can write

R br I\’
Fet0p)= = =) fe@ @), (1)
=0 71\da.
5 A. S. Wightman, in High Energy Electromagnetic Interactions
and Field Theory, edited by M. Lévy (Gordon and Breach Science
Publishers, Inc., New York, 1966).
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where

1 ot 9\ B+t
n(R)(a,b)=—/ dT(I—T)R<—)
8 R!'"Jy a7

X fu((a+b7)12).  (3.12)

We now let {f.()} [and hence {f.°({)}] be a sequence
of functions in § converging to 8(f) in €’. Then {f.°(»)}
is a sequence of functions in 8§ converging to 1 in §’
and also pointwise. From this it is easy to see (from
integration by parts) that for R> L, the term g,®(a,b)
in (3.11) gives a vanishing contribution to (3.10) in the
limit #— . Hence the distribution F(x) defined by

(F (x),6(x) fu(1))= / da / db w(a)$(b)gn®(a,0), (3.13)
with R> L, vanishes for {=0 in the orthodox sense:
F(x,0)=0.

lim (F(x),6(x) f2())=0

(3.14)
That is,
(3.15)

for each ¢&8(R?) and for each sequence {fn}.
We now write (3.10) as

R (—1) AN
] da r<a>(—~) Fua)
r=0 7l da

(F(x),6(x) f())=—2

1 -
X ] REPRFE@I 1), (316)

or
F&)= % 5080 +F (), (3.17)
where
1
F.()= n /dv et v (v?) (3.18)
7.

in the sense of distribution theory. The ¢~0 behavior
of &,(f) is learned by taking the limit # — in (3.16).
Formally defining F(x,0) by

(F(x,0),6(x))= lim (F(x),6(x)/(0)), (3.19)
we obtain
F(x,0)= ZR: K.A78(x), (3.20)
r=0
‘where
K.= 1ii1;1° Kin, (3.21)
with
(=1 AN
K, .,=— /da w(a)(—~> Sue(all?). (3.22)
r! da

Note that we can put R= in (3.20), since K,;=0
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for r>R:
F(x,0)= X K,A78(x). (3.23)
r=0
Examples

We shall now discuss the existence and uniqueness of
(3.23) for some specific spectral functions 7(a). We note
first that when fde w(a)< «, Egs. (3.21) and (3.22)
give Ko=—fdam(a) and K,=0 for >0, so that
(3.20) agrees with (3.2).

Let us next consider the case w(@)=1/4/a for which
JSdaw(a)= . Then

Kou= ~/ da a=\12f,%(a'/?) = —2/ dv fae()
0 0

— 2 / : v 724()60)

- /~ : a1 fﬁ(t)[;i;-l—%@}

=—2rf»¢(0), (3.24)

0 a .
K .= —f—/ da a*—f,*(al?)
0 da

§d 1/2a 7 ( 1/2) lf ( 1/2)
= a aP—fr(a"?) ——fa(0
/o da \/6

1 r> )
—{—5/ da a32f,5(a'?), (3.25)
5

etc. We see that K,=0 for >0, whereas K, is am-
biguous (i.e., sequence-dependent) and exhibits a dis-
crete ET singularity of the type discussed earlier.
Indeed, the corresponding (well-defined) four-dimen-
sional distribution can be written as
F(x)=—2md(x)+F(x), (3.26)
where _
F(x,0)=0, 3.27)
which involves the distribution §(f) with discrete ET
support. The orthodox ET limit, consequently, is
ill defined:
F(x,t)= —2x[ lim £.(0)]J8(x). (3.28)
For f.(0) — =, the result (3.2) is reproduced, but in a
completely different way. The definition (2.18), on the
other hand, gives F(x,0)=0.
A general class of spectral functions containing
similar discrete ET singularities is given by

Topn (D) =p2H | k=012, -,

(3.29)
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These give
L]
Ko,n @k = — 2/ dV V2k+2f”e(1/)
[}

7
= —d4g(—7)2+2 / dt fn‘(”‘“’(l)[z—;'}‘%é(l)]
Y

= 2r(— 1)k fne@42(0) (3.30)

etc. Thus (3.20) contains 2k-+1 terms with ambiguous
coefficients of the A7§(x). The corresponding four-
dimensional distribution Fary1(x) involves § ¥+ (£)§(x),
-+ -, 8()A¥15(x). We see here higher-order derivatives
of 8(x) not predicted by (3.2). For the k=0 case, we have

Kon®=2rfe®(0),

Kin®= / dv 90 ue(r) = — / i fuo) =1£22(0) ,

KMU):—%/ dv 3fut(r) =147 (0), (3.31)
0

etc., so that
Fi(x)=2m8" (£)6(x)+w6() As(x)+Fy(x), (3.32)
where F1(x,0)=0, and, correspondingly,
Fi(x,0)= 21r[ling [ ®(0)]8(x)
" tallim f2(0)]A0%) (333

is ambiguous.
Another simple class of spectral functions is given by

mor(v?)=v?*, k=01,2,---. " (3.34)
These give
Ko, = —2/ dy V”‘*‘lf,,e(v)
0
i
=4mri(— l)k/dt fne<2’°+l>(t)[—+%a(z)]
2wt
= ~2('-1)"/031 FaeCHD(0)(1/0), (3.35)

etc. Here the principal values 1/¢ contribute rather than
5(%), so that discrete ET singularities are not present.
The K,@® are still ambiguous for <2k. For the case
k=0, we find

Kon®= —Z/dt [ 01/9), (3.36)

Kl.n(°’=/ dv 8fn¢(v) = — f,%(0). (3.37)

Thus Ko¢©® is ambiguous, K;®=—1, and K,°=0 for
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r>1. We note the finiteness and uniqueness of K;®,
which will be of use to us later on. The corresponding
four-dimensional distribution has the form

Fo(x)=200(1/)8(x)— A3(x)+Fo(x),  (3.38)
where Fo(x,0)=0. The orthodox ET limit gives
Fo(x,0)=(?)8(x)— Ad(x). (3.39)

The Ad(x) term is unique and unambiguous, e.g., in
the sense that

lin}) / dx x2Fo(x)=— / dx x2A8(x)=—6 (3.40)

for any approach to {=0. Nevertheless, it is still not
predicted by (3.2).

Quantum Electrodynamics: General Formalism

Discussions analogous to the above could be given
for more general w(¢) in (3.1) and for more general
representations (2.12). Rather than becoming involved
with unnecessary generalities, we shall consider only
the representation (2.12) for the commutator [ 7,,7,]
involving the conserved electric current in quantum
electrodynamics and the corresponding 7 () to all orders
in perturbation theory. We have

Fu(x—y)= © I [Jﬂ(x))]l‘(y)] [0)
=i/da 7(a) (8, (0— 9.9,)A(x—vy; a), (3.41)

where 7(a) vanishes for e<4m?, with m the electron
mass. The relation with our previous notation is
Fro(x)=—19:F (). (3.42)

Proceeding as above, we find

o Jao()
X [fao(at/?)a117] (21)3 / dp (—p?)’

X(ﬁkﬁz—alclp2)$(—l’)+ e, (3.43)

(Fra(x),0(x) fa(t))=22

(Foo(2),¢(x) [ ()= —% (_:r / do (@) (i>

da
X [fuo(at®)a117] ! / dp (—p)™+
(2m)?
X$(=p)+---, (3.44)
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 fuo Y

/a’p (—ip)(—pd)"
X$(—p)+--+, (345)

(Fro(x),0(x) fn(D))=12

X
(2m)?

where the omitted terms vanish for #—cw (ie., for

t—0), and 3
o) =3070)—f(=»)]. (3.46)
The ET limits are
Fu(x0)=3 B, (oul—0,:0)A%5(x),  (3.47)
r=0
Fa(x0)=3 K,A*5(x), (3.48)
r=0
Faox0)=—i 3 K,0uA%8(x), (3.49)
r=0
where
K,=lmK,,, K,=lmK,,, (3.50)
with
_ (=Dr 9\’ _
Kpn=— da w(a)(—) [fa0(at®)a12], (3.51)
7! da
(=1 a\",
K, =— [da r(a)(-—) Fa(a?). (3.52)
r! da

Let us next investigate the behavior of w(e) in
perturbation theory. We shall use the fact that in all
orders the leading singularities are independent of the
mass » and hence are given by dimensional argu-
ments.%:13.14 The currents j,(x) have dimension (in
inverse mass units) three [dimj= dimjy= dimy+ dimy
=32+42=37, so that the leading singularity of j,.(x)4,(0)
for x~0 (with all components of order {, {~0) behaves
as {¢ within logarithmic factors. Since A(x; a)~{2, we
see from (3.41) that w(a) can at worst grow logarithmi-
cally for large @ (recall that ¢ has units of mass squared).
The same conclusion can be reached from consideration
of (3.47)-(3.52). Thus (3.48) requires that K,=0 for
>0 and (3.49) requires that K,=0 for r>1. Com-
parison with (3.50)-(3.52) then again requires m(a) to
be logarithmically bounded.

This behavior of 7(a) is, of course, well known. It
corresponds to the logarithmic divergence of the re-
normalization constant Z5~!,

Zi =1+ / dam(a)a™!, (3.53)

56 K. Wilson (unpublished).
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and to the finiteness of the quantity
k2/da m(a)a (k2 +a)?,

which is directly related to the polarization tensor
I0,(k).
The above information enables us to reduce (3.49) to

Fko(X,O) = —Koaka(x)—iKlakAB(x) y (354)

where

K= ——}li_rg /da w(a)fns(all?) (3.55)

is (within logs) at worst quadratically divergent, and

3
K;=lim / da r(a)g—fne(a”"’) (3.56)
n—->0 a

is at worst logarithmically divergent. Formally, we have

Ko= —/da (a). (3.57)

Furthermore, we can explicitly evaluate K; as follows.
We have

i)
K,=—1lim /da Fnt(at®)—mn(a)
n=>0 da

9
=— 71‘1_1)2 /du f,.e(v)g—w(ﬂ) . (3.58)

Now dr(»?)/d» is square integrable, and hence so is its
Fourier transform®?

N

(3.59)

d
dv e —g(v?).
Nowor ) _w dv

Thus
Ky=— lirg 2w / dt f22(D)v(t)
=—2r ht?(lj @) +o(—=0)]=— IJ%I_I}ww(Nz) (3.60)

for any sequence {f.(#)}.
We can now formally write (3.54) as

Fro(x,0)=1i / da 1(a)3xd(x)+in () :08(x). (3.61)

The second term, which is present in all orders of
perturbation theory, has heretofore been overlooked in
treatments of electrodynamics. For rigorous analysis,
of course, Eq. (3.61) should be replaced by

Fko(X,t) =— 21riwe(t) 3,6(x)
+-2mive(1) 9 A8(X) + Fro(x,1)

57 The limit is taken in the L% norm.

(3.62)
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where _
kao(X,O) =0 y (363)

and where w(f) is the (distribution-theoretic) Fourier
transform of — 2vr(v?).

Quantum Electrodynamics: Low Orders

We shall conclude our study of the ET structure of
the two-point commutator function by working out
(3.54) for the explicit spectral functions 7(¢) in second-
and fourth-order perturbation theory. In second order,
the 7,(x) in (3.41) is the free-field Wick product

) = e limm D)o+
— QI E+OI0] (.64

=%ie 1;33 W @)ylat8—vp@)d(e+8)]. (3.65)
The corresponding spectral function = (a) is
e? a a\ /2
7@ (a)= (1+—~)(1———-) 0(a—a), (3.66)
1272 2a. a
where
a=4m?, 3.67)
Equation (3.66) can be written
T® (@) =79®(a)+m1?¥(a), (3.68)
where
mo®(a)=(e2/12r2)0(a—a) =7 P (0 )0(a—a), (3.69)
and
e? a o\ /2
T1®(a) =—-—[<1+——)(1——> — I]O(a—a) . (3.70)
1272 2a a

We see that 71 (a)~a~? for large @, so that it con-
tributes to K, the finite term — f"da m,® (@). According
to (3.60), the term 7o®(a) contributes to K the finite
term — e?/12#2. Its contribution to K, is the ambiguous

expression
e 2

Kop®=——o lim/ dafne(auz)
1272 n>e

e’a

1272

i / & 1) (3.71)
—_— t a8 (1)-. .
672 f t

Thus
ea 2 1
dt fa*'(1)-
t

€
Fko(z)(x,0)= —’LI:""“-"‘—— lim

1272 672 »
ie?

1272

—/da 7!'1(2)(61)]6195(X)+ akAé(x). (3.72)

We see that the previously neglected 8,A8(x) term is
finite and unambiguous [in the sense of Eq. (3.40)].
The 9;8(x) term is, however, ambiguous. It is divergent
for a smooth sequence such as

[a(t)= (n/m) e e, (3.73)
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We observe that the result (3.72) is not given by the
functional differential formalism (2.22) and (2.23).

Next we consider the fourth-order spectral function
7®(a). It has been explicitly calculated by Killén and
Sabry®® and can be written

7@ (a)=(e!/727%) (Ina/a)0(a—a)+0(1). (3.74)
The O(1) term contributes exactly as did =®(a) above.
The first term in (3.74) gives an ambiguous contribu-
tion to K. Its contribution to K; diverges, but in a well-
defined way as specified by Eq. (3.60):

K,®=— }Iim TB(N) = —(¢*/727%) leim InN?%/a. (3.75)

This fact will be of use to us later on.

C. Free Fields

All of the above behaviors exhibited for the vacuum
expectation values can also be derived for other matrix
elements of CC’s by using the JLD representation with
suitable spectral functions. Here, however, the situa-
tion is somewhat more complicated,*’ and far less
general statements can be made without explicit
knowledge of the spectral functions.

For the model in which the currents are simply free-
field Wick products, on the other hand, complete re-
sults can be obtained. Langerholc® has considered
the Wick products corresponding to the currents

J(Ta;%)=¢(x)Tap(x),

where I's=M,Aq, With A\, an internal symmetry matrix
and A, a Dirac matrix. He has investigated the be-
havior of

(3.76)

/dz dX[](PA; x)’](PB; y)]f(za X)g(X0)¢(ZO) ) (377)

where z=x—7v, X=2%(x+y), f and g are arbitrary
testing functions, and ¢(zo) — 8(20). The expected
result

[J(T4;%),J(Ts;9)]
—(0[---10) . i8(z)J([T4,T]s; %), (3.78)

where

[T4,Tpls=Tayslz—Tpyila, (3.79)
was obtained. Combined with our treatment above of
the VEV, this gives one a complete understanding of
the ET behavior of free-field Wick products. In Sec. 4,
we shall reproduce these results using our definition
1.8).

8 G. Killén and A. Sabry, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd, 29, No. 17 (1955).
5 J. Langerhole, DESY Report No. 66/24 (unpublished).
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D. Perturbation Theory

In the absence of more realistic field-theoretic models,
the best way of going beyond the above results is
apparently with the use of perturbation theory. An
important step in this direction has been taken by
Johnson and Low.?® These authors used the definition
(2.19) of ETC’s and assumed that the time-ordered
products (1.6) are given by the appropriate Feynman
rules for timelike separation of x# and y. In view of our
remarks above concerning discrete ET singularities,
however, we prefer to formulate results based on
Eq. (2.19) as follows: either (i) discrete ET singularities
exist (in which case, orthodox ET limits do not exist),
or (i) the ETC is given by (2.19).

It is formally shown in Ref. 28 that (2.19) is given by

Eap(x,y; x0)= (2m) et Hye—2ixoa

X / dp e'r" =¥ f dpo M og(p+q,p—q), (3.80)

where C is an infinite clockwise contour, and

(2m)26(patlr— pa—Fk2) M as(krske2)
=/dx dy{a| T(4 (x)B(v))|B)e—tkr-=tikev,  (3.81)

It should be remarked that since the derivation of
(3.80) from (2.19) is only formal, (3.80) should be
considered as the Johnson-Low definition of the ETC.

Johnson and Low use (3.80) to calculate the ETC’s
of the quark currents (3.76) in a model with interaction
Lagrangian

Lr= g3w¢s+ gp‘l_")’5‘p¢p+gv‘;7u¢A B

where ¢,, ¢,, and 4, are, respectively, scalar, pseudo-
scalar, and vector fields. They calculate the vacuum-
one-meson matrix elements of the commutators in
third order and find the expected terms (with divergent
coefficients, however) as well as extra (finite) terms in
all commutators except [Vo,Vo], [40.40], [S,S], [S,P],
and [P,P]. They also find that the Jacobi identity does
not in general hold.

We have argued above that these results are probably
precisely valid only when (1.1) has no ET singularities.
The calculation, furthermore, required the manipula-
tion of infinite quantities and a momentum-space
cutoff. This involved an interchange of limits which
might not be justified. Related considerations have
been advanced by Hamprecht®® and by Polkinghorne.®!
These authors argued that the extra terms found in
Ref. 28 depend on the way in which the cutoff is in-
troduced, and that they only arise from divergent

(3.82)

60 B. Hamprecht, Nuovo Cimento 47A, 770 (1967).
ot J. C. Polkinghorne, Nuovo Cimento 524, 351 (1967).
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integrals. In the absence of a justification for the choice
of a particular cutoff procedure, they concluded that
the presence of the extra terms has not been established.

Finally, we mention that the prescription (3.80) has
been used®? to calculate the ¢c-number Schwinger terms.
The results do not include all the terms predicted above
by the orthodox method.

In view of these facts, the above results should
perhaps be taken as indicative of the complicated
nature of ETCR’s rather than as precise statements
about the values of ETC’s.

An interesting application of the orthodox definition
of ETC to the calculations of ETCR’s in perturbation
theory is given in the paper of Langerholc referred to
above. Langerholc explicitly constructed the renor-
malized current operators corresponding to (3.76) and
(3.82) to fourth order (i.e., to second order in £r) and
again investigated (3.77). In first order, the expected
(finite) right side of (3.78) again appeared, as well as
numerous extra terms which were often divergent for
any choice of the time-smearing sequence.® These
terms were, however, in general quite different from
those found in Ref. 28. This would be expected if dis-
crete ET singularities were present. Similar conclusions
were reached for the ETC of the second-order current
operators.

4. SOLUBLE MODELS

In this section, we begin our detailed investigation
of our proposal (1.8) by using it to calculate some known
ETCR’s in the soluble field-theoretic models. All these
models have unit S matrix but nevertheless pose non-
trivial tests on (1.8).

A. Extended Thirring Model

We shall begin by considering Sommerfield’s?? solu-
tion to the extended two-dimensional Thirring* model,
in which the current 7, of a massless fermion field ¢ is
coupled to itself and also to a massive vector boson
field B,,. Thus the Lagrangian is

L=3i[Yy-oY—op-1w]—3[04-B—A49-B]
— W 1B g Ao j, (D)
where

u=0,1, gl=—g%=1, =g, ~l=ig;. (4.2)

Couplings with external fields are also considered as a
device for solving the model. The assumed ETCR’s

satisfied by the canonical fields ¢, ¢!, 41, and B= By, are
the standard canonical ones, so that the only non-

62 B. Hamprecht, Nuovo Cimento 50A, 449 (1967).

6 A p-space cutoff was employed to obtain these results. A cutoff
is not used in the later DESY Report No. 67/26 (unpublished).
See also B. Schroer and P. Stichel, University of Pittsburgh
Report No. NYD-3829-11 (unpublished).

64 We use here the notation of Ref. 22.
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vanishing commutators are!®
{Wa() ¥5" (&)} = apd (@1— 1)
[A41(x),B(x")]=10(x1—x1").
The current j*(x) is defined, following Johnson,?! as the

limit of a nonlocal product of fermion fields in space-
like and timelike directions.

In addition, a noncovariant single-time current S,(x)
is defined as

Su(x)=3% 15133 @)y (48— (@ (x+8)]

(4.3)
and

(4.4)

4.5)

= lflgg @+ 8—Tu(H)] ngol Sulx; £, (4.6)

where
£=0, ¥=yly,,
and
Ju(§)=—itry,G(§), 4.7)
with
G(&)=4i(0| TY(x+£)¢(x)]0). (4.8)

We can apply our proposal only to this current.

The currents j and S are found to satisfy a relation-
ship involving the external fields. When j is considered
as depending explicitly on these external fields, a con-
sistent explicit solution to the model is found. For ex-
ample, one has

G(&)=(1/2m)y- € E+ie] .

Equation (2.19) can be used to compute ETCR’s in
this model. The relations (4.3) and (4.4) are found to be
valid in the solution. Sommerfield also finds, by ex-
plicit consideration of matrix elements, that the follow-
ing ETCR’s involving S, are valid:

4.9)

[So() (") J=(x)d(x1—21") (4.10)

[S1(x) ¥ (") J= — 7"y Y(x) 6 (21— 1), (4.11)
[So(#),41(x") J=[So(*),B(x")]=[S1(x),41(«")]

=[S:(x),B(=")]=0, (4.12)

[So(®),So(x") ]=[S1(%),5:(")]= 0, (4.13)

LSo(®),S1(x") 1= (i/m) 018(w1— 1) . (4.14)

Each of these CR’s is precisely that obtained by
taking the corresponding commutator inside the £ — 0
limit defining S,. This is immediately clear for (4.10)-
(4.12). For example,

leig} [Si(x; O () ]= -lsirg; Yoy (a4 £)o(ax1—x1")

= — oy (x)6(x1—x1")

=[S1x)¥")]. (4.15)
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The same is true for (4.13) and (4.14). Explicitly, we
have

LS1(x; £),S0(x; €)=Y (w)yp(x'+E)(w1— 21"+ £1)

@yt Eo(@—a'—£&"). (4.16)
Thus
Lim [S3(; £)550("; £)]
=)y (et £)o(x1—x1'+£1)
—P(a)yp(at£)(a1—21")
=P(@)yy (et H[£018(x1—x1")+0(&H) . (4.17)
Now we use Eq. (4.6) and the fact that
%1_{1‘} Su(w; D=0 (4.18)
to write
leif(} V(@) v+ &= 121_{13 Ji(®&a=i/r (4.19)
and

lim P(Jvab(e-+ D= lim SO &0, (4.20)

where we used (4.7) and (4.9). Hence
1;_{% g}% LS1(x; £),So(a’; £) 1= (i/m)916(x1— 1)
= [S1(0€),So(x’):| )

the last equality following from (4.14).

Thus our proposal (1.8) is seen to be correct in this
case. We can likewise easily derive (4.13). We conclude
that our definition of ETC is the same as the usual one
for this model. Sommerfield?? remarked that (4.14)
could not be computed directly from the canonical com-
mutation rules but must be inferred by evaluating its
matrix elements. Using our definition (1.8), however,
(4.14) can be derived from the canonical rules plus the
properties (4.6) and (4.9) of the solution. That is
precisely the effectiveness of our proposal.

(4.21)

B. Derivative Coupling Model

The next model we shall consider is that with vector
derivative coupling between a spinor and a scalar field
in four dimensions. This model is nontempered and has
no scattering, but is nevertheless interesting for our
purposes, since it possesses a nontrivial current operator
and field ETCR. We shall use the careful and complete
formulation of Klaiber.?s Earlier references can be
found in Ref. 55. The notation is that of Bogoliubov
and Shirkov.?

The renormalized field operators ¥ and ¢ satisfy the
renormalized field equations

(O—m*¢p(x)=0 (4.22)

and

(79— MW() =h(x), (4.23)
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Thus ¢(x) is a free field. The current operator 4(x)
is given by
h(x)= 1€ir15 h(x; §), £=0, (4.24)
with
h(x; §) =gy [Y(2) 9, (w+£) — g8, D7 () -Y(x)].  (4.25)
The fields obey the following ETCR’s:

[o(@),0(x") )= {¥(x) ¥ (=)} = [$(x) (=) ]

=[¢(),¢(=")]=0, (4.26)
[¢(x),é(x") J=1d(x—x), #.27)
W) P ()} =27"(x—x), (4.28)
[(x) ¥(") 1= — g¥(x)d(x—X'). (4.29)

The constant Z~! is ill defined, so that (4.28) is only a
formal equation and will not be used.

We want to see if the ETC [%(x),¢(x")] can be cor-
rectly computed by our method of interchanging the
commutation and £— 0 limit. That this is the case
is by no means obvious, in view of the relatively com-
plicated nature of (4.23)-(4.29).

The commutator in question can be correctly cal-
culated from the field equation (4.23) and the field
CR’s (4.26) and (4.29). It follows from (2.46) that®®

0=9o[¢(x),0(x") ]=[¥ (),0(x") ]+ [¥(),$(x")]. (4.30)
Thus, from (4.29), we find
[ (#),0(x") ]=—go(x—x)(x).
By (4.23), (4.31), and (4.26), we have

[ (x),0(2") 1= Liv P () +iy - () — Mip(),9(x") ]
= —igy%(®)3(x—x).

Now, from (4.25), (4.26), and (4.27), we get
[h(x; £),6(x") J= —igy¥(x)(x—x'+ &), (4.33)

so that
1212)1 [h(x; £),6(x)]= [h(x),0(=")].

(4.31)

(4.32)

(4.34)

We therefore see that our definition of ETC agrees
with the usual one in this case.

C. Free Fields, Truncated Commutator

The final model which we shall consider is that in
which the current operators are Wick products of free
spinor fields. Although this model is simpler than the
previous two, new features will arise because we will
work in four dimensions rather than in two as for the
Thirring model, and we shall be considering more in-
volved commutators than we did for the derivative
coupling model.

8 We are assuming here that 9, acts on the ETC as a deriva-
tion. This need not be the case in general.
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The currents, corresponding to (3.76), can be defined
as
J(T4; x)=lei§(} F(Tas%;8), £=0 (4.35)
where
J(Ta;%; ) =wp(®) Tap(x+-£)—iJ O(T4: £), (4.36)

with

JO(T4; =¥ (®)Tay(x+£)[0).  (4.37)
An equivalent definition is
J(T4; x)=1§gr}) J(Ta;%;8), £&=0 (4.38)

where
J(Ta;%; &) =3[P (@) T ap (x4 £) — T a ()P (x+£) ]
=3[P ()T ap (x4 &) +P(x+E)T ap(x) ], (4.39)

the two forms being equivalent by spacelike anti-
commutivity. The fields satisfy the canonical ETCR’s

(@) (=)} =vab(x—x'). (4.40)

The ETCCR’s are given by Eq. (3.78), together with
equations analogous to (3.72) for the VEV’s.

We shall now calculate these ETCCR’s by our method
(1.8). Both ;' and j give the same results for the
truncated commutator in this case, but we shall work
with j for future convenience. Using (4.40) to evaluate

Li(Ta; 25 8),5(Ts;2"; €)1,

we obtain a well-defined function of £ and ¢/, with a
well-defined limit as £ — 0:

lim [7(Ta;; 8),5(Ts545 €)1
= —HP(@) TY(2)o(x+E—x) — (") TY(a+ D3 (x—x')
+P(e+HTY(2")s(x—x)

— (@) TY(x)o(x+E—x)}, (4.41)

where we wrote

I'=T4ydl'p, T'=Tpyda. (4.42)

Writing

3(x—x'+§) = 8(x—x")+&- 3d(x—x)+3(§- 8)%(x—x’)
+3(E 9)°3(x—x)+0(&), (443)
Eq. (4.41) becomes

lim [j(Ta;%;8),7(Ts; 475 €)]
=1L (L5 ;5 §)— j(T; 2; §) Jo(x— x) — $[P() TY(w+§)
—¥(r+ Ty (x) L€ 9(x—x')+5(¢- 8)%0(x—x')

+3(&- 9)%6(x—x)+0(&)].

Since j'(T'4;;%) has the finite limit j(Ta;%) for
£— 0, it follows from (4.36) that

lim §(e) T e )6=Lim J O(L'a; .

(4.44)
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Using this and (4.38) in (4.44), we obtain

lim lim [(T'; 3 £),5(Cp;05 €)= 7T, s 15 )
Xo(x—x)—% %1}}(} [TO(T; §—J O(T; —§)]

X[€- 9(x—x)+5(&- 9)%(x—x)
+3(& 9)%(x—x)+0(&)].

Since J© is a ¢ number, we see that our definition (1.8)
of ETC reproduces the result (3.78) obtained from the
orthodox definition. We have the rigorous result

Ielfo’ ;érj}, {[7(Ta;%;8),iTp;2'5 £)]—(0]-- - |0)}
=1j([T4,T5]Js; x)6(x—x')
=[j(T4;),7(Ts;3)Ir,

where T denotes the “truncated” commutator defined
by Eq. (2.11).

(4.45)

(4.46)

D. Free Fields, Vacuum Expectation Value

Since the truncated commutator is all that is required
in practice, we could stop here—content with our
result. It will be very convenient for later purposes,
however, to explicitly consider the VEV. We first make
the incidental observation that for the V—A algebra
(T'=v4\ or ygys\), the JO(T'; £ vanish identically
(since £,=0), so that the simple equations

[7(T4;%),7(Ts; 3)1=1j([T 4,T5]s; %)3(x—x')
(V—4 algebra) (4.47)

are valid in this case. Thus the free-field Wick prod-
ucts form a representation of Gell-Mann’s ET V—A4
current algebra.?

For Ta=vi, I'z=vs however, the J® do not
vanish. This case will occupy us for the remainder of
this section. We write

ejlyui % 8)=7u(%;8), ef'(visx;=7./(x;8), (448)
and
TO(yi; ) =T @(§) =T V()&= =T (—£), (4:49)
so that (4.45) becomes
Jim [ji(e; 8),74(a’; €)]=—e* lim J:©(8)
X[&- 35(x—x")+3(¢- 3)?6(x—x')
+3(& 9)%(x—x")+0(&) ]

Let us investigate the properties of (4.50) by using
the known behavior of J;®(¢). We can put

@ (&) =tryiSr(§) ,

Sr(§)= 0| T¥(x+)¥(x)|0).

(4.50)

(4.51)
where
(4.52)
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Only the leading singularity of Sz(¥) for £¢~0,
v-§
SF’(E)"’; -ET ) (4.53)
will contribute to (4.50).56 Thus we can use
2 &
T O(E)~— = . (4.54)
7{'2 }:;4
If we formally define
) . 2 &4
Ju@=lm J;©(§)§=1lim — —, (4.55)
[3) 20 72 £
Juan®=lim 7,00 fibm=lim — oo 456
un @ =lim J; (O&kn= im = o (4.56)
2 &&ikméa
Thimn @ =lim J,O(DEifnfr=lim ————  (4,57)
£-0 £->0 7['2 54
then (4.50) becomes
Jim Lje(s £),7s('; §) 1= — 818 (x—x)
—-%82.71;{".(0)613”.5(&- X')
— %82]kzmn (0)316,,,3,.5(){— X/) . (458)

We see that our method has reproduced the essential
form of the correct result (3.72) for this ETC, but our
coefficient (4.57) of the 9%5(x—x’) term is ambiguous,
whereas the correct coefficient is unique. Indeed,
(4.57) has a (finite) value which depends on how the
limit £— 0 is taken. What has happened is that,
although the limit of j,(x;£) for £ — 0 gives j.(x) no
matter how the limit is taken, the result of (4.58) does
depend on how the limit is taken. This type of am-
biguity is typical of the type which occurs when space
and time limits are interchanged.®” We shall see in
Sec. 6 that it is directly related to the usual amgibuity
which arises when an invariant amplitude is de-
composed into the sum of a 7" product of currents and
an ETC.

Since all limits give the same current operator, we
must find some other criterion for choosing among the
possible limits to use in (4.58). If no such criterion
existed, then our method would not be useful in this
case. Fortunately, we have the exact expression for the
correct commutator given in (3.72) and we should, of
course, take the limits in (4.58) in such a way that
(3.72) is reproduced. We cannot then claim to have
derived (3.72) by our method, but we shall see in
Sec. 5 that the above ambiguity is the only one that
occurs in all orders of perturbation theory. Thus re-
solving the ambiguity here will enable us to uniquely

66 Actually, another term in Sp(£) will contribute a finite
quantity to the first term in (4.50), but this is negligible compared
to the infinite contribution of (4.53).

67 See, for example, Ref. 37, footnote 9.
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determine the commutator in all orders—namely, by the
requirement that it reproduce the unambiguous part of
the known commutator (3.72) for ¢2— 0 (dividing out
the trivial e? factor on each side).

Let us first note that, independently of knowledge of
(3.72), the limits (4.55)-(4.57) should be taken in a
rotationally invariant way in order to maintain spatial
symmetry. Thus we write

sz(0)= e 51.;1 5 Jklm(0)= 0 (459)
and
T iimn @ = (2/7%)CXp1mn (4.60)
where
Xitmn= 0k10mnt 0kmOint 0knbim. (461)
Then (4.58) becomes
Lir(®),54(x")]
= —e20 9;0(x—X)— (e2/7%) CIAS(x—x'). (4.62)

Comparison with (3.72) (using ijo= ji) now gives
C=+. (4.63)

That is, we are to resolve the ambiguity in (4.57) by
setting

Ex&ibnéa
m =15Xktmn - (464)
£0 £
Thus
Lix(®),7a(=") ]
= —¢20 9;0(x—x")— (€%/1272) 3, A8 (x—x'). (4.65)

We note that (4.64) is not quite the result obtained
by averaging with a spatially symmetric function with
unit integral, which would give (1/15)Xymn. Neverthe-
less, (4.64) is what is required to reproduce the orthodox
result (3.72). We shall explicitly show in Sec. 6 that
(4.64) is also correct in fourth order. We remark finally
that, given (4.64), our method reproduces all of the
correct free-field Wick product ETCR’s with far
greater ease than that required by the orthodox method.
The 0A8(x—x’) term, in particular, arises in a very
natural way, as in (4.44).

5. PERTURBATION THEORY

We are now ready to use our definition (1.8) to derive
ETCR’s in all orders of perturbation theory. All of our
examples will be taken from quantum electrodynamics,
whose electric-current operator, after all, is the model
for all the currents of current algebra. In this section,
we shall only calculate the commutators. Section 6 will
be devoted to showing that they are consistent, useful,
and explicitly valid in low orders of perturbation
theory.

A. Field Commutation Relations

The field ETCR’s that we want to use are essentially
those given by Kéllén1s:
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{Va(®) Ys(a")} = {Yal®), Psa)} =0, G.1)
{Va(®) ¥s(x)} = v18aZ118(x—X) , (5.2)

[4,.#) Yalx)]=0, (5.3)
[4,(x),4.(«)]=0, (5.4)

[(")4A M(x)>AV<x,):| = [23_15;:»_ (Zsﬁl— 1) 5;‘461;4]

Xo(x—x'), (5.5)
(044 4(2),04/4,(x") = — (Z57'—1) (6440, 0,49,)
Xoé(x—x"). (5.6)

Ignoring for a moment the divergences of Z;~! and
Z51, let us discuss the validity of these CR’s. We first
must emphasize that they are specifically supposed to
hold only in the Gupta-Bleuler’® gauge, which is
covariant and such that the vacuum state is a true
no-particle state. This gauge will be used throughout
this paper. It is the one for which the dimensional
arguments given below Eq. (3.52) are valid.5® We shall
furthermore require that

(0] 44(x)[0)=0. (.7
Thus our field equations are
O4u(w)=— ju(=) (.8)
and
(v 0+m)(x)= f(x), (5.9)
where

(9,,14,,("’) (x) [@) =0

for physical states |®).
Equations (5.1)~(5.6) can be formally derived from
consideration of the spectral representations3

(010442, 4,(3) 1|0} = / ) da{[awﬁ?]&m

—[%‘:—)ﬁm(a):la“a,] Aw—y;a) (5.10)
and

O] {¥a(@)Ps()}10)
- —i/ dx [6(k—m)+ (k) 1Sap(e—y; 1), (5.11)

where -
1 7(a)
Mz—/da———, (5.12)
2 a?
a(x)=0 for k&[—m,+m ], and
S(x; 0)=(y-0—x)Alx; «2). (5.13)

% S. N. Gupta, Proc. Phys. Soc. (London) 63, 681 (1950);
K. Bleuler, Helv. Phys. Acta 23, 567 (1950).

 The point is that if, e.g., 4,=A4,+M3,9,4,, then the short
distance (¢) behavior of products involving 4 will be worse than
those involving 4 by a factor of {~2. This leading singularity will
then not be mass-independent, since M must have dimension
(mass)~2 Furthermore, 4, will not satisfy the usual ETCR’s.
See H. Rollnik, B. Stech, and E. Nunnemann, Z. Physik 159,
482 (1960).
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Equation (5.10) can be derived from (3.41) and the
assumed asymptotic condition

(01 4,(x) |v,k)= (3,+M 3,0,)(0] 4, (x) | v,k) ,

where |v,k) is a single photon state with momentum &,
valid in our gauge. Taking ET limits inside the spectral
integrals, and assuming that the commutatorsare
¢ numbers, (5.2) follows from (5.11) with

(5.14)

Zi = l—f-/dx a(k), (5.15)

and (5.4)-(5.6) follow from (5.10) and (5.12) with

7(a)
Zil= l-f-/da—— . (5.16)
a

In view of our lengthy discussion in Sec. 3, we cannot,
of course, immediately assume that the ET limits com-
mute with the integrations. Let us show, therefore,
that the procedure is valid in this case. We know that
in perturbation theory the leading singularities of
products of field operators at small distances { are given
(within logs) by dimensional arguments,!3:14:58 so that

(@u—yu~~0)
Pl)~,
A@)Ay)~i2,
AW (y)~i°7,
A@A)~c2,
A@A@G)~i. (5.17)

Also, leading lower-order singularities occur as mass-
independent coefficients of local-field operators.13:14:56
Now, by locality, the ETC’s, if they exist, must have
the form

N
2, E.(x)0"8(x—y).

Thus, since 8(x—y)~{¢? and 9x8(x—y)~{% we see
that (5.1)~(5.6) are the only possibilities and, further-
more, that the renormalization constants are at most
logarithmically divergent. Also, since the leading
singularities are mass-independent, the commutators
must be ¢ numbers. Indeed, the only possible g-number
commutator allowed by (5.17) would be a term A4 (x)
X &(x—x’) in (5.6), but this term cannot be present by
charge-conjugation covariance. We remark finally that
(5.2), (5.5), and (5.6) can be derived from (5.10)-(5.12),
(5.15), and (5.16) by the method of Sec. 3 using the
known behavior of the spectral functions 7(a) and o().

Now let us consider the fact that Z,~! and Z3! are
divergent. This implies that the ET limits (5.2), (5.5),
and (5.6) do not exist in the usual sense. Thus (5.2),
for example, should be replaced by

{Val) ¥5(9)}

=18V (20— ¥0)8(x—y)+Qap(x; ), (5.18)
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where
W(r)= 1+/dl€ a(k) coskr (5.19)
and
Qx5 y,0)=0, (5.20)

in the sense of distribution theory. Equation (5.18)
formally gives (5.2) for {— 0 but, in a rigorous analysis,
one should use

lim W= () {0 a(2)¥s(,204 1)} = Yagad(x—y) . (5.21)

Equations (5.5) and (5.6) should be replaced by similar
equations. This complication does not restrict the
effectiveness of our proposal (1.8). One need only take
the 7— 0 limit before the £ & — 0 limits. In this and
the following section, however, we shall continue to
work with the somewhat formal ETCR’s (5.1)-(5.6).
This will simplify the calculations and enable us to
work more familiar quantities. This simplification,
furthermore, will not essentially change our results.
The reader interested in a completely rigorous analysis
can assume we are working only to fourth order in e.
There, only the free-field commutators (Z1=2Z3=1) are
relevant, but our essential results are nevertheless dis-
played. In the Appendix, we shall discuss the effects
of using (5.21).

B. Current Operators

We shall next exhibit the current operators defined
by Egs. (5.8) and (5.9). They have been derived and
discussed in I. The electric current can be written

W@=lim 5 9, &=0, (5.2

where

Ju(w; &) =%ie[P(eyyab(x+E — v (@)P(x+8)]
+eTu(§)[E A(@)+5(E-0)%- A (x)—Fe2:(§- A (%))*:]
—eC(£)9,F () —eC’(£2) (£ 0) &F 1o () — K1(£%) 7, ()

—Ky(8)E.E-j(x). (5.23)
Here

Ju(®) =)o+ 0)=t[v,G(8)],

and C, €', K,, and K, are functions with logarithmic
singularities for £2— 0. They are defined in I but need
not be specified here. G(£) can be taken as the Green’s
function

(5.24)

G(&)= (0| TY(x+£¥(x) |0}, (5.25)

and we can write

JM(E)=]($2)EM‘ (5-26)

Finally,
A,(x)A4 ‘(x)AA(x):=}'i—1:I(} Qa3 n), m0=0 (5.27)
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where
Qor(x; 1) = A, (x+ 1) A (%) Ax(5— 1) — Basan*(n) A= ()
- B3vx)\aﬁ(77)A a,ﬁ(x) - B4vx)\aﬂ7(77)A a.ﬂy(x)
_Bﬁvx)\a(n)ja(x) ’ (5.28)

with Bg(n) having a logarithmic singularity for — 0,
and L o
B3;=B;3+B;, Bs=Bs+B,,

Bo,in(1) =Dy (1)0x%+Dir(n) 8,2+ D (21)8,~
Bi8(1) = Dy(n)8x%n°+ Do (n) 8,0 ,
Bua(0) =3D,(n)0x*nPn"+5 Do (n)8,*nPn” .
Here B; and B, satisfy
Bye8Aas=1B,eF0a, Bos14xpv=1B,8vFar  (5.30)

(5.29)

respectively, and D(n) is the Green’s function
D, (n)={0| T4,(x+n)A(x)]0). (5.31)

The weak limits (5.22) and (5.27) exist and yield
mathematically well-defined (finite) operator-valued
distributions in each order of perturbation theory. The
subtractions needed to define the currents as the finite
parts of local field products correspond to the usual
renormalizations™ required to make their matrix
elements finite.

We now let j.(x;£n) represent (5.23) before the
7 — 0 limit (5.27) is taken. Thus

Fu(@)=lm lim 7,(x; &7). (5.32)
£->0 70

In order to simplify our expressions, we shall require
that the limits £— 0, n — 0 be taken in a spatially
symmetric way. Then we can write

Jala; &) =%ie[P(x)yap(a+ &) — v (@)Y (@+E)]
—6R1(£2)a,,F4,—K1(£2)j4, (5-33)

and

gu(w; £n) =3ie[P(@)yb (@48 — v (@) (a+£) ]
—eC(£)0,F 1,— Ra(£,1) 0:F ri— Rs(£,m) jr+e2T 1 (§)
X{&-A+§(E-0)%-A—ge[E-A(x+n)E- A(x)é- A(x—n)

— £ Ei(n)E- A—EEDiyi(n)(n-0)%-AT} . (5.34)
Here we have defined
E(n)=2D(n)+D(27) (5.35)

and have introduced new scalar functions R;, R,, Rj
which are combinations of previous ones. They each
have logarithmic singularities at zero.

Let us compare our rigorous expressions (5.32)-(5.34)
with the current given by Killén3t:

Ju(®) = Fie[P(@),7,(@) 1+ Zi7 (1= Z3) 0,F (%)
F+(A—Z ) jux). (5.36)

The main formal difference between the currents is the

0 K. Hepp, Commun. Math. Phys. 2, 301 (1966).
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presence of the term Jix(£){---} in (5.34). This term
insures that the current is gauge invariant.” It must
be present in order for the limit (5.32) to exist and
define an operator. It is not present in (5.36) because
gauge invariance is usually enforced by explicitly dis-
carding any non-gauge-invariant terms which arise in
calculations. It is, however, an important part of the
complete current operator in perturbation theory. We
emphasize this matter because it is this term which
gives rise to the g¢-number structure of the ETC
[.7 k;j 4:'-

Apart from this term, the currents (5.32)-(5.34) and
(5.36) are formally quite similar. Indeed, it is not hard
to show from expressions given in I that formally one has

Kl(O)—"—‘—"(l'—'Zf'l), eC(O)=“‘Z1_1(1—‘Z3). (537)

At this point, it would be a simple matter to use
(5.32)-(5.34) together with (5.1)-(5.6) to calculate the
ETC [j,j+] by (1.8). Essentially, the same result for
the truncated commutator would be obtained, how-
ever, if we first make the formal substitution

eRy=eC= —‘Zl_l(l—Za) s R2=0,
Ki=R;=— (1——21—1) , (538)

in (5.33) and (5.34). This will shorten the calculation
and again enable us to work with familiar objects. The
correct truncated ETC will differ from that obtained
by using (5.38) by at most a multiplicative constant.
Again the reader interested in more rigor can assume we
are working only to fourth order, in which case it is just
as easy to use (5.33) and (5.34), since only the spinor
parts will contribute to the truncated ETC. We
emphasize that the simplification (5.38) is introduced
for convenience only. The rigorous expressions (5.33)
and (5.34) will be briefly considered in the Appendix.
Thus we write

Ja(x; §) =3ieZy () [P (x)yap (x4 &) —y b (2) P2+ £) ]
+[1—Z5(8) 70, Fu(x) (5.39)

and

(s £m) = 51eZy(E) (@) vb (v &) — v (x) (x+£) ]
+[1—-Z5(&)J0,Fiu(2)+-€2Z1(E) TR () - -},  (5.40)

where

Z1(0)=Z17 Z3(0)=ZS-

These can be considered as the minimal extension of
(5.36) required to make it consistent with gauge
invariance.

The above expressions for the electric current
are manifestly negative under charge conjugation
(e4e'=—4 in our gauge). It was shown in I that
Ju(x) could also be represented in a form which is not
manifestly C-covariant but which is useful for other

1Tt is explicitly shown in I that (5.22) is invariant under
¢-number gauge transformation of the second kind. The spinor
term in (5.23) alone is not so invariant, because of the divergence

of P(x)y(x+£) for £ — 0.
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considerations. We have

]“(x)=lei£l'; jﬁll(x; E), £0=07 (5'41)
where, employing (5.38),
Ju' (x5 &) =1eZ1(E)P &)y (w+§)+[1—Z5(62)]
X 0,F (%) —1eZ1(§)T u(£)E(w; £), (5.42)

with?

8(w; &) =1+1ek- A+ie(- 0)E- A+gie(£-0)%- 4
—ge2i(§-A)2—Fet-0:(8- A)i—gied:(§- 4)%. (5.43)

Here
14 (1) 4,():=1im [A,(5) 46— )= Do)
=lim [A4,(x+n)4,() — Du()]
=lim [A,(v+n)4,(+—1)—Diw(2n) ]. (5.44)
Using the fact that
lim Z; (82 ¢=lim Z; (2 ¢=1lim G(§) £=0, (5.45)
£-0 £-0 -0
it is easy to see that

Julw; &) =307,/ (x; O+ 5./ @+ ¢, — 5]
=307/ (x; §)— €4/ (x; )e]  (5.46)

apart from terms which vanish for £ — 0. For use below,
we also note here the relation

0=lim Lw (x5 ©— 3/ (x+& —8)]
=lim {ieZoZ [ (@) rid(a+ ¥ (ot Hrad ()]
—ieZiZi [ 2— (k- A)1:— 36’ 0:(§-4)% ]} . (5.47)
This completes our discussion of the electric-current

operator. We next describe the current operator f(x)
defined by Eq. (5.9). It is shown in I that we can write

f(x)=1€i§;f(x;£), £=0 (5.48)
where
flw; 9 =ely A+ D) — Hi(DY(@)
— Hy,(£)0,(x)—H3(§) f(x)].  (5:49)

The only properties of the H; we shall need are the
behaviors
H I(E)NE_la

Hy(§)~In(8?), Ha(§)~In(&?) (5.50)

72 Here :43: does not contain the By term in (5.28) which has,
by use of (5.30), been incorporated into the F term in (5.42).
Likewise, Bs has been incorporated into Z;.
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for £~0 and the fact that H; and H, are of order e,
and Hj is of order ¢2. We can also write

Jla; &) =e[1+eH () 17y A(a+ O ()
— Hy(§)Y(%)— Hou(§)9,4(x)].  (5.51)

C. Commutation Relations

We can now use our proposal in order to calculate
some ETCR’s. We begin by using (5.51) to derive a
useful field ETCR. Commuting Eq. (5.9) with 4,(x"),
assuming the commutator can be taken inside the limit
(5.48), and using the ETCR’s (5.3) and (5.4), we find

v 0a(x),4,(x)]
= —leo e[ 1+eHs(§) T Hau(H)[dap(x),4 u(x) ]

This equation is only consistent provided that

[0 (%), 4,.(x")]=0. (5.52)
Next we use (5.3) to obtain®®
0=04[¢(®),4u(x")]=[0a(x),4,(s")]
+[¥(),0.4,(x")], (5.53)
which, with (5.52), gives
[¥(#),044 ,(x")]=0. (5.54)

The ETCR (5.54), which we have derived, is one of the
usual canonical ones. An analysis similar to those
presented earlier in this section shows that the ETC
must have the form Ké(x—x'), with KX a ¢ number.

However, (0|¢(x)4,(y)|0)=0, so that K must vanish,
in agreement with (5.54).

Let us next calculate the ETC of j; and ¢. Using
(5.41) and (5.42) [or (5.22) and (5.39)] and
(-),,F4,,= nv A—AA4 , (555)

together with (5.1)-(5.3) and (5.54), we obtain
Lia(x) ¥ (") ]= lim [ 74 (e; O)(+)]
= —ie 123}) ZA(E)Z (e +Ho(x—x))

= —ieY(x)d(x—x). (5.56)

We thus find the usually assumed value for this
commutator.

A difficulty now arises when we attempt to use our
method to calculate the ETC of j; and 4,4 Using
(5.42), we obtain

Liv' (w5 £),41,4(%") Jr =162, Z52T ([ £18- A+-2£,(£- 9)
X&-A+gieti:(£-4)2:5(x—x").  (5.57)
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Formally defining
Ju=1lim J.(8)4,
§-0

Jkim= lelgé Ji(®)&ikm )

Jktmn= 12133 Jk(s) §i1émén, (558)

this becomes

Cin(®),A1,4(x") 1" =16 Z1Z5 [T kimA m+ 3T kimnOmd o
+3ieT bimn:Amd n10(x—x"), (5.59)

the prime denoting that ji'(x;£) was used. Using
(5.40), on the other hand, we obtain

[7x(x; 8),41,4(8") Jr=—3€*Z:Z5 2T n(§) £1:(8- )%
Xéx—x"), (5.60)

which becomes

[j(x),41,4(2") Jr
= _%34ZIZ3—2Jklmn :AmAn:s(X’_ X,) . (5.61)

Since (5.59) and (5.61) differ, we see that our defini-
tion of ETC depends on which sequence, (5.42) or
(5.40), is used to represent j,(x). This difficulty, how-
ever, is easily resolved. Indeed, (5.59) cannot be correct,
since it is not covariant under charge conjugation.”™
This arises from the fact that the sequence (5.42) is not
manifestly negative under charge conjugation. This can
be put more sharply by considering the sequence
{7¥'(x; )£} which converges to the null operator 0.
Our definition would imply that

[O,A z,4(xl):|1‘l = Ielir(l) [jk/(i‘ﬁ; £)&mA 1,4(9‘5’)37'
= ’[632123_2Jk1m”A n&(X“" X’) N

an absurd result, since any definition of ETC should give
[0,B]=0 for all B. No such contradictions for truncated
commutators arise if the manifestly charge-conjugation
negative sequence (5.40) is used. We conclude that
commutators cannot, in general, be taken inside the
limits j(x)=limg.o j'(x; £) or 0=limg.o 7' (x; £)£.7 The
same is true for the limit expressed in Eq. (5.47). We
shall therefore use the sequence j(x;£) in connection
with our definition of ETC in the remainder of this
paper. In particular, we assume that (5.60) is correct.
(J #tmn will be evaluated below.) This will be explicitly
verified in fourth order in Sec. 6.

73 We are here demanding that any ETC should transform as
an ordinary product with respect to internal symmetry groups.

74 Tt is in general dangerous to take ET limits inside of sequences
of the form j'(x; £)£. We shall never assume that this can be done.
Likewise, it is in general incorrect to take limits inside of repre-
sentations of field operators in terms of each other, obtained from
a current operator, such as

A4 =3 im L) yad o+ —vid 0 -+ T8 (T

See R. A. Brandt, J. Sucher, and C. H. Woo, Phys. Rev. Letters
19, 801 (1967).
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In a similar way, we easily derive
[jr(%),44,4(2")Jr=0 (5.62)
and
[]4(x),Au,v(x’)]T= 0. (563)
Since £,=0, we can combine (5.61)~(5.63) into
Lie(®),4 40 (x") Ir
= _%64Z1Z3_26v4]xuaﬂ A4 uAﬂ :6(X—X’) . (5.64)

We now come to our major concern, the calculation
of the ETC of ji and js. Here we shall keep both ¢
numbers and ¢ numbers, since a well-defined dAS(x—x")
c-number term will arise. It follows from (5.1)-(5.6),
(fl.54), (5.39), and (5.40), with {---} given in (5.34),
that

m [ &n),ju('; €)]
= =3 Z:1Z5 [P () v (vt 5 — (et Evid(x) ]
X L& 0+3(-9)+§(¢-9)TIo(x—x) — Za(1~ Zs)
XZ 2T [ 14 de?(8) - EJ¢— §e?
XL(&D) - (Ax) A (x—n)+A(x+n)4 (x—n)
+4(+n)4(2))]E}08(x—X) — §e'Z1(1—Z5) Z5~2,,
X{(£8)-[A (w+n)A (x) — A (%) A (x—1) ¢}
X 006(x—x')— §e*Z1(1— Z3) Z 52T 1 { £+ €2(§8)
X Dnt—3e2(£8) - [A (x+n) A (x)+ 4 (x) 4 (x—n) ]

X Enn}9998(x—x'), (5.65)
apart from terms which, by virtue of
lim G(§)§*= lim D(n)n*=0, (5.66)

vanish for £ — 0. The first term in (5.65) arises from
the spinors in j, as in Eq. (4.44). The remaining terms
arise from use of (5.4)-(5.6).

We now use (5.47) in the first term of (5.65), and
(5.44) in the remaining terms to obtain

lim lim (s £m), 7’5 £)]
=—e2ZZy [ 1—Fet:(E 4)%:](¢- 8)d(x—x)
— 3622, 25711 (E- 9)26(x—X)

— 160 Z 2 (£ 0)%8(x—X"),  (5.67)
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apart from terms which vanish as £ — 0. Thus we find
[@,da@) 1= lim | Cinles ' €)]

= —¢221 252 110:0(x—X)— 222125 kim
X 019m0(x—X")— 2622172572 timn
X[30:0m0n—e2:4 () A m(x):0x ]
Xé(x—x'), (5.68)

where the J’s are given by (5.58).

In order to calculate the J’s, we shall use the repre-
sentation (5.24), (5.25). Since the £— 0 limit is to be
taken in a spherically symmetric way, and since
G(§)~E£3 for £~0, we see immediately that

Ju=00, Jun=0,

(5.69)
and

]klmn= kalmn (5'70)

for some constant K, where X is given by Eq. (4.61). To
determine K, we consider the spectral representation
for G(£) which, in view of (5.11), can be written

G(£)=/dx [o(k—m)+a()ISk(§6).  (5.71)
Thus

Jktmn= lEi*mO Jk(g) glé’"é"
= lel—rftl) tr[’YkG(E):]glmen
e /dx[&(x—m)-i—tf(")]
lelg(l] trI:'YkSF(E; K)]Elsmgn . (5'72)

Using (4.53) and (5.15), this becomes

2 bbbk
Titmn= 21— Sibiknbn (5.73)
xt g

We now require that, after dividing out the trivial
e? factor, Eq. (5.68) reproduces the free-field result
(4.65) for e2— 0. It is clear from (4.50), (4.57), (4.58),
(4.62), and (4.63) that this requires us to use (4.64) in
(5.73). Thus

]kl'lnn: 21—1(1/67r2)xklmn 3
and (5.68) becomes

[je(®),7a(a) ]= — €20 9xd(x—x') — €2Z572(1 /127 ?)
X 0;A8(x—x")+¢*Z572(1/127 2)[:A (%) A () :0

(5.74)

+2:41(x)A4:(x):9,16(x—x"). (5.75)
The truncated ETC is
[7x(®),ja(a") Jr=e*Z572(1/127 %)
X[ZA[A[:ak+22AkAzIal]5(X—Xl), (576)
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and the coefficient of 8;A8(x—x’) is uniquely specified
by, e.g.,

30
[t s esmczen .

5.77
1272 ( )

We defer discussion of these equations until Sec. 6,
where it will be explicitly shown that they are correct

in fourth order, where Eq. (5.76) becomes the well-
defined relation

L7k(@),7a(2) 2@ = (e4/120)[:4, 0 4, :0,
+2:4:,94,©:9,16(x—x"). (5.78)
In view of the simplifications (5.1)-(5.6) and (5.38)
which we have employed, Eq. (5.75) can only be ex-
pected to be correct in all orders to within a (possibly
logarithmically divergent) multiplicative constant. We
note, however, that the fourth-order result (5.78) is a
rigorous consequence of the exact expression (5.23) for
the current and the meaningful free-field ETCR’s ob-
tained from (5.1)-(5.6) by setting Z;=Z;3;=1. Indeed,
in fourth order, only the spinor terms in (5.33) and
(5.34) contribute to the truncated commutator, and
these give a term of the form

e (WHPDE-08(x—x)+---].  (5.79)

The fourth-order g-number part (5.78) of (5.79) follows
from the rigorous relation

0=1lim { @) v (et O+ ()P (x+ 8 &
—Ju(B[2—ex(¢- )28} (5.80)

and the free-field ETC of ¢ and ¢.
As a final example, we consider the ETC of j; and
7s. Using (5.33), we easily obtain the expected result

[, ) 1= Jim, Lo 074’3 €)1=0, (58D

rigorously valid to all orders of perturbation theory.
This follows essentially from the facts that J4(£)=0
and [8,F4,(x),9,'F 4,(x") ]=0.

6. DISCUSSION

In this section, we shall discuss the ETCR’s which
were derived in Sec. 5. Our aim will be to show that
these relations have the desirable properties mentioned
in paragraph (i") of Sec. 1. In particular, we shall show
that they are consistent with such general requirements
as gauge invariance and that they are explicitly correct
in fourth order. We shall also compare our results with
those obtained by other means of calculation.

A. Commutator (5.56)

We begin with the very credible relation (5.56). 1t
can be used, for example, together with current con-
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servation, to derive the Ward-Takahashi identity?5:76
and its extensive generalizations.” The simplicity of
these derivations compared with the direct derivation
given in I (Sec. 7) strongly supports the usefulness of
incorporating meaningful ETCR’s into field theory.

Equation (5.56) is also of interest in that it is a con-
venient mathematical representation of the fact that
the physical charge of the electron is e. Indeed, defining
the electric charge as

Q=—-ifdx 74(x), (6.1)
so that (5.56) becomes
[O¥ (@) ]=—ea(x), (6.2)
the desired result
@'|Q]p)=e(2m)*3(p—p’) (6.3)

follows immediately from inserting a complete set of
intermediate states in the vacuum-electron matrix
element of (6.2).7® Equation (6.3) also follows directly
from the usual formalism?9:

(0’| Q| p)=(2m)*8(p—p")e(m/ po)a(p)

X [P4(O)+ H4M(O)DMV (0) Fv(P;P)]%(P)
= (2m)*3(p—p")e(m/ po)@(p)ysu4(p)
=¢(2m)*3(p—p’).

Equation (5.56) also shows that ja(x) is the generator

of local gauge transformations on . This is not quite
the case for 4,. We find

[7a@),4,(x")]=—(Zs'—1)a,8(x—x).  (6.4)
However, we still have
[0,4,(x)]=0, (6.5)

corresponding to the photon’s lack of charge.

B. Commutators (5.76) and (5.61)

In contrast to (5.56), the ETCR (5.76) is somewhat
surprising. It has usually been assumed that (5.75) is a
(nonvanishing) ¢ number, so that (5.76) vanishes. We
shall therefore present a detailed discussion of the con-

76 'Y, Takahashi, Nuovo Cimento 6, 370 (1957).

76 We disagree here with the criticism of Takahashi’s deriva-
tion advanced by K. Bardakci, M. B. Halpern, and C. Segre,
Phys. Rev. 158, 1544 (1967), Appendix. These authors seem to
neglect the ,9,4, term in Eq. (5.36) and hence find an extra
factor of Zs! on the right side of Eq. (5.56). Inclusion of this
term restores the validity of Takahashi’s derivation. (I thank
Dr. M. Halpern for a confirmation of this point.) If, on the other
hand, one could consistently assume 9,4,=0 as an operator rela-
tion, then the alternative derivation of Bardacki et al. could also
be correct. We feel that this is unlikely, however, since this
assumption leads to the conclusion that a certain product of re-
normalized functions is divergent and also that /dxjo(x) is ¢/Zs,
rather than e, between one-electron states, as can be seen from
Egs. (A4) and (A17) of Bardacki et al.

77 K. Nishijima, Phys. Rev. 119, 485 (1960); N. P. Chang and
H. S. Mani, ibid. 134, B896 (1964); R. J. Rivers, J. Math, Phys. 7,
385 (1966); N. M. Kroll, Nuovo Cimento 45A, 65 (1966).

78 See, e.g., S. Fubini and G. Furlan, Physics 1, 229 (1965).

78 This was first shown by G. Killén, Helv. Acta 26, 755_(1953).
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sistency of (5.76) and, simultaneously, of (5.61). We
shall afterwards directly establish these relations, and
in fact all of (5.75), in fourth order. For convenience, let
us here rewrite (5.76) and (5.61) as

Lje(®),ja(x") I

= (4/12122 3% Ximn A 1A m:0,8(x—x")  (6.6)
and

Le(),41,4(2") Iz
=—(e*/127°Z5*) Ximn: A mA n:6(x—X')

where we have introduced (5.74) into (5.61).

We first note that (6.6) and (6.7) are consistent with
charge-conjugation covariance and with the dimensional
restriction on perturbation-theoretic singularities:

dimj j=2 dimA+dimé'=6,
dimjA =2 dimA+dims=>5.

On the other hand, Eq. (6.6) appears to be highly non-
gauge-covariant. Indeed, the left side is manifestly
gauge invariant, in sharp contrast to the right side.
We recall, however, that (6.6) has been derived in the
particular Gupta-Bleuler gauge and hence can only
be expected to be correct in this gauge. This is the
gauge for which the assumed field ETCR’s (5.1)-(5.6)
are valid* and for which the expression (5.23) for the
electric current has been derived.’* Equation (5.7) has
also been assumed valid. Thus (6.6) by no means im-
mediately contradicts gauge invariance. It simply
instructs one to compute matrix elements of the gauge-
invariant quantity [ fz,74] in any gauge by evaluating
the matrix element of the right side of (6.6) in the
Gupta-Bleuler gauge.

However, it is not immediately clear that (6.6) in the
Gupta-Bleuler gauge is consistent with the general
gauge-invariance requirements of quantum electro-
dynamics. Let us therefore attempt to show that this
is the case. We first note that the gauge invariance of
S-matrix elements is always guaranteed whatever are
the values of (6.6) and (6.7). In fact, no on-mass-shell
quantity can depend on them. Indeed, the gauge in-
variance of electrodynamics can be rigorosuly derived
with no assumptions whatever about any ETC’s.
Nevertheless, gauge invariance, together with the as-
sumption that certain often-used formal procedures
are valid, does impose consistency conditions on
ETCR’s.

To see how this comes about, let us consider the
photon-photon scattering amplitude. It can be written,
apart from kinematical factors, as?®

6.7

T,,,)“)‘Z(klkzksk:i) = /dxdy ks o—ika-y 0.0,
X (k| TAu(x)A(y) | kaAs),  (6.8)

80 This representation is valid on the mass-shell in our gauge
even though (5.14) is valid. See R. S. Willey, Ann. Phys. (N. Y.)
45, 167 (1967).
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where | k:\;)=|7) is a one-photon state with momentum
k; and polarization A;, =1, 2. We assume that [1)5=|2)
in order to avoid ¢-number contributions. Now (6.8) can
formally be written as

T2 (krkoksks) = f dxdy e = v(1[ T ju(x) j,(v) | 2)

—ifdxdy etk =ik e v§(xg— 1)
X[ Fu(x),4,,4()]12).  (6.9)

Here we have assumed that the ETC’s [4,4], [4,4],
and [ 7,4] are ¢ numbers. This follows for [4,47] and
[4,4] from the field ETCR’s (5.4) and (5.5), and for
[4,47] from our proposal. Since we want to check our
proposal, we should show independently that [ 7,47 is
a ¢ number. This is easy. Dimensionality gives

[7(),A (") 1= C148(x—x")+Co¥' (x—x') ,

and charge-conjugation covariance gives C1=0.

Now, although (6.8) is well defined and (on the mass
shell) independent of the values of (6.6) and (6.7), the
individual terms in (6.9) need not be well defined, and
they certainly depend on the ETC’s. Let us assume,
however, that the individual terms in (6.9) are meaning-
ful. If this were not the case, then the ETCR (6.6)
would be of little practical value. Then, although (6.8)
is independent of ETC’s involving the current, the re-
quired equality of (6.8) and (6.9) imposes consistency
conditions on these ETC’s. Since we want our ETCR’s
to be suitable for use in expressions of the form (6.9),
we shall require that they satisfy such consistency
conditions.

Let us therefore determine the constraints imposed
by the requirement that (6.9) be gauge invariant. We
find

k4,T“,"1>‘2(k1k2k3k4)=/dxdy e—ika.z—im.yg(xo_ya)
d
XA L7u(2),74(3)112)— | dudy e=aomibev—
ay,
X 8(we—y0)(1|[ju(*),45,4(»)1]2). (6.10)

Again Eq. (6.10) is only formally valid, but, in the
above spirit, we shall assume that it too is meaningful.
Then we see that gauge invariance, which requires
(6.10) to vanish, implies that

8(xo—y0) (1 [7u(*),74(»)1]2)
a
=—35(xo—yo){1|[7u(x),4,,4(»)][2). (6.11)
ay,

The same relation [contracted with the polarization
tensor e,*s(k;)] must be valid for any states |1) and

12)
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We can easily see that our ETC’s do indeed satisfy
(6.11). For u=4, the left side vanishes by (5.81), and, by
(5.63), so does the right side. For u=#, by virtue of
(5.62), (6.11) becomes

d(xo—y0) (1| [jr(x),74() ]| 2)
= 8(xo—yo) (1| [/x(®),41,u()]|2), (6.12)

which is clearly satisfied by (6.6) and (6.7) (since X is
totally symmetric). Furthermore, (5.62) is itself a con-
sequence of (6.11) since the left-hand side of (6.11)
contains no d¢8(xo— o) term.

We conclude that our ETCR’s are consistent with
at least the above requirement of gauge invariance. We
note, moreover, that since the electron-electron matrix
elements of (6.6) and (6.7) vanish in fourth order, the
above argument is sufficient to establish the consistency
of our ETCR’s with fourth-order quantum electro-
dynamics. We shall see below, in fact, that in fourth
order, gauge invariance essentially implies (6.6) and
(6.7). Since fourth-order perturbation theory is a
“model” satisfying both gauge invariance and our
ETCR’s, we can conclude that an ETCR of the form
(6.6) is in general consistent with gauge invariance.

For the same reason, our ETCR’s are consistent
with the field equations. To see an explicit example of
this, consider the field ETCR’s (5.4) and (5.5). They
imply (respectively) that

0=A[4,x),4,(x")]=[A4,(x),4,(x)], (6.13)
ands®
0= 04 A,,4(x),4,(x")]=[4,14(x),4,(x")]
+[A,‘,4(:XJ),A,,,4(OG/)]. (6-14)

Adding (6.13) and (6.14), and using the field equation
(5.8), we find

L7u(),40(2")]=[Apa(x), 4, 4(x")].  (6.13)

It is easily checked that (6.15) is satisfied by our
commutators.

In addition to requirements such as the above im-
posed on ETCR’s by properties of the objects being
computed, there are other properties which ordinary
commutators must possess by virtue of their algebraic
meaning. Abstractly, a commutator is required to
satisfy the conditions

[a,a]=0

(Lol L8y e+ [[v,e]B8]=0, (6.17)

the Jacobi identity, for all ¢, 8, v in the commutator
algebra. Now (6.16) is, by the definition of our ETC’s,
immediately satisfied. Equation (6.17), however, should
not be expected to hold for the following reason. In
deriving, for example, (5.68), we used (5.47). This
latter equation is correct, but, as we have seen, ET
commutation does not commute with this limit £ — 0.
Thus one should not be able to correctly calculate, say,

(6.16)
and
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the double commutator [[ 4,7 ],4;] by commuting A
with the right side of (5.68). Indeed, it follows from
(6.6) and (5.5) that (xo=12x¢=x,")

[L7a@"),76(®) ], A 1,4(x") ]= — (/672 Z5 X ktmn A m
Xo(x—x")0,0(x—x"). (6.18)

Likewise, from (5.39), (5.55), and (5.3)-(5.5), we obtain

lim [.4 () A (x+m),74(x") ]
=(1—2Z3)75[4:0;6(x—x')+4,8/6(x—x")], (6.19)

so that, by (6.7).

[L7k@),A0,4(x"") 1, ja(@”) 1= (e*/67%) (1= Z5 X ptmad m

Xo(x—x")0,.8(x—x'). (6.20)
Finally, (5.63) implies that
[L4:,4(a"),74(x") ], 5k(x) ]=0. (6.21)

We thus see that the Jacobi identity (6.18)+(6.20)
+(6.21)=0 is not satisfied. To correctly calculate the
double commutator, one must return to Eq. (5.65) and
use it without introducing limits such as (5.47) which
do not commute with ET commutation.

C. Explicit Fourth-Order Calculation

Having satisfied ourselves of the consistency of our
results, we turn next to the problem of explicitly verify-
ing them in fourth order. For the reasons mentioned in
paragraph (ii) of Sec. 1, we cannot evaluate [ 7,(x),7,(y)]
and take the ET limit. An indirect method is, however,
available in fourth order. We consider again Eq. (6.9)
in fourth order, which we write as

ea(l)éﬁ(z)TaBkl“)(E):/.dxdy ¢ theomikey

><<1lTjk(x)J'z(y)|2>(4)—i/dxdy et ity

X 8(xo—yo)(1[[7i(x),41,4(»)][2)®.  (6.22)

Here |1) is a photon state &y, A1, |2) is a photon state
— ko, Ny, |1)5#12), €a(1) = € (k1), €a(2) = €4 **(—k2), and
E represents the quartuplet (kl,kg,ksl,k4). We shall also
write 8(k)=8(ky+ks+ks+ks) and 0=(0,0,0,0).

As we mentioned above, the individual terms in
(6.22) are somewhat ambiguous, whereas the sum is
well defined. It was shown in I that one could write

U T () [ 2)®
=lim (1{77(; §7:0) (2@, (6.23)

when 7,(y) was any product of fields 4, ¥ at different
points. Since 7;(y) involves a limiting process, however,
the right side of (6.23) can be ambiguous. Also, al-
though limg.o {1|[7x(x; £),41,4(»)]]2) is well defined,
it is not immediately clear whether the second term in
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(6.22) should be taken as limdo{ ) or §lim{ ). The
former possibility corresponds to our definition of ETC
which we have seen to be a priori slightly ambiguous.
Our purpose now will be to relate these ambiguities.
We shall see that they are all resolved by the require-
ment that (6.22) (with additional terms corresponding
to c-number contributions) also holds when |1) and
|2) are the same state.

We first note that (6.23) only requires the expressions
for the individual currents to third order. By (5.40),
we can write

J@; =21 Z5 ' 71(x; )+ Z5 (1= Z5)0rd ., u(%)
+e2Z,Z5 T k(B[ E- A+5(E-9)%- AT+0(e*), (6.24)

where
Tula; &) =Fie[P(@)yap(a+ &) —yb(x)P(x+2)].
It follows that

(6.25)

f dxdy e~k ==eu(1 | T 7,05 £)7:(5) ] 2)
= ea(Des(2) Uasa®(F; D6(H)+0(), (6.26)

where U o519 (%; 0) is the usual (slightly ambiguous) un-
renormalized fourth-order photon-photon box diagram:

et

€x(1)€5(2) Uagri®(k;0) = Z /dxdydzaiz’e“““"C‘“c ey
!

X Tdovibo@ oy abo(y)doy
X Awo()Poy- A4 Wo(z") ] 2),

where a 0O-subscript indicates a free field. Now, one
easily sees that the remaining terms in (6.24) do not
contribute to (6.23) for |1)|2). To fourth order, they
only renormalize the vacuum expectation value.

Some insight into the meaning of (6.26) from our
point of view can be obtained by considering the
(heuristic) equality

ea(1)€es(2) U npin® (k) =

(6.27)

dydx e thaa—kay E]z Dy

XA TAx()A:(y)[2)®,  (6.28)

where A(x) represents the unrenormalized vector
potential, so that

04 k(x) = FieoZs[yyb 1= %ieZ: 25 [Pyl ]

=775, (6.29)
Since 5
8(xo—y0) [ 7x(#),41,4(y)1=0, (6.30)
(6.28) becomes
€a(1)€5(2) Uagra® (k)
- / drdy e =1 | TR 7i3) |26, (63D)

which is (6.26),
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It follows from (6.24) and (6.26) that we can write

/dxdy e—zk.’x-z—ik4~y<1 ! Tjk(x+ E)jz(y) l 2)(4)
= ea(1)es(2) Uasra®(k; £)6(E).  (6.32)

In particular, the limits of each side of (6.32) will be
the same for any approach to £=0. It is well known,
however, that (by gauge invariance) the fourth-order
renormalized box amplitude is given by

Tapia® (k)= Uaprr® (£)5(k) — U agrr® (k=0)3(E) . (6.33)

Again the individual terms in (6.33) are not well defined
They depend on how the loop integration is per-
formed or, if a regularization is employed, on how it is
removed. If, in particular, the regularization correspond-
ing to £2>0 is used, they depend on how £ — 0. No ap-
proach to £=0, however, will give Uagu¥(E=0)=0.

Comparison of (6.22), (6.32), and (6.33) now gives

7 / dady e~ =ik ug (o —yo) (1| [ fu(x),41,4(y) ]| 2) @
= €a(1)€3(2) Uagra®(k=0)8(k). (6.34)

It immediately follows that [jx(x),4,4(x)] is a ¢
number, and, by (6.12), so is [ jx(x),74(x")]. We can,
however, be more explicit. It follows from Ward’s
identity that?!

Uspna®(=0)= —lim ¢* / dp e?"t950:01) o« (p)

= —(2r)%e 151113 J O (D) &bt

=— (2#)4ie4]a3kzm> . (635)
Now Jasr©@ and hence [4x,41,4] depend on how the
£ — 0 limit is taken, corresponding to the ambiguities
in the individual terms in (6.33) and in (6.22). We saw
previously that our definition of [ji,4:4] [see Eq.
(5.60)] depended on how ¢{— 0 was taken, because
the individual termsin j(x; £), particularly ¢(x)y¥(x+£)
and J(£)(£-4)3 had such a dependence, although their
sum did not. We see from (6.34) that these ambiguities
are precisely the same. This also follows from the fact
that in fourth order the purpose of the J(£)(¢-4)3
term in j(x;£) is to renormalize U® (k) by removing
U@W(k=0) from it. This will be discussed in more
detail below [Eq. (6.42)].

Now, (6.35) cannot vanish for any approach to £=0.
In fact, (6.35) is given a definite finite value by the
requirement that in the analog of (6.22) for the vacuum
expectation value, the ETC expression, in connection
with (6.12), reproduces the well-defined orthodox
Adé(x—x’) term. That is, all ambiguities are resolved
by the requirement that (6.22) [ with suitable additional
terms corresponding to the ¢-number ETC’s [A,4.],

81 See I, Eqs. (5.44), (6.49), and (7.74).
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etc.] holds for all states |1) and |2). This follows from
the results of Sec. 5 in order e? [which is actually
sufficient to define (6.35)] and will be established below
in order e*. Thus we must take

Jaﬂkl(o) = (1/677'2)Xklmn y a=m,

=0, a=4 or

the second line corresponding to £:=0.

We next observe that the most general form for the
ETC allowed by dimensionality and charge-conjuga-
tion covariance is

[ie(x),A,4(8") Jr=eM g :Aadg: 8(x—x').  (6.37)
On substituting (6.35) and (6.37) into (6.34), we find

Zioea(1)es(2) M apia® / dudy ¢iGrtkatkstho -25(;— )

= —(2m)*ietea(1)€3(2) S a1 @8(k) . (6.38)
Hence
M oapra® = —%6T 0pia @,

and, from (6.36),

Lr(x),41,4(x") Jr®
=— (/120 Xptmn :An® A, @ :5(x—x), (6.40)

in exact agreement with (6.7) in fourth order. Equation
(6.6) then follows from the general requirement (6.21)
of gauge invariance. Thus we have succeeded in verify-
ing that Eq. (6.6), which we previously derived by
interchanging the equal-time and £— 0 limits, is
correct in fourth order.

We mentioned above that in fourth order the purpose
of the J(£)(£-4)* term in j(x) is to renormalize the
photon-photon box diagram.®? In order to see this in
the present context, we write the box diagram in the
form

ea(1)ea(2)ex(3) Tasy (k)

(6.39)

="/ dy e %(1; 3] ju(y) [2)®. (6.41)

To evaluate (6.41), we need the expression (5.40) for j
to fourth order. Taking |1)7[2)5<|3)5 [1), only the
Ji(x; &) term (6.25) and the ge'J . (£)(£-4)3 term [in
(5.34)] will contribute. Then (6.41) becomes

ea(Des(2)e5(3) Tapni (k)

=- / dy e+ v(1; 3] 1) |2) W — §e gy @ ] dy

Xem#ev(1; 3| Aa(y)As(3)A4(y) | 2)©@
= €a(1)€3(2) €5(3) U g @ (k) 3(R)+ (27) Hie*ea(1)
X €(2)€4(3) T apr1 (k) , (6.42)

82 In higher orders, it renormalizes all diagrams containing the
box diagram.
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which, by virute of (6.35), is the same as (6.33). The
A3 subtraction in 7 is thus seen to provide the U(k=0)
subtraction in T'(%).

Having explicitly verified (5.76) in fourth order, we
next turn to the problem of verifying the entire com-
mutator (5.75). If we had considered the generalization
of (6.2) which allows |1)=2), the ¢-number terms in
(5.75) would have contributed. In particular, using
(6.12), the 0A8(x—x’) term would have been present,
with a coefficient involving the same £ — 0 ambiguity
as in (6.35), exactly as in (5.68). This ambiguity was
resolved by requiring the coefficient to be such that the
orthodox ETC is reproduced. In second order, we saw
that this required us to use (4.64), and this was also
used above. For consistency, we must show that (4.64)
is also correct in fourth order, that is, we must establish
that the coefficient of dA§(x—x’) given in (5.75) is
correct in fourth order. This will simultaneously show
that our definition (1.8) of ETC gives the correct
result for the term in this order.

We have already computed the orthodox result for
the coefficient of 9;A8(x—x’) in [7x(x),7s(*)]®. By
(3.54) and (3.75), it is

et N?
lim In—.
T2re N

(6.43)

Our result for this coefficient, given in (5.75), is

—(e2/120%)(Z572) @, (6.44)

We shall use the well-known expression

2 N2
lim In—+0(e%).
(67

1272 N>

Zi =1+

(6.45)

This can be derived, for example, from (5.16) using
(3.66)-(3.70). Thus (6.44) becomes

e 2e? N2
lim In—,
12721272 N> o

in perfect agreement with (6.43). We see that our
method has unambiguously reproduced the correct ETC
in fourth order.

D. Comparison with Other Methods

We should mention that conclusions opposite to ours
have appeared in the literature,33-® namely, that
(5.75) is only a ¢ number, so that (6.6) vanishes. Let
us comment on the source of these differences. In
Ref. 83, full quantum electrodynamics is presented as a
set of Feynman rules and is not based on field equations
with explicit current operators. Formal manipulations

83D, G. Boulware, Phys. Rev. 151, 1024 (1966). I wish to
thank Dr. Boulware for an interesting discussion on this matter.
8 T. Nagylaki, Phys. Rev. 158, 1534 (1967). I thank Dr.
Nagylaki for a clarifying correspondence concerning his approach.
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with spectral representations are performed so that
the dA8(x) term, which we have shown in Sec. 3 to be
present in all orders of perturbation theory, is missed.
It is clear from (5.68), however, that removing this
term will simultaneously remove the g-number structure
of the ETC.

In Ref. 84, the expression (6.22) for the renormalized
box diagram is considered and written as

T(k)=T"(k)+T7(k), (6.46)

with 77 denoting the ETC term. A corresponding de-
composition for the unrenormalized box diagram [Eq.
(6.28)] is written as

UR)=UT(k)+U"(E), (6.47)
and the relation (6.33) is notedss:
TE)=UE)—-UFE=0). (6.48)
It is then assumed that
UT k), T (%) P, 0 (6.49)

and that UP(k) and T7 (k) are the nonvanishing parts
of U(k) and T'(k) in the limit kyp—oo with k, fixed.
Thus, since

U(0,0,k3,ks) = U(0,0,0,0) 50
it is concluded from (6.48) that
T7(0,0,ks,ks) = UP(0,0,ks,ks)— U (E)=0.

We have seen above [Egs. (6.28), (6.32), (6.34)],
however, that

(6.50)

UT(k)=T7(k)=U (k) (6.51)

so that, in view of (6.50), (6.49) is not valid. Let us
comment on the reason for this. Equation (6.49) would
follow, more or less, if the Fourier transform of a general
time-ordered product 7(#)=0(£)F (¢) could be written as

rw= [ar

w—w’

(6.52)

However, if the distribution F(#) behaves like ¢t for
¢~0, then only an n-times subtracted version of (6.52)
is valid.? That such representations of U” and T'7 need
subtractions follows from (6.50) and (6.51).

Let us next attempt to compute the ETC by using
our current (5.40) in connection with the functional
differentiation formalism (2.22). Assuming that the
external electromagnetic field enters into (2.22) in the
same way as does the quantized field, and that the
differentiation can be commuted with the £ — 0 limit,36

85 Although not stated in Ref. 84, this relation is only valid in
fourth order. However, since U was not explicitly defined in
Ref. 84, this criticism may not be relevant. In any case, the situa-
tion is clear in fourth order.

88 We are also assuming that it is the renormalized fields which
are relevant in (2.22).
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we find for [ jx(x),74(+")] the expression

- 6221Z3_1Ju(915(x—' X’) —(Zs1— 1)31A5(X— X/)
- %e2Z123*1Jk1m,.a;8man6(x— X’)
+1e 2,25 imn 1 A1d m:0.6(x—%’).  (6.53)

In second order, this gives a divergent coefficient of
8:A8(x—x'), contrary to the orthodox result. Further-
more, if one ignores the (Zy~!—1) term and takes the
limit defining Jrima to be such that the orthodox results
for the VEV are reproduced, one finds a contradiction
between the second- and fourth-order results. Indeed,
second order requires (4.65), which we have seen is also
correct in fourth order when Zs? is present, as in
(5.68). With Zs! present as in (6.53), however, the
fourth-order term will differ from the orthodox one by
a factor of 2. Nevertheless, the form of Eq. (6.53) is the
same as that of our result (5.68).

We mention finally that if ETC’s are defined by
Eq. (2.19), results different from ours will be obtained.
This can be seen, for example, from consideration of
the Fourier transform of Eq. (6.9), which reads

1
UTju) @) [2)=—— / dksdky g™ =HRaVT M0
(2m)3

X (krkeskskes)+i(1]| [ 7u(x),A45,4(») ]| 2)8(20—y0) . (6.54)

Since T M*2(kiksksks) vanishes for, say, ki=0, the
commutator (1|[7.(x),7.(y)]|2) vanishes for k;=0 and
Fo= Yo, 50 that (2.19) gives (1|[7x(%),74(%")]|2)| #y=0=0.
From (6.6), we find, on the other hand,

<1 l [jk(x)l.74(x,):| l 2>(4) = (64/672)Xk1mn€l)‘1(k1) em)\2
X (kg)e—ikr-=tikea’g §(x—x"), (6.55)

which does not vanish for 2;=0. The source of this
difference is, of course, that the second term in (6.54)
represents a discrete ET singularity which Eq. (2.19)
overlooks. We see that our definition (1.8) amounts to a
regularization of this singularity. We take the con-
sistency of our results and their verification in fourth
order as evidence that this regularization is a reasonable
one.

Let us conclude by reemphasizing that beyond
fourth order, the exact coefficient of 42 in, say, Eq.
(6.6) should not be taken too seriously. For purposes of
abstracting ETCR’s from perturbation theory, one
need only assume that the general form of (6.6) is
correct. Similar results are expected in any renor-
malizable field theory.
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APPENDIX

Because of the fact that the renormalization con-
stants Z;! and Zs™! are infinite beyond first order, the
equations of Secs. 5 and 6 are somewhat heuristic
beyond fourth order. In this appendix, therefore, we
shall briefly indicate how a more rigorous analysis
should proceed. Thus we assume only CR’s of the
form (5.21) and that the r — 0 limit commutes with the
£— 0limit in the correct current operator (5.32)~(5.34).

We define

V(E)=[1+K.()], (A1)
so that (5.32) and (5.33) become
jae)=lim 55 8, (82)
with
Ja(x; &) =%ieV () D)y (a+8) — v ()P (a4 £) )
—eV(EIR(E)AFu(x). (A3)

We shall use the rigorous ETCR’s
}_i_r}(} W‘_l(T) {‘;a(x)f‘pﬁ()';xo'{' T)} =Y4pa0 (X~ Y) 1} (A4)
%_1_133- {'I’a(x))‘/’ﬂ()'3x0+ T)} = lfi_r)%{‘;a(x)y‘;ﬁ(y’xo'i_ 7) }
= }LI?{A ,,(x) 7‘)"&(st9+ T) }

=}Lrgl {4 p.4(x);‘,’a()':x0+ T)}

=0, (AS)
We thus have
lim lim V=W =(r)[ju(w; O (x0t1)]
=—iep(x)o(x—y). (A6)
We can now define an ETC by writing (A6) as
Y[ ja() (') = —iep (x)8(x—x) (AT)

with ¥ a constant which depends on how the 7=0 and
£=0 limits are taken. Finally, (6.1) and (6 2) could be
used to specify that V=1, so that (5.56) is again
obtained.

The other ETCR’s considered in Sec. 5 can be dis-
cussed from a similar point of view. The analysis in
Secs. 5 and 6 should, however, be sufficient for pur-
poses of abstracting ETCR’s from perturbation theory.



