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A set of equations for the V-6 sector of the Lee model is solved by purely algebraic techniques. It is shown
that the integral equations involved are like those that arise in scattering by a separable potential, in that

their solution requires no integral-equation techniques.

INTRODUCTION

HE V-0 sector of the Lee model was first solved by
Amado!; other methods of solution have subse-
quently appeared.2?:? All of them involve solving singular
integral equations by techniques of analytic continua-
tion. In this paper, the basic integral equations are
chosen to be a redundant set; the four equations could
be reduced to two. The redundant set of equations is
shown to be soluble by purely algebraic techniques,
while it can be demonstrated that the reduced set of two
equations is not. Because of the algebraic nature of the
solution, it is simple to give a complete description of the
V-6 sector.

NOTATION AND N-6 SECTOR

The Hamiltonian for the Lee model is
H= EVVfV-f—EN;’\”N—i—/w(k)a“(k)a(k)dk
+ / wk)a'(K)dkNTV+VIN f uk)a(k)dk, (1)

where Ey and Ey are the energies of the sourcein its V
and N states, respectively, w(k) is the § meson energy,
and u(k) is the source form factor. We let the 6 field be
a Bose field. In the sectors of interest it does not matter
whether ¥V and N are both Bose fields or both Fermi
fields; we take them to be Bose fields. Then the non-
vanishing equal-time commutators are

NN 1=LV (), V' ()]=1,
La(k,),a" (K1) ]=8(k—k).

)
©)

We work in the Heisenberg picture with time variables
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usually suppressed. The equations of motion are
10N =EnxN- / w(k)at(k)dkV, 4)
10V =EyV+N / w*K)ak)dk, )
10a(k) = w(k)a(k)+u(k)NTV. (6)
The vacuum state |0) satisfies
(0]a’(k)={0| Vt=(0|NT=(0| H=0. (7
We define the notation 4 =B by
A=B=(0|A=(0| B; (8)
then (7) can be written
dk)=Vi=Nt=H=0. )
It follows from (4) and (9) that
i9N=ExN, (10)

so that (0| NV is an eigenstate of H with eigenvalue Ey; it
is the N-particle state (NV|. (The notation is backward,
but convenient in that it avoids daggers and gives equa-
tions for annihilation operators.) Similarly,

(11)

10,0(k)=w(k)a(k),
so that the 6-particle state
(k| =(0la(k) (12)

is an eigenstate of H with eigenvalue w(k).

In order to illustrate the procedure to be used in the
V-6 sector, we solve the N-6 sector in some detail. The
coupled equations in the -0 sector are

10,V = EvV+L\7/p*(k)a(k)dk )

10 Na(k)=[Ex+w(k)JNak)+uk)V .

Equation (13) will be solved by looking for operators
Y.(?) that have a single frequency, so that Y .(f) can be
written Ve *et. Then the operator Y. will be the
annihilation operator for a quantum of energy w.. We
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introduce the Fourier transforms

V()= / I EENY (N)dN,

(14)
Na(k)= / e BTN (K N)dA,
where Er is the N-6 threshold energy;
ET= EN—i—w(O) (15)
Then the equations become
A=2)W)= / r*RW (kN)dk,
(16)
A= &) I (k\) =u()W (),
where A and ¢(k) are defined by
A=Ey—E
oo 7)

£(k) = w(k)—w(0).

Now the Fourier transforms of eigenoperators V.(f)
take the form ¥V ,0(A— (we— Er)). The second of Egs.
(16) has the general solution

u(k)
W (I \) =n(k) ¥ (k)o(A— £(k))+————
A— &(k)+140

where Y (k) is the eigenoperator for wave number k, and

W), (18)
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n(k) is a function that will be chosen to normalize the
commutation relations of the eigenoperators. Then the
first of Egs. (16) becomes

DW= / r*(R)n (k)Y (k)s(A— £(k))dk , (19)

where the notation D+(\) is defined by
D+(\)=D(\+10) (20)

and D is a function that is analytic in the cut z plane

D()=2z—A—1(3), (21)
[u(k) |2 * p(e)
I(z)= —dk= —de, 2
© z—E(k)d 0 Z—€ 22

1
p(d= / [ (k) [28(e— E(k))dk=§~_(D+(6)—D‘ (). (23)
™

The function D(2) is real and monotonically increasing
on the negative real axis. We are interested in the case
that there is a discrete state in the N-8 sector; this
means that D(z) has a zero at z=— B, where B is the
binding energy of the state with respect to Er:

D(—B)=0. (24)

Again, the general solution of (19) involves a & function
at the zero of D+(M), so that another eigenoperator Vg is
required:

1
W(x)énBYBB(HB)Jr—Dm / p*(k)n(k) ¥ (k)s(\— £(k))dk

*(k
< s ¥ 55O+ B)+ / i ))

D(&(k))

and hence

u(B)p*(q) ]
[&(q)— &(k)+:0]1D*(¢(q))

(k)np

n
— dq—
Xn(q)Y (q)d(\— &(q))dq Bl

W= [[ a0+

Y(\+B)

= / e(k) Y (q)8(\— £(q))dq

+ep(k)Vd(A\+B). (26)

The Fourier transforms give

V(t)éeB.VYBe_iEB‘+/eq,VY(q)e"'E“l)‘dq,
’ 7

NOak,)=e(k)V pe=iBoi / ea(l)Y () @dg.

It follows that if the »’s are chosen properly, then
(B l = <0l Vg,

g = (0| ¥ (q) =

(k)Y (k)d(A— £(k))dk = ez, v ¥V 58(\+ B)+ / e, vY (@6(\—&(q))dq, (25)

are normalized eigenstates of H with eigenvalues
Ep=Er—B,

(29)
E(q)=Er+&(q),
respectively.
The normalization factors are chosen by first noting

that
<0| V(O) |0£>=€a,v )

30
(01 N O)ak0)|a) =), G0
and if @ and 8 are in the V-6 sector
(BIV*V+/a*(k)a(k)dkla)=6aa
=B|ViV+ f at(k)NtNa(k)dk|a) (31)

=eﬂV*eaV+/36*(k)ea(k)dk,
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It is not difficult to verify that (31) is satisfied if

n(q)=1,
np=2712 (32)
Z-1=D'(—B).
Then (27) can be inverted to give
Y};(I)—_—-e“iEBlyBielg,V*V(l)
—i—/eg*(k)A\’(l)a(k,l)dk,
(33)

Y(g)=e @V (q) =eq,v*V (1)
—i—/eq*(k)z\‘(t)a(k,t)dk.

That Y%(q)|0) is actually the state with an incident 6
particle with momentum q follows from investigating
the amplitude

(0] Na(k) | Ng™)=e,(k) (34)

and noting that in k it has a plane wave and outgoing
spherical waves. Finally, we list the matrix €q,q

a V Na(k)
u(k)
B Zl /2 —_— ZI/2
B+£(K) )
(35)
N OV w*(@u(k)
D*(&(1)) DHE@) £ — ER)+i0]

The elements in (35) really correspond to ¢,™; there is a
similar matrix if we use the states | Ngq°'t) instead of
| Nq'»). The functions e,°"* are obtained from e by
changing 410 to —10.

V-6 SECTOR

The coupled equations in the V-8 sector can be
written

10V qa(k) = [w(k)+ Eo]V aa (k) +u(l) VNV,

10 aN'V = (Eat Ev—Ex) Vo'V
(30)

+V(NTN-VTV) /u*(lz)a(k)dk ,

where a stands for B or q, and we have used the equa-
tions

10,V a=E.Y 4 (37)

that follow from (33). The last term is transformed as

BOLSTERLI
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follows:

YV (NIN=VTV)

- (ea,v* a f e,,*(k)Na(k)dk) VIN=VT)

= —ea, v V4 / eo*(k)Na(k)dk (38)
=V o260 v*V
=V~ 2ea.V*[eB,VYB+ / gq,VY(q)dq:l ,

so that the coupled equations become

0.V aa(k) = [w(k)+ Ea ]V aa(k)+u(k) VNV,

10,V oNTV = (Bt Ey—En)V NV A+Ve / w*(k)a(k)dk

39
—Qea,v*[eg,vYB],u*(k)d(k)dk ( )

+ / w*(k)eg,vY (q)a(k)dkdq] .

Equations (39) are redundant because YNV can be
expressed in terms of V.a(p) by using (33) and (27).
However, it is apparently just this redundancy that
makes it possible to solve (39) by using algebraic
techniques.

As in (14), we introduce the Fourier transforms

Va(ONT @)V ()= / e BN (N)dN

V()N OV ()= / e EHNI (g, N)dN,

(40)
Ye(a(k,t)= /e‘i(E2+”‘T(k,)\)d}\ s
V)= [ s Tikena,
with E, the N— 26 threshold:
Es= Ep+w(0)= Ex+2w(0), (41)

and substitute the explicit forms of the e,,, to obtain
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the coupled equations
A+B— (k) JT(kN) = p(R)U(N) ,

()\-{-B-—A)U()\):(1—22)/p*(k)T(k,>\)dk

—2Z2 f w*(k)8*(p) T (k,p,\)dkdp,

)
Dh— (@)~ ATU(g\) = / w00 Tk g Nk
—2711%3(q) / W) TNk
—280) / W* (08 (p) Tk p\)dkdp,
where
B0)=ea.r*. 3)

Before actually solving the equations, we need to
know what sort of eigenoperators to expect in this sec-
tor. If there is a B—6 or N —26 bound state, then we will
have an operator X ¢ with eigenvalue £,—C, C>B. We
can also have scattering states | Bq'») with correspond-
ing X(q) and, finally, states | NVqiq.®) with operators
X(q1,92). As in (25) and (26), we seek the functions f,
g that give

UN)= fesXcN)+ /fp.BX(P,)\)
+% /fplpz.BX(p1p2,A) )

Ulg,N) = fel@)Xc(N)+ / Hr@X (M)

+3 /fmpz((I)X(Plp%)‘) ’

(44)
T(k\) = ge(k) X c(\)+ / & XN
+3 / Zoip () X (P1p2,M) ,
T (k,q,\) = ge(k,q) X c(\)+ / 2ok, @) X (p,\)
+3 / Zoip (K@) X (P1p2,))
Xc(N)=Xcd(A+C),
X(pN)=X(p)s(\—&(p)+B), (15)

X (p1p2,\) = X (p1p2) 6\ — &(pr) — £(p2)) -

V-9 SECTOR OF LEE MODEL
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In order to check é-function parts, we note that the
bound state normalization is a separate operation. As for
the others, first

O] V5N (0)V(0)[@)=fa.p,

0] Y (q,0)N(0)V (0)| )= fu(a) ,

(017 5(0)a(k,0)| @)= ga(k) ,

(0] 7(q,0)a(k,0) [ @)= ga(k,q) ,
where « is C or Bp™ or Npips™. Clearly f.,5 can have

only the bound state delta. If « is Bp™®, then the § part
of fy(q) is

(40)

ZY%0[ Y (q,0)| Np™)=Z2""5(p—q). (47)
Similarly, the & part of g,(k) is
(01¥5(0)| B)s(p—k)=05(p—k). (48)

The functions g,(k,q), fp:p.(@), and gp,p,(k) have no pure
5 part. The & part of gp,,,(k,q) is

8(k—p1)d(q—p2)+8(k—p2)d(q—p1). (49)
Now we can solve the first two of Eqs. (42):
T'(k,q,\) =3[ X (k,q)+ X (g, k) Jo(A— £(k) — £(q))
k
P AN
A—&(q)— £(k)+:0 (50)
T'(k\)=X(k)o(\— £(k)+B)
u(k)
— U (\).
M +B—&(k)+40
Substitution into the equation for U(q,\) gives
(\—&q)—A-TI"A =& DU(q,N)=b(q,\)
—=28(q)[a(N)+Z12c(N)+A4N)
+Z2H(\+B)UN)], (51)
o=} [ MBOIXUp+ X))
X 8(\— £(k)— &(p))dkdp,
blgN)=3% / w*(k)[X (k,q)+ X (q,k)]
Xo(\—&(k)— £(q))dk, (52)

c(N)= / w*(k) X (k)s(\+ B— £(k))dk,

A= / 8*)+Ov— E@)U (p\)dp.

The function multiplying U on the left side is D+(\
—£(q)), and it has a zero at A= £(q)— B. Therefore, the
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solution of (50) is [using (47)]
U(q,\)=2"2X(q)5(\+B— £(q))

+——{b(q,N)—2 N+Z12c(\
D+(>\—£(q)){ (q,)—26(q)[a( ), c(\)
+ANFZ12FO+BUN . (53)
Substitution into A(\) gives
[1=TFNJAN) =dN)+Z 2 (N +T+(N)
X[LaM\)+ZV2%c(\)+ 212+ B)UN)], (54)

where

B*(p)I+(\— £()
d()/ p)I*( p)

B(p\)dp,
DHO—£(p)) P

= / B*(p)I*(\— £(p)) X (p)s(A+B— £(p))dp
(55)
=I(—B) / B8*(p) X (p)6(\+B— &(p))dp,

[8(p)[21(z— £(p))

——  dp.
D(z—&(p))

Now the equation for U(\) becomes

{(1=J+*(N)ID*(\+B)+2ZI*(A\+B)}U(N)
=[1—-2Z—J+*\)Jc(\)
=2ZVLa(N)+dN)+Z12 (V) ].
First we consider J(z), which can be written
/ p(eI(z—e)
J(z)=—2 de
Dt(e)D—(e)D(z—¢)
1 I(z—e¢) 1
= | —— Je= e
¢ D(e)D(z—¢) m' ¢ D(e)D(z—¢)
1 de

—_ 7
oD@’ (57)

J(z)=—2

(56)

z—e—A

where C is the contour in Fig. 1. The second integral is
easily seen to give

/ de 2w
cD(e) D'(—B)
where C,, is the circle at infinity. On the other hand, we
have

[er=n AR BN /]

D(e)D(z- e’

‘de
—=27i(Z—1),

Cc, €

(58)

(59)

BOLSTERLI
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Fic. 1. Contours used in Egs. (57)-(62).

where C_p and C.,p are infinitesimal counterclockwise
contours around e= — B and e=2z-+ B, respectively, and

C’ is shown in Fig. 1. Then

ede 3 2wiBZ
/c_g D(D(—¢)  D(+B)’
ede 3 2wiZ (z+B)
/CMD(e)D(z—e)_ D(+B)
(60)
ede de
[
Co D(G)D(z-‘é) C, €
ede 3 (z—v)dv
/ o D(©D(z—¢) / ¢ Ds—)D()
Therefore,
ede Z(z+ZB) ]
S — - 61
/;’D(G)D(Z"“e) m[ D(z+B) 2 ():l (61)

where

1 ede

K@=—— | ——
27 J ¢ D(z—€)D(e)
» p(e)de [8(q) |2
= = dq. (62)
/0 DHOD(9D(s—9) / Dty
Then
J(2)=1—22+2Z(3+2B)/D(3+ B)— (3— 2A)K () (63)
and

[1—J+(\)1D*(\+B)+2ZI*(A\+ B)

=\—24)[Z+K+*(\)D*(A\+B)].

(64)

It is now simple algebra to see that

a(M)+d(N)=(0\—-24); / 8*(k)8*(p) X (k,p)

—&k)— ’kd
X8(A— (k) — &(p))dkdp, 63)

[1—2Z— 7+ e — 22f(\) = (\—24) f B*(k)

XK\ D+(A+B)—Z]X (k)s(\+B— £(k))dk,
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Since the point A= 2A has nothing to do with anything,
we can write (56) as

Fr\UMN)= f B*(k)[F+(t(k)—B)—22]X (k)
X 6(\+B— £(k))dk— 211> / 8*(k)8*(p) X (k,p)

X o(\— £(k)— &(p))dkdp,
F(2)=K(2)D(z+B)+Z .

(66)
(67)

The condition for a discrete state in the V-8 sector is
that F(z) have a zero for z real and less than —B. As
[z] = o, K(z) > (1—Z)/2, so that F(z)— 1. Since
K (z) is negative for z real and less than — B and D(z-+ B)
is negative for z real and less than —2B; it follows that
C is less than 2B. At z=—B, F(2)=Z+D(0)K(— B). It

V-6 SECTOR OF LEE MODEL
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is easy to see that K(— B) is negative, so the condition

for a bound state is
|K(—B)|>Z/D(0). (68)

We will assume that there is a bound state at z=—C,
2B>C> B. Then we see that

fes=mnc,

FH(¢(p)—B)—2Z
fop=B*(P)—————

F+(&(p)—B)
\ B*(p1)B8*(p2)
FEp)+£p2)

where n¢ is a normalization factor to be determined
later. \
Next we can solve for U(q,\), with the results

(69)

Soipa.B=— 2z

o 8@DB—C)
T zrp-c—tap
26(q) Z\3*(p)
Q) =2'"6(p—q)— —, (70)
7+l T Do) — B—£@)) F(e(p)— B)
DH(&(py)+£(p2)+B) B(q)B*(p1)8*(p2)
pum( )=B*( 1)5( 2 )+B*( 2)5( 1 )—-2 .
T (@) =83 n ) B O o 0) =2 o — E@) F(E(pn)+ E(2)
Finally,
u(k)
KN=—o "
gC() B—C—g(k)nc,
wk)B*(p) FH(&(p)—B)—2Z
p(k)=5( —k)+
B O —t+i0  FHp)—B)
k * 1 * 2.
- w(k)B* (p1)8*(p2) ’
L&(p1)+ &(p2)+ B— £(k)+-40]F+(&(pr) 4 £(p2))
u(k)8(q)D(B—C)
ck,q)=— i, 71
B = T s+ e D C—t@) )
ok q)s_z”wk)a(p—q) 22112(k)u* (p)B(q)
Y EK)+B  [Ep)— i(k)— E(q) — B+i01DH(E(p) — B— £(@)F*+(¢(p)— B)
k)B*(py)
2pip:(k,@) = 8(p1—K)8(p2— @)+ 8(p1—q)5(p2—k) + alldd 3(p:—q)

W8 ()

E(py) — £(k)+i0

w(K)8(q)8* (p)8* (p:) DH(£(p1)+ £(ps)+ B)

T - 0 q
K(po)— £)+10

—2 : .
L&(py)+ &(p2) — (k) — £(q) 401D+ (£(p1) +- £(p2) — @) FH(£(p1) +- £(p2))
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In the V-0 sector, the normalization condition takes the form

B[V V+/a*(k)a(k)dk]|a)=25a,g= (6f[VU\’NTV—i—/af(k)a(k)dk]la)
=<a|[vw(y3w3+ / mqw(q)dq)mw / a*<k><YBWB+ / ) Y(q)dq)a(k)dk:lla)

— o font / S (@) @dat / ¢ (g ()l / ¢s* () ol @)dkda.

We have chosen

851,027 21,02 = 0(P1— 1) 8(p2— p2’) +8(p1—p2) 3(pr'— p2) .
Substitution gives

|nc|*=2K(—C)/F'(—=C).

The other orthonormality relations hold with the f and g functions given above.
Now Egs. (44) can be inverted to give

Xo(t) =eifetX = %[fa.B*Y s(ONTV )+ / fH @Y (@) N1 () V(1)dq

+ / g*(K) Y 5()a(k,t)dk+ / g.*(k,q) Y(q,t)a(k,t)dkdq] .

SCATTERING MATRIX ELEMENTS

We obtain S-matrix elements by using the equation for a(k,t) that follows from (6):

a(k,t)=a™(k,t) —iu(k) / i@ =9 — NV (¢)dl .
Then -
(Bpet|aim)=(B|a**(p,0) |a")=1im @B a(p,) | o)

= (Bla™(p,0) | ™) —iu(k) / e @Y (BINT)V ()| a)al’

=(B|a™(p,0) |4 ™)—2mi6(Ep+w(p)— EJu(@)(B| N1 (0)V(0) |a™)

=(B|a™(p,0)|a™")—2mi8(Es+w(p) — Ee)u(D) fa.,

([\7plp2outlain>= <A7p20ut [ aout(pl’o) Iain>
= (Npo"t[ai(py,0) | @) — 27i8(En-+w(p1) +w(p2) — Eo)u(p) (Np* | NT(0) V(0) [ )

= (Npz2t[a™(p1,0) |a™)— 2mi8(En+w(pr)+(ps) — Eo)u(pr) / dk(Npt | Vi) fo(k).

These give
(Bp°t| Bq™™)=6(p—q) — 2mid(£(p) — £(@))u(p) fu. 5,
(Bp**t| Nquqi™)= —2mi8(&(p) — B— £(q1) — £(q2))u(P) faras, B »

(Npipo>tt| Bq™™) = — 2mi8(£(p1) + £(p2) +B— £(q))u(py) / dk(Np>*t| Nkin)fy (k)

(A"'plpg"“t , 1\7(11(]2“’) = <)7\7p2out ! Nmin)a(pl_ (h) + <Np2c.ut l N(]zin>5(p1_ (h)

—2mid(E(py)+ £(p2) — £(q1) — £(a2))u(pr) / dk(Np**t| Nki®) foyq.(K) .

166

(72)

(73)

(74)

(75)

(76)

(a7

(78)

(79)
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If we write

{aont| gin)=(an| i) — 2mid(Ea— Eg){a| T'| B) ,

then we have

V-¢ SECTOR OF LEE MODEL
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(80)

_u(p)u*(@) /1* 2Z

(BPITIBQ>=M(D)B*(Q)<1—

w(@)u*(qr)u*(qz)
(Bp|T|Nauqe)= — 22112

F+(s<p)—B>>_ D) \ F+(z<p>—B>> ’

u(pD)u(p)u*(q@)

DH(E(an) DH(E(@0) ) FH(E(a) + £(q2))

(Npip2| T| Bq)= —2Z"/2

DH(E(p))DH(E(p2))FH(E(py) + E(p2))

(81)

(Vp1po™| Vauge™)= (V1™ | Nqu™)}(Npe>* | V@) + (Vprovt | N ™) (V2™ | Vi ™)

w(p)u(p2)w*(q1)u*(qs)

—2mi6(£(p1)+ £(p2) — £(q0) — £(2) (N pip2 | U | Nquge) ,

DH(&(qu)+£(q2)+B)

(Npip2 | U| Nquga)= —2

D¥(E(p))D*(E(p2))D*(((qn))D*(E(q2))  F*(E(an)+4(q2))

These are like the S-matrix elements given by Maxon?
when the correspondences between Maxon’s A and G
functions and the function K and D of the present work
are noted:

A(z)=—K@G—B+w(0))/2,
G(2)=ZD(z— B+«(0)),

although here we have not assumed anything about the
function u(k).

By considering the analytic properties of 1/D(z) it is
easy to see that

1 Z
D(z) - z+B

(82)

[8(a)|*

dq, 83)
—t(q) 4 (

so that K(z) can be written

B 2 2 2
K(z)=Z/ [8(@) at EICARIEL )
s+B—£(q) z— Ea)— &)
Therefore, the function K (3)—Z/D(z+ B) has a pole at
z=—2B and a cut from z=0 to z= = ; it follows that it

is real from z= — B to =0, that is, in the region in which
only the B— 6 channel is open. Moreover, if we write

F(z)=D(z+B)[K(2)—Z/D(=+B)1+2Z, (85)

then it is clear that the discontinuity of F across its cut

dqdp. (84)

for —B<w<0is

Fr(w)—F~(w)=[K(2)—Z/D(z+B)]
X[Dt(w+B)— D~ (w+B)]
=2wi[ K (z)— Z/D(3+ B) Jo(w+B).

Since we can write

(Bp| T| Ba)=n(p)u*(0)[K (&(p)— B)
—Z/DE@)V/FH(E)—B), (87)
it follows in the usual way* that if u is spherically sym-

metric, then the S-wave phase shift below the inelastic
threshold is just the negative of the phase of F+.

(86)

RENORMALIZATION AND OTHER SECTORS

For any of the usual choices of u(k) and w(k), only
the function D(z) requires renormalization. If, on the
other hand, the renormalized coupling constant is such
as to produce ghosts, this will be reflected in the V-0
sector also.

It seems at least possible that a technique similar to
the one presented here could lead to a solution in the
V-26 sector. The idea would be to work with the opera-
tors Xqa(k) and X .N'V and use the equations corre-
sponding to (39). Further investigations along these
lines are being undertaken.

4 See, e.g., M. Bolsterli and J. MacKenzie, Physics 2, 141 (1965).



