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It is clear that a small contribution of the 0 octet, of
the order of ~'~ of the 0 singlet one, is enough to make a
perfect fit to experiment with the obvious exception of
Reap.

Fina1ly we want to mention that in this model the
m~ final-state interaction is still small while this is not
the case for the EK one.

VL CONCLUSIONS

The results of Sec. IV have a meaning independent of
the model meson source. The connection between the
subtraction constants in dispersion relations for ampli-
tudes and equal-time commutators can be useful in
many applications, particularly those in which the soft-
meson limit is a good approximation. This connection
gives the possibility of using the limit k'=q'=0 which
is less restrictive than k„=q„=0. Moreover, now one
knows better how to evaluate corrections to it through
approximate calculations of the dispersive integral
(Ref. 12).

The information contained in the equal-time com-
mutators can be useful also in predicting low-energy
parameters of processes not involving mesons (as tVIV

scattering), through the knowledge of the l dependence
of the subtractions in processes related by unitarity.

It would be interesting to study the connection be-
tween the high-energy, Regge-type behavior of ampli-
tudes and the algebraic properties of weak and elec-
tromagnetic currents. These two phenomena canbe
strongly correlated as they independently predict the
subtraction constants ."
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Single-pion production processes in the energy range 500 to 700 MeV are discussed. It is assumed that
production occurs in the partial waves Sq, P&, Ps, and Ds for I=$ and —, via isobar formation in a generalized
sense. Isobars treated are the lit" (1236) and the low-energy tails of the o (assumed to be a broad resonance
centered at 700 MeV) and the p. Emphasis is laid on maintaining consistency with the results of elastic
phase-shift analyses. It is suggested that the major contributor to the charge channel 7f-~7f. p at and above
550 MeV is P» decaying via pE. It is noted that a second P» resonance occurring in the range 600 to 800
MeV would explain several phenomena. It is indicated that D» very probably decays to cd as well as 7I S*.
A plea is entered for the presentation of future data in the form of a full production-angular-distribution
analysis over the Dalitz plot.

I. INTRODUCTION
' 'N this paper, production processes 7t-Ã—+ex' in the
~ - general energy range below 1 GeV, and especially
sr p ~ s.srlV between 500 and 700 MeV, are discussed.
For these energies, one can attempt to delineate the
roles of individual J~ states and to characterize their
decay channels. A careful study of this region is of
interest because it is known from the analysis of elastic
scattering and photoproduction to contain several in-

elastic resonances, E~~, D~3, and S~~. One wants to
know the inelastic modes of these resonances —to what
extent they are coupled to 7|-S*, to what extent to a
final state comprising a nucleon and the enigmatic
I=0 $-wave srsr system, and so on,

A very extensive analysis of single-pion production
below 1 GeV has been given by Olsson and Yodh' '
(OY) and a number of other analyses have been
published. ' 6 There is a large literature on techniques.
The object of the present paper is to reassess some of the
conclusions which can be reached from existing data

~ M. Olsson and G. B. Yodh, Phys. Rev. 145, 1309 (1966).
~ M. Olsson and G. B.Yodh, Phys. Rev. Letters 10, 353 (1963);

University of Maryland Technical Report Nos. 358 (1964) and
512 (1965) (unpublished); Phys. Rev. j.45, 1327 (1966).

3 J. M. Namyslowski, M. S. K. Razmi, and R. G. Roberts,
Imperial College, London, Report No. ICTP/65/20 (unpublished);
Phys. Rev. 157, 1328 (1967).

4P. G. Thurnauer, Phys. Rev. Letters 14, 985 (1965); Uni-
versity of Rochester Report No. UR-875-119, 1966 (unpublished).

s B. Deler and G. Valladas, Nuovo Cimento 45A, 559 (1966).
e*.Courau& Nuovo Cimento 41t 261 (1966).
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Pro. 1. Schematic of the isobar model.

and to emphasize certain features which should be
looked for in the new higher-statistics experiments
which are currently being performed.

The conceptual framework of our analysis is as
follows: (i) separate the production amplitude into
partial-wave production amplitudes for particular J~
states, and (ii) attempt to interpret these via the isobar
model as a sum of terms T for which the pair n under-

goes final-state interactions (Fig, 1).
In order to learn which J"states are important, one

looks at the elastic phase-shift analyses and also at
evidence from the production processes, in particular at
production angular distributions. To learn which decay
channels are important, one again studies the produc-
tion data, especially Dalitz plots and effective mass
spectra. One attempts to fit the data to an isobar model
in which particle pairs which are known or believed to
interact strongly form the isobars.

The partial waves considered are —,
' (Si), s+(P,),

s+(Ps), and —,
' (Ds) for I= ,' and s. The-isobars taken

into account are primarily E~(1236), the I= 0, 7=0 s.s.
state denoted by 0 (this without prejudice as to whether
there is a 0 resonance in the energy range of interest or
at all), and the I=1, J=1 m7r state denoted by p (the
relevant dipion energies are of course well below the

p mass).
Existing data are not suAicient to distinguish fully

between all the alternatives open; still less to force one
beyond the condnes of the isobar model. Nonetheless,
certain tentative conch~sions can be reached. In par-
ticular, one is led to a somewhat different apportion-
ment of the effects due to the a~3 and E~~ resonances
from that deduced in the OY analysis. ' The new features
are as follows: (1) A different charge branching ratio of
Dis and Pii into the channels s'vr p, vr+7r n and s'x'n,
is found. (2) It is suggested that the P» system at and
above 550 MeV is strongly coupled to the pX final state.
(3) It is noted that a second Pii resonance occurring in
the range 600 to 800 MeV is not ruled out by the elastic
phase-shift analyses and would be helpful in explaining
some of the production phenomena. ' (4) Examination
of the Dalitz plot distribution for s. p ~ s.+sr e indicates
the presence in D» of a component decaying to 0Ã as
well as the usual mS* mode.

Eote added in proof. A second F11 resonance of mass 1751
MeV has been proposed by A. Donnachie et at. , Phys. Letters
268, 161 (1968).

%e are led to differ in the above respects through
stressing (a) the need to maintain approximate agree-
ment with the elastic phase-shift results; (b) the data
on production angular distributions.

Such conclusions on the P~~ and D&3 are persuasive
rather than compelling and the role of production via
other J~ states is uncertain. We stress the desirability
of presenting future data in the form of a full production
angular distribution analysis over the Dalitz plot.

The main portion of the paper is Sec. V. In Sec. D,
the angular momentum formalism is outlined and
further details are given in Appendix A. The theoretical
basis of the isobar model is sketched in Sec. III and the
specific model employed in the present analysis de-
scribed in Sec. IV. Section V is devoted to the discussion
of the data and Sec. VI to conclusions. Formulas for
the analysis of production angular distributions are
derived in Appendix B.

II. ANGULAR MOMENTUM FORMALISM

We now summarize some of the formalism for pro-
duction amplitudes which has been developed by various
authors' ' ' " in order to estab'ish notation and con-
ventions. Further details are given in Appendix A.

The production amplitude for a process 2 bodies —+ 3
bodi. es with given helicities depends on five kinematic
variables. These can conveniently be taken to be the
square of the total energy, s =E', two production angles
0, C, for example, the polar coordinates of the incoming
particle direction with respect to the production plane
in the over-all c.m. system, and the two coordinates of
Dalitz plot say &o&, &u& (definition below). Through angu-
lar momentum decomposition, one can express the total
production amplitude as a sum in terms of partial-wave
production amplitudes depending on the three variables
(s,cubi, co2). These partial-wave amplitudes can, if desired,
be further decomposed into states where one of the
two-body subsystems has definite angular momentum
by using the linear relation between appropriate co-
ordinates on the Dalitz plot and cosines of decay angles.
The second decomposition is necessary to give a simple
form to final-state interactions and the isobar model.

Ke define the following three-vectors and scalars:
q;=momentum of final particle i in the over-all c.m.
system (g q;=0 by definition). LThe index i is assumed
always to run over the values 1, 2, 3; (ijk) denotes a
permutation of (1 2 3). We adopt the convention for
discussing the meÃ system that particles 1 and 2 are
pions with charge of 1&~charge of 2; particle 3 is the
nucleon. ) n=unit normal to the production plane.
ni;= (m, s+q;s)ils is the total energy of particle i, mass
m; $P nr;=E=gsj. q~ ——incoming momentum in the

~ G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962).
D. Branson, P. V. LandshoG, and J. C. Taylor, Phys. Rev.

1M, 902 (1963); to be referred to as BI,T.
9 S. M. Serman and M. Jacob, Phys. Rev. 139, 81023 (1965).
'0 R. C. Arnold and J. L. Uretsky, Phys. Rev. 153, 1443 (1967),

to be referred to as AU.
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Fzo. 2. Angular variables for the analysis of processes 2 —+ 3.
qg is the incoming particle momentum; 1, 2, 3 are the outgoing
particle directions; OX, OF, OZ are space-fixed axes.

over-all c.m. frame. q;, = relative momentum of particles
i and j in the c.m. frame of the two-body (ij) susbystem.
(This is obtained from the over-all c.m. frame by apply-
ing a Lorentz transformation in the direction q&.)
o/@2 ——(o/;+o/, )2—(q~+q;)2= invariant mass squared of
ij subsystem.

[O/12 +O/23 +1O31 S+2/21 +2/22 +2/23

o/232=E'+2/2 '—2Eo/1, etc.g

We write ~q;~ =/t; and denote by j, the unit vector
q;i/f; and similarly for the other vectors.

Angles 0, C, 0";, 0', 8;, X; are defined. in Appendix A
and Figs. 2, 3. In terms of these and the other kinematic
quantities introduced above a number of alternative
specifications of three-body states can be given. The
quantities (4', O~p) or (q1,0~;,C;) constitute sets of Euler
angles to specify the orientation in space of the produc-
tion plane. The 8; and X; are the functions on the Dalitz
plot, 0; is the angle between j;I, and j; and X; the angle
between j; and jj,.

The orientations of intrinsic spin may be specified in
one of the following ways: (i) helicities in the over-all
c.rn. system denoted by /1;, (ii) transversities" in the
over-all c.m. system denoted by );, i.e., components of
spin along the normal to the production plane; (iii)
helicities in the (ij) subsystem c.m. frame denoted by v;.

(i) and (ii) are related by the appropriate rotations
connecting the quantization axes. (i) and (iii), which
involve helicity transformations between different
Lorentz frames, are connected by the Wick rotations. '
As discussed in Appendix A, it is a reasonable approxi-
mation for the energy range of the present discussion to
take the nonrelativistic form for the Wick angles. The
Wick rotations then also appear as rotations connecting
the quantization axes. This enables us to use nonrelativ-
istic tensorial expressions involving Pauli spin matrices
to express the angular dependence of production ampli-
tudes [see Eq. (4.5) belowj.

1'A. Kotlnski, Acta Phys. Polon. 29, 699 (1966); $0, 629
(1966).

FIG. $. (a) Angles and vectors in the production plane.
(b) The Wick triangle (spherical triangle).

Following BLT' and AU, "we delne the production
amplitude T1 (s,o/1, &u2, C,0,%'). Here, 2/2 denotes the
initial nucleon helicity and ) the 6nal nucleon trans-
versity. The production cross section is defined to be

c/'o (m, )~) 2r3

(
T„na/ 2

r)101c/102c/(cos0) Be 16J 3gg
(2.1)

XDsm (C, O~|e)Tss""(s)o/1)o&2) . (2.2)

Here, A denotes the total transversity of the final state
(component of the total angular momentum J along the
normal to the plane of production). The quantities
(4,0~,%') constitute the Euler angles defining the rota-
tion from space-6xed axes to a possible set of body-fixed
axes, in this case the normal set with Z axis perpendicu-
lar to the production plane. There exist alternative de-
compositions based on the Euler sets (4;,0";,4) which
correspond to taking the direction q; as Z axis. The
magnetic substate components of the two representa-
tions are connected by the appropriate rotation
matrices. In order to proceed to the second angular
momentum decomposition, we suppose such a trans-
formation to have been made and write for example

(2J+1)'/2
T„,"(s) M) to/3iC3, 03,+)=

J' 1/2 p J' 42r

XDq~ (43,0~3,@)Tss "2(so/12 ) cos83). (2.3)

Here we have chosen the nucleon direction q3 as OZ and
have taken as Dalitz-plot coordinates co~2', cos0q. Ke

The angular decomposition of T& is given by the
formula

+& //2J+1
T1 (S,o/t, o/2', O' O~ '0)

J=l/2 A.=—1 4 47r
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can now use the unit projection operators developed in
Appendix A to make the second decomposition:

TJs"»(s,oi»' cos8s) = g P (2g»+1)"'2(4s.)'l'
$12=0 ~12

(»» "'
~o~„'"(gs)&~+~, mi, ,

kqlsqs

X (~12 li psjlstis12
~
2 Zb) ~

tri). (2.4)

The production amplitude for each angular momentum
state J has now been decomposed into a sum of con-
tributions arising from the production of a dipion system
of mass co~~, angular momentum j~~, Z component m~g.

Alternative decompositions based on (s.iÃ)7rs and
(s.sE)s.i can also be made. The formulas are slightly
more complicated because of the need for transforma-
tions on the nucleon spin. Kick~ has given formulas for
recoupling coeS.cients ((12)3~1(23)). This does not
concern us in the present discussion because of our non-
relativistic spin approximation.

A further step in the fully relativistic treatment is the
decomposition into eigenstates of orbital angular mo-
mentum. "This again we do not need to develop.

III. ISOBAR MODEL FOR PRODVCTION
PROCESSES

In this section, we briefly review the theoretical basis
for the isobar model" "in order to see where we might
expect our detailed model to fail.

Ideally, in order to use phenomenology, one would
like a formalism tha, t embodied unitarity and a limited
amount of analyticity such as does the inverse IC matrix
for multichannel two-body processes. Even for the two-
body case, this approach has limitations, where as is
common the practically accessible reactions are all
initiated from one channel. The position for the study
of 2 —+3 is more complicated. In order to apply uni-
tarity, one has to discuss the processes 3 —+ 3 [see Fig.
4(a)j. These contain, firstly, disconnected parts corre-
sponding to two-body final-state interactions. Such
contributions can in principle be determined from
independent experiments at lower energies. There are in
addition connected parts which cannot be learned from
experiments. The isobar model arises from a simple ap-
proximate treatment of the disconnected parts (final-
state interactions) and their effects; one constructs
2 —& 3 and 3 —+ 3 amplitudes as if all final-state inter-
actions comprised narrow resonances.

"A. J. MacFarlane, Rev. Mod. Phys. 34, 41 (1962)."K. M. Watson, Phys. Rev. 88, 1163 (1952); 95, 228 (1954).
'4 L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962)."J.S. Ball, W. R. Frazer, and M. Nauenberg, Phys. Rev. 128,

4ts (&962).
'6 S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker,

Ann. Phys. (N. Y.) 18, 198 (1962).' G. N. Fleming, Phys. Rev. 135, 3551 (1964).
'SD. Z. Freedman, C. Lovelace, and J. M. Namyslowski,

Nuovo Chnento 43A, 258 (1966).

Firstly, one assumes that the production amplitude
T (for a given J~ state) is expressible as a sum of three
terms T classified according to which pair of particles
interacts last, "

The singularity structure of production amplitudes
is much more complicated than that of two-body
scattering because there can be simultaneous discon-
tinuities in s, &ot, tos, and ros (see, for example, Ref. 20).
In the isobar model, the amplitudes are constructed to
have only the simplest singularities. Precisely, T is
taken to have the singularities which it would have if
only the pair n underwent final-state interactions.
Complex singularities arising from, for example, triangle
graphs" are ignored.

In the case where the 6nal-state interaction between
the pair a is a narrow resonance, one pictures the process
described by T as the production of the resonance
followed by its decay. Thus one writes

T =G(sm„)
rn„—co —iI'/2

(3.1)

where G is the production amplitude for a particle of
mass m„width I' (the above formula is for an 5-wave
resonance). In the isobar model, this form is generalized
and one takes

where
T =G(s, to )h(oi ),

h(to. )= (~ /q. )e"- sin3. ,

(3.2)

(3.3)

"Fadeev has discussed the scattering processes 3 —+ 3 for
nonrelativistic systems governed by the successive action of
two-body potentials between pairs: L. D. Fadeev, "Mathematical
problems of the Quantum Theory of Scattering for a Three-
Particle System" (English transl. : H. M. Stationery OfBce,
Harwell, 1964). T=g T, follows rigorously for this case. For
production processes, 2~ 3, there will be Born terms which
cannot be classified as belonging to one of the T .

'0 S. Mandelstam, Phys. Rev. 140, 8375 (1965)."I. J. R. Aitchison, Phys. Rev. 133, B1257 (1964); C. Kacser,
Phys. Letters 12, 269 (1964).

with 3 (co ) the phase of the final-state interaction and
where G contains no singularities in the variable co in
the physical region. Residual dependence of G on co is
commonly assumed to be simple and mainly kine-
matic"; for example, if the isobar is produced in an
orbital state L, one inserts a factor q ~, where q is
the relative momentum of the n isobar and the third
recoiling particle. A range para, meter can also be intro-
duced as a phenomenological form factor so that the
above factor becomes [q /(1+Iraq, ')'"$~. If the isobar
in question, formed, , say of final particles i a,nd j, decays
into a state of orbital angular momentum l;, with c.m.
momentum q;, , one inserts a further factor q,; '&. This
is to allow for the fact that the production amplitude
contains only one isobar-ij vertex while the ij elastic
amplitude contains two such. The effect of these
assumptions is that for a reasonably narrow resonance
the dependence of the cross section on ~ is predomi-
nantly given by sin'8 .
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The production amplitude G(s,or ) will of course
contain discontinuities as a function of the variable s.
We will .speak of the resulting phase as the production
phase C (s) and the phase 8 (10,) as the decay phase.
The total phase of the T component of the production
amplitude is then 4 (s)+8 (ie ), this being a special
property of the model.

The form (3.2) embodies the Watson final-state
theorem. " If the rescattering of the o, pair were the
only final-state interaction, it can be shown" that 2 —+ 3
unitarity demands that the phase be 8, and more
precisely that

T(s,o1 +)=e"'-T(s,oi ), — (3.4)

"J.A. Wright, Phys. Rev. 137, 8137 (1965).

where co + denote values of the partial energy ~ above
and below its cut. It then follows that the quantity
D(a& ) T(s,1o ) [where h(o1 ) =;V/D j has no right-hand
cut in co . If the product DT is assumed not to depend
too strongly on ~ and if we make a similar assumption
for the elastic 3 function, the Watson form is justified.
One can imagine many circumstances where these
assumptions are unjustified, especially where the final-

state phase shift is slowly varying. Only attractive
6nal-state interactions are taken into account.

In order to discuss unitarity in the more general
situation where all the pairs of final particles can
interact, it is necessary to complete the model so as to
include the connected 3 —+ 3 amplitudes. This is done

by writing diagrams with isobar-particle vertices at both
ends in the obvious way as shown in Fig. 4(b). It is then

easy to show" that the isobar model satisfies 3~3
unitarity provided all overlap contributions can be
neglected [i.e., important contributions to three-body
unitarity come only from terms T ~T and not from
TetT (see diagrams in Ref. 16).j

The key assumptions are therefore: (1) The three-

body production amplitude is approximately expressible
as a sum of isobar production amplitudes. (2) There is

approximate over-all orthogonality of contributions
from isobars formed from diferent pairs. This implies
that the phase dependence on co has the form e" .
(One only assumes that the separate isobar contribu-
tions are approximately orthogonal when integrated
over the Dalitz plot. They can, of course, interfere
locally. ) (3) One can apply the narrow-resonance ap-

proximation to give the other dependence on u —the
sinb and kinematic factors.

Wright" has discussed the question of eigenstates for
3-body systems. The diagonalization of the T matrix is
of course only to be applied to T, for 3 ~ 3. Applying
the method to the isobar model, one can set up for
example a one-level resonance formula with resonant

contributions to the amplitudes of the form

122— 7E„—E—ir/2

(r,r./4)»2
T„=P h. (ca.),

~ E„E—il'/—2

(F.re/4)"'
T22' =2 h. (~-)he(~e) .

e E„I.' —iF/2

(3.5)

g»

(1+Itq 2)
—»'

g
L3

qi 12~12
(3.6)

Here the parameters 8 and C are functions of s only,
l12 is the orbital angular momentum for the (12) sub-

system, j» its total angular momentum, and L3 the
orbital angular momentum of the relative motion of
particle 3 and the (12) c.m. system. The factor (q12q2)'i2

cancels the factor in Eq. (2.4) arising from our normal-
ization. One could also add a factor ~» '". Whether
one does so or not seems arbitrary and following Ref. (4)
we have not done so. Likewise it is arbitrary to include
a form factor as a function of q3 but not of q&2. Such
questions are not too important when the isobar
comprises a narrow resonance. In the contrary case,
all the factors expressing dependence on q» are dubious.
In the present. application, (irir) isobars are discussed
which do not resonate at all in the range of phase space
considered, so that use of the isobar formulas represents
a considerable extrapolation.

Considerations in applying the model are as follows:
(1) One chooses the lowest possible state of orbital

If the final-state interactions do not overlap, this
satisfies two- and three-body unitarity with real Fp F.
We will, therefore, expect for situations dominated by a
one-level resonance that the production phase is equal
to the elastic phase. In applications, we may expect to
be beset by the usual complications of background and
contributions from other eigenchannels.

Collecting together our assumptions, we have the
following model. The production amplitude in a given
J state is expressed as a sum of isobar contributions.
These will arise from attractive Anal-state interactions
among the three Anal-state pairs and each final-state
pair will in general interact attractively in several two-

particle angular momentum eigenstates. Formulas are
conveniently expressed in terms of the double angular
momentum decomposition [Eq. (2.4)$. We assume
amplitudes to have been further decomposed into
eigenstates of orbital angular momentum through
Clebsch-Gordan transformations. Then our assumed
form for an individual contribution to the production
amplitude, say for the production of a particular (12)
isobar, is ['cf. Ref. 4]

~J =(~12~j12I1212~TJ(s)
~

)= (q12q8)'"&e'
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TABLE I. Selection of parameters which have been inferred for the I=0 S-wave mm phase shift.

Method Result Reference

xN partial-wave analysis

Analysis of 7rN backward dis-
persion relation (non-spin-Rip)
by fitting procedure

Analysis of peripheral single-
pion production at high energies

E,4 decays-(preliminary results)

Theory of decay branching
ratios of g, etc.

Current algebra and PCAC

Current algebra SU2XSU~ for
axial and vector charges as for
the Adler-Weisberger relation

a0=—(ru/q) cotbQ'= 1.3 with bo' rising to a maximum of 30' at 7~~100 MeV.

Fits with 80 resonance strongly preferred. Specially favored solutions of the type
(a) ao positive ~0.7 y ' with resonance at mass ~430&/0 MeV, width

400 150+ 00 MeV;
(b) a0 negative, 50 passing through 0' near 350 MeV, resonance at

680+85 MeV, width 750+50 MeV.

Some results are as follows:
(j.) The analysis of Wolf gives b0' resonance position ~740 MeV, width 90 MeV.
(2) Jacob and Selove estimates (So')~35'—55' in 400-500 MeV mass interval.
(3) Walker et al.—slowly varying aqua I=0, I=2 phase shifts. Preferred set has

resonance at 850-950 MeV.
(4) Clegg favors Bo slowly varying and ~90' around 850-950 MeV.

(SQ Sl')=+32'&12'. Result is average over the dipion mass spectrum which
peaks to the lower mass values ~330 MeV.

"0 hypothesis" of Brown and Singer. 3E,~400 MeV. 1 ~100 MeV.

Weinberg predicts a0=0.20 p, '.
Adler consistency condition: This requires that the sum of weighted integrals of

sin'60' and sin%I' exceed a certain value. Inserting conventional parameters
for the p meson leaves a large contribution to come from low-energy xm. scat-
tering, e.g. , with scattering length parametrization ao& I.3.

' J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick, Phys. Rev. 128, 1881 (1962).
b C. Lovelace, R. M. Heinz, and A. Donnachie, Phys. Letters 22, 332 (1966).
o G. Wolf, Phys. Letters 19, 328 (1965)."L.D. Jacobs and W. Selove, Phys. Rev. Letters 16, 669 (1966).
e W. D. Walker, J. Carroll, A. Garfinkel, and B.Y. Oh, Phys. Rev. Letters 18, 630 (1967).
f A. B. Clegg, Phys. Rev. 163, 1664 (1967).
g Preliminary results form experiment by the Berkeley, U.C.L., Wisconsin collaboration presented by M. J. Esten at I.P.P.S. Conference at University

College London, 1967.
~ See review by L. M. Brown and H. Faier, in Proceedings of Second Coral Gables Conference 1965 (W. H. Freeman and Co. , San Francisco, 1965).
1S.Weinberg, Phys. Rev. Letters 17, 616 (1966).
& See Ref. 25.

angular momentum I. for the production of a given
isobar in a given JP state. In the present instance, only
L=0 and 1 are considered. (2) In the present treatment,
in contrast to some other analyses, ' 4 we do not trouble
to construct orthogonal basis states. For example, we
will discuss situations with P» going simultaneously to
the decay channels os (5 wave) and 7rlV* (P wave),
states with nonvanishing overlap.

(a) E*(1236), s "V,

(b) o., X7I

(c) p, 7l

(d) 3", 7rÃ,

I—2

I=O,
I=1
I—

)2)

JP 3+.
2 )

JP 0+.
)

JP=1
JP 2

The S*is the classic candidate and needs no comment.
The S' was introduced by OY" and we follow them in
using this for production in the state P31. The cr is also
a popular candidate the only problem being the con-
victing testimony on the detailed form of the I=O 5-
wave xm- interaction. A selection of parameters which
have been inferred is shown in Table I.The calculations

IV. SPECIFIC ISOBAR MODEL FOR eN-~~N
BELOW 7'00 Nev

As stated in the Introduction, our analysis will be
confined to the partial waves Si(s ), Pr(s+), Ps(s+) and

Ds(ss) for I= s and s. We consider the formation of the
following isobars:

reported in Sec. V are for a xw phase bo' of the form

q L0.2+0.325(q'/m ')j
800= arctan—

1—0.1905(q'(m ')
(4 1)

(In our notation q is q», co is so»s. ) This form gives. a
scattering length a0=0.2 p ' with a broad resonance
centered at 700 MeV. It was chosen by taking six
different trial forms for 80' embodying different features
which have been proposed (Table I) and seeing which
looked best able to explain the shape of the (s+rr )mass
spectrum at 558 MeV with P» and D» each decaying
50% to siV and 50% to aÃ. This discrimination is
rather ill founded since we later conclude that D13 and
P» only account for 43 of m+m e production at 558 MeV
and that P» decays significantly to p,V. One would like
to re-open this question when better data becomes avail-
able. Meantime, the chosen form is not unreasonable.

The inclusion of the I=1, J=1 xm final state was
dictated by the phenomenology. There have been sug-
gestions in other contexts that the very-low-energy tail
of the p may be of importance —in the analysis of
nucleon electromagnetic form factors" and in the study
of 3m decays of p, v, and 7-'."Very-low-energy I= 1 con-
tributions would be helpful in fitting the Adler consis-

"N. G. Antoniou and J. E. Bowcock, Phys. Rev. 159, 1257
(1967).

~4R. I.. Schult and I. M. Barbour, Phys. Rev. 164, 1791
(1967).
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tency condition'5 without an unreasonably large 5=0
component. Present calculations are based on a b~' of
the simple form

gs
8y =arcta11

o) 1—0.1609gs/182
(4.2)

corresponding to a resonance at 750 MeV, width 100
MeV.

Following Olsson", the 833 phase shift for the S*was

taken to be of the form (with o)23 in GeV, qss in GeV/c)

17.06q23'
833= arctan (4.3)

(1.236—(d 23) (1+146.4gss')

which gives a reasonable 6t to the results from phase-
shift analysis. The phase 6&' for the E' was taken to be'

(Il' ——arctan(4. 63q») . (4.4)

TABLE II. Isobar contributions to the partial-
wave production amplitudes.

Note that the assumed forms for the xx phases 80' and
b~' correspond to broad resonances outside the region
of phase space to be studied so that the terms 0. and p
are to be regarded in the present context as a shorthand
for mm quantum numbers.

In accord with our philosophy of preferring low orbital
angular momenta, we confine the discussion of possible
contributions to the partial-wave production amplitudes
to the modes listed in Table II.

defined in Sec. II.
s (')=~.~,
~i'4)=~ j&2

Pl = 2(tr gA) (gl g23) (rr ' g23) (gl ' gA)

+ (& ' gl) (g23' gA)+2/A ' (glX gss),
Pl(') = (expression for Pl&') with 1 &-+ 2),

Pl"'= ((r.gA)(g» gs)

Pl 8(83 ' g3Xg12)(&' gA)

(rr ' g3) (gA
' g12) (rr ' g12) (gA

' g3)
(4.5)

+igA (gsXgls),
Py (6) Py (~) P1 (3)

P3 2 ((3 ' gA)(gl' g28) & (&' g23) (gl' gA)

+2(rr' gl)(q23' gA) 28gA
' (glXg28) y

Ps")= (expression for Ps&') with 1+-+ 2),
Ds"'=3(83 gA)(gss gA) —(r. g28,

Ds(') = (expression for Ds(') with 1+-+ 2),
Ds")=3(~ gA)(gs gA) —~ gs,

D3 3((r ' gA) (gl2' gA) tr ' g12 ~

The derivation is straightforward. Helicity amplitudes
may be derived by taking expectation values between
the appropriate Pauli spinors. The formalism is exact
for the (lrlr)cV contributions; for rr(lriV) a small approxi-
mation is involved (see Appendix A). For production
off unpolarized targets, this only affects interference
terms in the cross section.

The total production amplitude is now expressible
as a sum of contributions

$1
I'1
I'3
D3

(&) (2)
~1N23* 7I-2N13*

I' wave
I' wave
S wave

P wave
S wave

P wave

pN
(4) (~)

S wave
I' wave
I' wave
S wave

(6) (&)
7I 1N23 7I 2N12

S wave

T= Ts,+Tr,+Tr,+TD„

where for instance

4

T p g (i)&i@ (i)p (oD (r)

(4.6)

The modes are labeled (1) to (7) as shown. The dupli-

cation of mS* and ~.V' labels arises from the two pos-
sible mE pairings. The extra label for pS is used to
distinguish the two possible couplings to the P1 state,
j»+I.s——0 (mode 4) and j»+1.3 1(mode 5). The oiV——
modes contribute only to the I=-,' states. The termi-

nation of the list is arbitrary and other authors have
used different subsets. For example, NRR' have con-

sidered D-wave ~&V*.

We now list the required angular momentum pro-
jection operators. These are expressed as scalar func-

tions of the Pauli spin matrices and the unit vectors

+similar contribution from I=2. (4.7)

e"» sinb33= (qssql) ~ (183=()33(gss ),
f23

e"o sinbo
P (8) —(q q )1/2

(4 8)

xgs(I+ Jc.gs')-' ', &,= &,(g„'). (4.9)

Here the BD»") and 4D„(') are parameters depending
only on s as discussed in Sec. III, the D3"' are the angu-
lar momentum projection operators and the Ii D, (" are
the isobar production formulas. Examples are

25 S. L. Adler, Phys. Rev. 140, 8736 (1965)."I(/I. G. O]sson, Phys. Rev. I,ettsrs 14, 118 (1965l.

Here E, is the range parameter for P-wave 0 produc-
tion, There are Similar parameters E& and Kp~ occurring
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Tasrz III. Sample of the overlap coefficents I;, and J';; LEq. (4.13)j.The matrices plotted are I,, (ordinary numerals) for f ~& j and J;;
for (italicized numerals) i& j.Quantities are calculated with the parameters given in Sec. IV for T~= 558 MeV.

0.N
1.0
0.0

vrIN*
1.0
0.0
0.091—O.li 7
0.363—O.OZ7—0.013

+IN*
1.0
0.0

m 1N*
1.0—0.4h'7

—0.397—0.441

pN
0.0
1.0

mgN*
0.135
1.0
0.093
0.116—0.363—0.01Z—O.OZ3

~2N*
0.457
1.0

~&N*
0.455
1.0—0.397
0.441

oN—0.195—0.198
1.0
0.003
0,0—0.100—0.101

ON—0,347—0.346
1.0
0.0

(pN)4
0.003
0.007
0.002
1.0
0.0
O.ZZ8—O.ZZP

pN—0.183
0.184
0.00
1.0

(uWs
0.273—0.273
0.0
0.0
1.0
0.0
0.0

m 1N'
0.010—0.037
0.896—0.026
0.0
1.0
0.0

m.2N'
—0.035

0.007
0.897
0.029
0.0
0.891
1.0

o=-
j6E gg SPiII aV.

do&t do&s d(cosO~)dC
~

T
~

' (4.11)

Dalitz-plot distributions and mass spectra are obtained
by omitting the appropriate integrations. Whenever we

integrate over the production solid angle, contributions
from different J~ state decouple. In particular, the
partial-wave production cross sections have simple
expressions as integrals over the Dalitz plot. We make
use of averages over spin and the incoming direction

j~ of the bilinear expressions in the angular momentum
projection operators. For example,

((Pr ' )')=1+3(q, g,s)') (P,&'& Pr''&)= mrs qs. (4.12)

The resulting total cross section takes the form

Q Bg~"&BJe'f&t cos(C'*&—4'f&) I„

in Pr t & t'& and P "»" (also Ps "&&'&). In the calculations
to be reported, these parameters were set to the common
value'~

E,=E„=E&v.='8.163 (GeV/c) '
= (350 MeV/c) '. (4.10)

According to formula (2.1), the total production cross
section is given by

ring in the mrV elastic phase-shift analysis, if we assume
that all the inelasticity goes to s.mS (see discussion in
Sec. V). Hypotheses for the inelastic output of a given
state are then specified by assigning the quantity p and
the ratios U"'. Where a given hypothesis involves two
amplitudes, e.g., Pr —+A)V* with crt (1&&Tss ) and ms

(.V»*), we group these appropriately. In this way, we
are able to construct amplitudes with say I'j —+ ~A*
60'Fo and —& o&V 40'Po. .

A computed set of values for the matrices I,.;, J;,, the
overlap coefficients as we may term them, is listed in
Table III. They are computed for the parameters listed
above and for T (lab) = 558 MeV. It will be noted that
a number of the overlap coefficients are small which
lends support to that aspect of the isobar model.

In order to take account of different charge final states
we require the products of Clebsch-Gordan coefficients

by which the amplitudes previously written down must
be multiplied. These are listed in Table IV, which is an
extension of that given by OY.' As stated earlier, we

adopt the convention that particle 1 is the pion of
larger charge, particle 2 the other pion, and particle
3 the nucleon.

1 1

+ 2 2' & 2 similar terms

+sin(4 "&—4 t&&) J„j. (4.13)

Similarly, for the Dalitz-plot density with suitable re-
interpretation of J;, and J;;.

The 8&') are renormalized: 8"~=ZU &'~ with

P; (Lr "&)'=1. Z is chosen so that in the expression for
the total cross section the I;;=1 and the total partial-
wave cross section takes the value

;.*V')=( /q )(J+l)(1-n ") (4 14)

Here p JP is the appropriate inelasticity parameter occur-

~ Cf. A. N, N&tr@ and N. Ross, Phys. Rev. 158, 1630 (j967).

(a)

C'33-
+ all similar cornbtnations

tb)

Fro. 4. (a) General structure of 3 —+ 3 amplitudes. (b) Schematic
of the isobar model for the connected part.
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TABLE IV. Isotopic-spin factors in isobar production amplitudes.

Reaction

I 2I-+P —+ x+m-oP

II: ~+p~ ~+~+n
III: m=P ~ 7I-om. P
IV: ~-p~ ~+~-n
V: ~ p ~ 2I.os-on

0
0
0—2/3

K2/3

pX
(I= s)

1
0

1/3
v2/3

0

pN
(I=l)

0
0

2/3—v2/3
0

+AN*

(I= 2)

—2/+15—Ih/15—1/3v'1 5—2/&30—1/3415

0
0
2/3/6—1/v3
2/3/6

7r2N*

(~=l)
3/+15—I/+15
4/3+15
4/3+30—1/3+15

0
0—2/3/6—1/3'

2/3+6

—1/v3
1/v3—2/3'
0

I/3&3

0
1/v3—1/3'
2!3/6
1/3v3

A computer program TRIBQD was written for the
IBM 360 computer at the Rutherford Laboratory. The
input to the program comprises the chosen form for
the final-state phase shifts and the form-factor parame-
ters; also the inelasticity, production phases, and
hypothesis parameters U~" for each partial wave. The
program then produces charge branching ratios and
for whatever charge channels are of interest, two-
particle mass spectra. This is done by straightforward
quadrature after the renormalization described. There
is also a provision to generate the Dalitz-plot distribution
for selected ranges of the production angles 0'; and also
the over-all Dalitz plot. These are computed by a
Monte Carlo technique so that the averages over spin
and azimuthal angle which occur in the many cross
terms from isobar contributions to different spin parity

12.0-

11.0"

10.0-

9.0-

8.0-

7.0-

6,0-

states need not be programmed but are computed. This
considerably simplifies the expressions appearing in the
program and facilitates checking. Over-all production
angular distributions do/d cosO, are also generated.
Commonly, four ranges of cosO; were used LcosO,
= —I(-,')1j in order to reveal up to cubic terms in
cosa~;. Checking for cases with known distribution, it
was found that 60 Monte Carlo events per angular
interval gave fairly adequate results with reasonable
computing times.

V. DISCUSSION OF THE DATA

Essentially all the published data on single-pion
production processes below 1 GeV have been reviewed

by OY.I 2 They achieve quite a comprehensive fit to
the data in terms of a simple isobar model. The object
of the present analysis is to suggest improvements in
the light of current knowledge and to emphasize what
should be looked for in the new higher statistics experi-
ments which are under way. We shall put more emphasis
than OY on the information from recent phase-shift
analyses of elastic rriV scattering (EPS)." 's For pro-
duction data, we draw principally on the s p experi-
ments at 558 "604,"and 646 MeV."

There is information on the five processes

7r+p —+ s+vr'p, (I)
s-+p ~ s-+ir+rt, (II)
vr p~s's- p, (III)
vr p~s.+s. e, (IV)

7r p ~ s'vr'n. (V)
5.0-

E

b
4,0-

3.0-

p~m+m'p fl)
The convention has been to present the data in the form
of certain averages: total production cross section, over-
all Dalitz plot (i.e., integrated over production angles),
and projections of the plot (mass plots); finally, pro-
duction angular distributions averaged over the Dalitz

2.0-

1.0"

X
I I. I

200 300 400 500
I

600
l I I

700 800 900 1000

. Trr+ in MeV

Fxo. 5. Cross section for reaction I: m+p-+21. +m p. The solid
curve is the 6t of OY.

B. H. Bransden, P. J. O'Donnell, and R. G. Moorhouse,
Phys. Rev. 139, 81566 (1965)."P.Bareyre, C. Bricman, A. V. Stirling, and G. Villet, Phys.
Letters 18, 342 (1965)."P. Auvil, C. Lovelace, A. Donnachie, and A. T. Lea, Phys.
Letters 12, 76 (1964); 19, 148 (1965); A. Donnachie, R. G.
Kirsopp, A. T. Lea, and C. Lovelace (DELL) (to be published).
Results are summarized in Ref. 43."R. A. Burnstein et al. , Phys. Rev. 137, 81044 (1965).

e' C. N. Vittitoe et a/. , Phys. Rev. 135, 8232 (1964)."J.D. Oliver, I. Nadelhaft, and G. B. Yodh, Phys. Rev. 147,
932 (1966).
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4.0"

3.0-

2.0-

1.0- rr p~ n- n. n (0)+ + +

plot. A summary of total production cross sections to
the different charge channels taken from the compilation
in Ref. 1 is presented in Figs. 5—9. Production angular
distributions do/d cosO~, for reactions III and IV from
the experiments" ' at 558, 604, and 646 MeV are
shown in Figs. 10—12, The mass spectra from the ex-
periment at 558 MeV are shown in Fig. 13.

The OY model attributes production predominantly
to the following partial waves and decay modes

I= 2: D33 (S-wave 7'*)
Paq (P-wave 7rlV* and S-wave x.V')

I= 2: Dqa (S-wave ~JV*)

Pn (S-wave mS').

It attributes no energy dependence to the isobar pro-
duction amplitudes G(s,~ ) except, where relevant, for
kinematic threshold factors and an energy-dependent
phase for Dq3 production. (OY have also to make certain
adjustments, to comply with unitarity at the higher end
of the energy range which they cover). They fit a wide

R
I I I I | I I I

200 300 CQQ 500 60Q 700 800 900 1000

T„+ inMeV

FIG. 6. Cross section for reaction II: 7t+p ~ ~+~+n. The solid
curve is the 6t of OY.

range of production data with very few parameters. A
key point in their fit is to reproduce the observed charge
branching ratios between the total production cross
sections for processes III, IV, V (Figs. 7—9). This is
achieved through an energy-dependent interference
between D~3 and D33 production which is attributed to
a rising phase C~ of the D~3 production amplitude. This
is taken to pass through 90' at T = 500 MeV and causes
a marked increase in a(III) and decrease in 0(IV) over
that which would be obtained if C ~ were O'. At the same
time quite a reasonable fit is achieved to the x+x e
production angular distributions at 558 MeV, Fig. 10,
which show strong quadratic effects. The OY analysis
can thus be said to give independent confirmation on
the existence of the D~3 resonance.

Successful fits are also achieved to two-body mass
spectra (e.g., Fig. 13) except for m+~ from reaction IV.
The excess of events with values of 71-+7r mass at the
upper end of phase space, the so called "Kirz anomaly, "
is well known and commonly attributed to 71-m final-
state interactions in the I=O, J=O state. Since the
effect is especially marked at low energies, it seems
likely that the P&& state has an important cYr decay
channel. There may also at low energies be triangle

12.Q-

11.0 "

10.0-

9.0-

6.0-

7,0- 7.0-

5.0—

6,0-

E
C

5.0

4.0—
C

4.0- "p ~n+tr "n (I)

30-

2.0- 2.0-

1.0-

I I

200 300 400 500 600 700

T&- in hlcV

p~TT~TT p (~)

800 900 1000

1.0-

I

I

200 300 400 500 600 700 800 900 1000

T~ in MeV

FIG. 7. Cross section for reaction III: 7i p —+ 7t'7i p. The solid
curve is the fit of OY.

FrG. 8. Cross section for reaction IV: 7i- p —+ Tf+~ n. The solid
curve is the 6t of OY.
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50-

4.0"

Jh
p 3.0-
C

'~ ~

2.0-

m- p ~rr'rr'n (7)

~ &

I I

200 300 400 500 600 700 800

T in Me&

I

000

Fxo. 9. Cross section for reaction V: m p —+7r'~og. The so/jd
curve is the 6t of OY.

effects, " although doubt has been cast on existing
calculations. "

Among the striking successes of OY with regard to
spectra is the 6tting of the observed peaking towards
high mass of the a. a' mass spectrum, Fig. 13(c), which
is explained through an interference between the two
S*bands from Dg3.

Problems with the OV analysis in addition to the
Kirz anomaly are as follows:

(1) They do not reproduce the production angular

distribution for reaction IIl (s m'p) at 558 MeV."Just
as for reaction IV, they predict substantial quadratic
terms which the data do not show (see Fig. 10).Neither
do they at 604 MeV" (Fig. 11).Taken together, these
data suggest essentially isotropic production. At 646
MeV, "some deviation from isotropy is seen (Fig. 12)
but still not in agreement with the model.

(2) The assumed partial-wave inelastic cross sections

for a~3 and E~~ are in gross disagreement with the EPS
results (see Fig. 14). Too much is attributed to Dts

especially at low energies and too little to E~~.

Ke are thus led to attempt a fresh apportionment of

the production cross section. The information from

EPS on total production cross sections in various

partial-wave channels is summarized in Figs. 15 and

16. %e employ recent analyses published by three

independent groups. ""For I= ~, the essential features

are (i) large production in P»—already marked at
T =300 MeV and peaking somewhere between 400 and

500 MeU; (ii) strong production of the Dts resonance

rising rapidly from T„=400 MeV and peaking at
around 600 MeV; (iii) considerable inelastic cross

sections in S», certainly above the p threshold at 556

XCC 441 EVENTS ZF 848 EVENTS

558 MeV

I I I } } I } I I } I I } } I } } I

Fro. 10. Production
angular distributions for
reactions III and IV at
338 MeV (from Ref. 31).

I I I 1 } I

I I I I
1.0 0.8 0.6 0.4 0.2 0 -0.2 -0,4 -0.6 -0.8 -1.0

cos Q~;

I

1.0 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0
cos

"V. V. Anisovitch and L. G. Dakhno, Phys. Letters 10, 221 (1964); also Zh. Eksperim. i Teor. Fiz. 46, 1307 (1964) } English
transl. : Soviet Phys. —JETP 19, 886 (1964)g."I.J. R. Aitchison, Nuovo Cimento 51A, 272 (1967).
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IZT 1316 EVENTS lY 1841 EVENTS

604 MeY

I I I I I I I I I I I I I I

FIG. 11. Production
angular distributions for
reactions III and IV at
604MeV (from Ref. 32).

I I I

I I I I I I I

'1.0 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0
COS Qe j

I I I I I I I I I
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COS QH j
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I I I I I I I I I I I I I l I I I

FrG. 12. Production
angu1ar chstnbutions for
reactions III and IV at
646 MeV (from Ref. 33).
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I l I I I I I I I
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rr(I) = g (1"')+-,'g (2'")
g(11)= s~(2"'),

g(111)= s~(I'")+(4/9)~(1"')+(I/5)g(2"')
+(4/9))g(lt/s)g(is/s) jt/sX( —l

~(1 )= ( /9)~('")+(2/9) g('")—( /9)
X t g(l i/s) g(13/s)gt/sX( —)+ (4/9)g(Qt/&)

+(2/45) (2'")+(4/9)(v'l)
gag(0»s)g(2s/s) jt/sX(+l

&(V)= (2/9) g(0'")+(4/45)a(2"') —(4/9)(v'5)
X Lg (Q'/s)g (2s/s) ji/sX&+&.

(5.1)

3~Bransden et al. , (See Ref. 28) t,'BOM) have significant in-
elasticity in D35 and not in D33. However, new phase-shift searches
undertaken by B. H. Bransden, A. T. Davies, and R. G. Moor-

MeV—possibly with a significant amount below; (iv)
possibly quite a large P13 constribution.

For I= ~, there is a good deal less unanimity. "It seems
possible that the low-energy production, T &600 MeV,
is correctly described by OY as predominantly D»
supplemented by P'». At any rate, we will follow this
for the purpose of analyzing the I= 2 contributions.

The elastic analyses can, of course, give us at most
total inelastic cross sections o.qe (s-/V —+ all inelastic
channels). However, experiment shows that the cross
section for producing a final state with three or more
pions, also that for associated production of strange
particles, is in general small. We are thus safe in identi-
fying the cross sections of Figs. 15 and 16 with those for
the process o (s/V —+ ms S).An exception is furnished by
the channel S» where an important, possibly the pre-
dominant inelastic process is m)'lt —+ g~V. '" 38 A rough
consistency check is afforded by comparing the total
inelastic cross sections for s. p and s-+p deduced from
the elastic phase shifts with production data, see Figs.
17 and 18.The points are computed from EPS parame-
ters and the curves are interpolations of the production
data Figs. 5—9. The agreement is reasonably except for
the case of s- p from T =550 to about 700 MeV, the
region where g production is observed.

One would like to determine the decay channels for
the different partial waves but it does not seem possible
to do this uniquely with the existing data. Certain con-
straints can however be inferred. The first evid'ence

which may be used is that of the over-all charge branch-
ing ratios g (I):g(II): g (III):&r(IV): g (V). The data on
these quantities which have been compiled by OY are
shown in Figs. 5—9. Using this information, one can
make an isotopic-spin analysis of pion production.
Production amplitudes can be characterized by the
total isospin I and for instance the isospin I of the
pion pair in the final state. We write AI I for the ampli-
tudes and there are just four of them —A1' ', A2' ',
A p

~ Ag'~'. From Bose statistics, only the pairs A p ~',

A2'~' and A1'~', A~'~' can interfere. The cross sections
g.(I) to g (V) can be written down using standard Clebsch-
Gordan formulas:

The g(I r) =(~Ar r
~

') and the X&+&, X& & are overlap
coefficients which have to have modulus less than or
equal to one. X(+' or X& ' equal to unity would imply
that the interfering amplitude had exactly the same
dependence on the kinematic variables and were in
phase. (We have remarked how OY use a phase differ-
ence between D13 and D33 to achieve a charge-branching
ratio varying with energy. ) The first two equations give
g(1'") and g(2'/') uniquely. The remaining three cross
sections are expressed in terms of four parameters. Of
these, we can deduce the sum g(1'/')+o(0'/') from the
sum g(III)+g(IV)+g(V) and the I= ss data since the
interferences cancel in the sum. To make further prog-
ress, we use the constraints

~

Xt+&
t

& 1. If one makes a
plot of g(1'/') against o(0'/si, the information on sums
of cross sections constrains the allowed region to a line
and the inequalities on the X's to a sector, in some cases
quite a short sector. In this way, one constructs a rough
plot of the ratio R=a(1'")/g. (0'") as a function of
energy. This is shown in Fig. 19 where the error bars
correspond to the allowed sector lengths referred to
above. The main result is that there is an upward trend
of R with increasing energy. Fig. 20 is a sketch of the
total I= —,

' contribution to production from 7r p and
probable partial-wave contributions to it.

We shall discuss various hypotheses for the decay
channels from the J~ production channels known to be
relevant. The hypotheses considered will involve ap-
propriate orbital states of mX*, oiV, pÃ, and xX'. It is
worth noting the values of the ratio R= g(1'/')/g(0"')
for these. Thus, for m/V*, R= st(assuming no interfer-
ence. between (s.tAT)7rs and (s.s/V)7rt, a reasonable first
approximation]; for 7rfP (same no interference assump-
tion) R=2/1; with the opposite assumption of total
interference between (art/V)~s and (ss/Y)ss, which is
more reasonable for P» especially at low energies, R= 0.
For cr,V and piV, R is of course, respectively, 0 and ~.

We have listed in the previous section the decay hy-
potheses which will be considered. For example, P» —+
S-wave g/V, P-wave A&V*, and P-wave p./V. (We do not
use the xE' hypothesis; it overlaps considerably with
g/V so that its use would lead to redundancy. ) P» is
known to be the main inelastic channel at the lower
energies and the ratio R seems to be tending to zero
towards threshold. Therefore, it is plausible to assume
that P»~Ra. S wave predominates at threshold.
However, the admittedly rough analysis leading to Fig.
19 suggests that the ratio R is already significantly dif-
ferent from zero say ~ at T =450 MeV. At this ener-

gy, P» still predominates to a sufhcient extent that we
are led to assume P»~ other channels as well, for exam-

house indicate more inelasticity in Dae LR. G. Moorhouse (private
communication)g."References are given by A. T. Davies and R. G. Moorhouse,
Rutherford Laboratory Report No. RPP/AS, 1966 (unpublished);
and (to be published)."F.Bulos et a/. , Phys. Rev. Letters 13, 486 (1964); W. B.
Richards et al. , ibid 16, 1221 (1966. ).
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FIG. 13.Effective-mass plots for reactions III and IV at 558 MeV (from Ref. 31). LThe published data are in the form of Q-value plots
(essentially mass-squared plots) and these were suitably transformed. ) All masses are in GeV.

pie I'-wave 7r S*.Centrifugal factors would then guar-
antee the behavior at threshold previously mentioned.

We now turn to a~a. As has been remarked, the OY
model achieved a number of successes with the assump-
tion of the predominant decay mode S-wave 7t-A"*. Let
us s.e to what extent the successes can be preserved
with a value of the production cross section in line with

the EPS predictions. Consider again the data at 55g
MeV."As we said earlier, the production angular dis-

tributions for 7r+7r e were successfully explained; those
for s. s'p not so. This was achieved with Ds sÃ*
S-wave production distributed among the production
channels roughly thus:

o.(I)= 2.1 mb, o (II)=0.35 mb, a(III) = 2.9 mb,
o.(IV) =4.75 mb, o (V) =2.65 mb.

10.0-

9.0-

8.0-

7.0-

6.0-

5.0-

4 4,0-

3,0-

p ane)EPSDI3

0'(n-p~ nrrg)oY
P 11

0 (&-P~ rTTIN) EPS

The contributions to s p -+ s-s.iV are then 0.8 mb from
I= ~ and 8.5 mb from I= -,'.As stated above, we propose
to retain the OY description of the D33 amplitude. For
D», a reasonable contribution to o(7r p) would be 4.0
mb. The next question is how might this production be
distributed between channels III, IV, and V. Suppose
we follow OY and assume a~3 ~7'* S wave, There is
then the possibility of substantial interference inQuenc-

ing the branching ratios, If we assume no over-all

2,0-

$.0-

I I I I

200 300 400 500 600
I I I

700 800 900

Fro. 14. Comparison of form assumed for o (w p ~ ms') vis, D&~
and P» (a) in the OY analysis (full line), {b) from the elastic
phase-shift (EPS) analysis (dashed line).
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interference between (s.P')s.s and (~,!V)s.r, the formulas
are

o (III)= (2/9) o (1)+(17/45) o (3)

2—(5/9) [o(1)o(3)j'"cosCt,
+5

o.(IV) = (5/9) o (1)+(26/45) o (3) (5 2)

2
+(7/ )

5

(r(V) = (2/9) a(1)+(2/45) o (3)

2—(2/9) Lo (1)o(3)J"' cos@r.
5

Suppose we assume that D~3 is a simple one-level reso-
nance with no background and that the D33 production
phase is zero. Then 4» should equal the elastic phase
and rise through 90 at about 620 MeV rather than at

500 MeV as assumed by OY. This has the eBect of
enhancing the branching ratio to channel IV below
resonance (see Fig. 21). In particular, at 550 MeV, the
D3 contributions now lead to branching ratios.

o(III) =0.45, o(IV) =3.74, o(V) =0.63.
When the Da production cross sections to channels III,
IV, and V thus calculated are subtracted from the totals
from all partial waves, the remainder fail at many
energies to satisfy the inequalities implied by isotopic
spin discussed earlier. Therefore the model cannot be
correct in detail. Nonetheless we will accept the general
picture of an enhanced branching ratio to channel IV
below 600 MeV. This will carry the implications of a
larger ratio A= a(1'!')/a(0'!') for the remaining partial
waves.

V/e have thus a plausible mechanism for understand-
ing why Dst& (rr!V*) goes to channel IV much as pictured
by OY. But what is to take its place in channel IIIP
Points to note are the following: (i) We need to achieve
approximate isotropy —this suggests that barring can-
cellations there should be a fair contribution from states
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for this amplitude is shown in Fig. 22(a). It will be
seen that it gives quite a reasonable fit to the rr

—
p and

4(«P vrnN)-OY's FIT TO THE DATA12-

lo-

8-

6-
C

b

900
I I I I I

300 400 500 600 700 BOO

T~ in MeV

FIG. 17. ~+p total production cross section. Comparison of
EPS predictions with the OY fit to the observed single-pion
production cross sections. Legend; o, Bransden et al. , (Ref. 28);
Q, Bareyre et aL., (Ref. 29); ~, Donnachie et at, (Ref. 43).

of J= r especially Pt&', (ii) our natural explanation for
the preponderance of events at the top end of the 7t 7I

mass spectrum has disappeared. We thus have a "Kirz
anomaly" for 7I- 7t-' as well as 7I-+7I- .

We seek mechanisms which predict a large branching
ratio to channel III. Natural candidates are P» —+ p.~$~

(P state), Stt —+ pA' (S state). Let us consider P, t —+ piV

in more detail. With the parameter values listed in Sec.
IV, the ~ a' mass plots are as shown in Fig. 22. (We
show also the results for Stt ~ ply). It will be noted
that the calculated spectrum from P~~ ~ p-'V is not as
sharp as the experimental one (Fig. 14). Further
sharpening can be achieved by interference with E» —+

xiV* with suitably chosen production phases, or by
adjusting the range parameter I,.

As mentioned in Sec. IV, pS has two E-wave couplings
to -,'+, Pt"'= (~ j~)(its js)»d Pt"'= (~tj~)—.

&&(tr js)& j»). These each give characteristic distribu-

tions with respect to coses(=tttrs ja), i.e., across the
Dalitz plot for fixed col~. The distributions are, respec-

tively, cos'83 and sin 83. The first form gives an un-

wanted depletion of events in the center of the Dalitz
plot so we consider only the second. The 7T.rY mass plot
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zr'p experimental mass spectra. Some admixture of Dz
~+* such as our picture already requires would slightly
improve the fit. A general observation: I/is eery dificult
to separate zr&V* from mass speclra alozze

One can extract from the Dalitz plot for zr zr"p, the
distribution in decay angle cos83 of events for bands of
zrzr mass squared. We term this a (cos8z,ai»') plot. The
result, Fig. 23, is not similar to that which would be
obtained for Dz zrX (Fig. 24); nor is it entirely com-

patible with sin'8z. A noninterfering (out of phase)
mixture of Sir (pV) and Fir (pA') to give 2+8 sin'8z

would 6t the data. As to the phase of S~1, Davies and
Moorhouse" have made a three-channel fit with xE,
g.V, a.3~ to the data on z3;~g.'V and the elastic phase
shifts. Evaluating the parameters for their solution C,
one obtains at 558 MeV arg T(zr IT —+ zr.V) 38', argT
(zrzV —~ o V)—44', i.e., the production phase is close to
the elastic phase. Assuming that the same would hold
for arg T(zrlV ~ p,'iT), we infer that in order to get non-

interference we would like arg T(Prr —+ pA') 135'.

Discussion of ~++ n Dalitz Plot at 558 MeV

We can form the (cos8z, &o»') plot for channel IV at
558 MeV (see Fig. 25). The result is a striking forward-
backward asymmetry of the cos03 distribution especially
for the lower values of ei&zz. (The cos8z asymmetry
persists at 604 and 646 MeV. ) In the over-all cos8z
distribution, the forward-backward asymmetry is 2:1.
I.et us make the assumption that such a pattern obtains
for the D3 contribution, which is known to be a major
although probably not predominant component. %e can
now make a comparison with predictions of the model
for different decay patterns. If we assume D3 goes
entirely to 5-wave m.A'* with the I= —, and components
deduced earlier, we obtain the distributions shown in
Fig. 26. The result is an essentially symmetric distribu-
tion in cos83. The origin of this is easy to understand
qualitatively. The cV* bands at this energy go approxi-
mately across the middle of the Dalitz plot. To proceed
further, it is convenient to make a partial-wave analysis
in cos83. This is equivalent to computing the recoupling
coefficients ((12)3i (23)1) discussed by Wickz for a
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dots show the nearest allowed position to that corresponding to
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special case. We are to take the '& ~ production arnpli-
tude, say, for 7i.+.I'* for fixed ~~~', varying cos03 and
make a I.egendre analysis. The modulus of the function
peaks approximately about the center of its range and
the phase increases passing through 90' at the center.
(Here we discuss the decay phase; the production
phase is an over-all multiplicative factor. ) Thus the
Po projection is predominatnly imaginary and the P&
projection predominantly real. We infer that suitable
candidates to achieve the required interference are
either a real 5 wave or an imaginary P wave. We select
the former as being the more likely and are thus led to
consider the situation where D13 —& 7T-.Y' and 0X. Using

-OY s FfT TO TKK DATA

200 300 400 500 600 700 800 900

Trr MeV

FIG. 20. Sketch of the total I= &m p production cross-section
and partial-wave contributions to it (rough consensus of the
KPS predictions).

the 0- parameters of Sec. IV, we tried various admixtures
of x V* and 0-,'V with the same and different production
phases. Figure 27 shows the resulting plots for the
mixture

Drs —+ 0.573vrX*(C = 33.5)+0.816o..V(C = —45') .

Employing equal production phases did not lead to an
appreciable asymmetry, although this could presumbaly
be corrected by choosing different 0. parameters.

A general conslusion is that the (cosHs, tots') plots can
be a very fruitful way of presenting the data in this
energy range. One would like to know as much as pos-
sible about the dependence of this plot on the produc-
tion angles.

Remarks on the P11

(i) The status of the Ptt effect as revealed in elastic
scattering is unclear. It is unquestionably very inelastic
up to 700 MeV and perhaps beyond. It is agreed among
the EPS analysts that the phase shift arises from the
zero at around 170 MeV to a value of 60—70' at 500
MeV. Thereafter ambiguity sets in—some analyses
have the phase falling again, others" have it continuing
to rise passing through 90' at about 550 MeV. The'
latest Berkeley tables" have a P11 resonance at 1400
MeV. (T t.b ——430 MeV and width 200 MeV). The
resonance position is chosen from considerations of the
effect of a repulsive background and the rate of descrip-
tion of the circle on the Argand diagram. It coincides
approximately with the bump found in p+p~ p+8+
missing-mass experiments. "If this picture is accepted,
the question arises what is the substantial inelasticity
above 500 MeV to be attributed to and what is the
phase doing.

» L. D. Roper, phys. Rev. I etters 12, 340 {1964).
A. H. Rosenfeld et a/. , Rev. Mod. Phys. 39, 1 {1967).

4' G. Cocconi et a/. , Phys. Letters 8, 134 (1964); E. W. Ander-
son et al. , Phys. Rev. Letters 16, 855 (1966); I. M. Blair et cl.,
ibid 17, 789 (1966).
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ln an attempt to extract a little more from the phase-
shift results, in particular to build in the Ball-Frazer
mechanism, 42 a series of 6ts as a function of energy were
made to DELL Solution I4' with the trial functions of
the form

FIG. 23. Distribution of events as a function of the cosine of
the decay angle, cos83, for seven equal bands of M ~ for reaction
III at 558 MeV—experimental (Ref. 31), and total projections on
the 3E, ' and cosA axes.

shown in Fig. 29 on which is also plotted for comparison
the solution of Bareyre et al."Taking the phase-shift de-
terminations of the various groups together, one would

Tr Tt"p 558NeV (013~Swave Tt N+Computed)

with
gs " ds' --InIt(s')-

c(s)=-
» s' —s 2q" (6)

iin(s) = arctan
Rg'

s—sy s—$2

In these formulas 5(s) and It(s) are the phase-shift
parameters which are to be fitted, x=(t 170) MeV—
with I, the lab energy and q the center-of-mass momen-
tum. sI is the inelastic threshold. The remaining
quantities are adjustable parameters.

Representatives of two classes of 6ts to g and 5

are shown in I'ig. 28. Fit A has a single resonance, fit 8
has two resonances. The associated Argand plots are

4~ J. S. Ball and W. R. Frazer', Phys. Rev, Letters 7, 204 (j.961).
4' A. Donnachie, Report of Scottish Universities SNmmer School,

JP66 (Oliver and Boyd, London, I907), p, 330.
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COS e3

I' IG. 24. (cosA, M ') plot as for Fig. 23, 8eaction
558 MeV—computed for the production amplitude D13 +
wave xS~.
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FIG. 25. (cos83,3II,') plot as for Fig. 23. Reaction IV at
558 MeV—experimental (Ref. 31).

probably conclude that the type of solution with a
single P» resonance as in Fit A was the most likely but
that a solution with a second resonance was not ex-
cluded. (For that matter, there are sets of phase shifts
with resonance at all."")

Tr R n 55B McV (Computed for D3~ S wave rr N )

(6)

(5)

~(C) &

(3)

(2)

1.0 0.8 0.6 0.4 0.2 0 -0.2 -O.C -0$ -0.8 -1.0
COS 83

I&16. 26. {cos88pI«') plot as for Fig. 23 (but with six mass
squared bands). Reaction IV at 558 MeV—computed for the
production amplitude DB ~ S-wave ~17*.

(2)
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1,0 0.8 0.6
(1)

OC 02 0 02 04 06 08 1S
COS 83

Fro. 27. (cosSS,M„') plot as for Fig. 26. Reaction IV at 558
MeV—computed for

Diq —& 0 573isÃ*.)(C =33 5')+0 8.16tlrX).(C = —45').

"J.Kirz, J. Schwartz, and R. Tripp, Phys. Rev. 130, 2481
(1963).

(ii) What about the inelastic data? In order to get
evidence on the production phase, one needs to see an
interference with other partial waves. We have already
argued on tenuous grounds from the isotropy and form
of the Dalitz plot in channel III for a phase of about
135' in T(Ptt ~ pX). Another interesting set of data
is provided by Kirz et a/. 44 who plot for channel IV
(s+s. m) the forward backward asymmetry for .V* pro-
duction, i.e., events with M(s n) between 1188 and
1288 MeV. Their results are reproduced in Fig. 30(a).
One asks how is the change of sign of the forward-
backward asymmetry to be interpreted. Obviously, an
interference between states of opposite parity is re-
quired. The possibilities considered here are for negative-
parity states Sj and De and for positive-parity Pj and
P3. At 6rst sight, the interpretation is clear. One is
seeing the resonating Dj3 interfere with a nonresonant
state of the opposite parity. However, our main positive-
parity candidate is P» and this is supposed itself to
have a resonance. Arguing thus, one is forgetting about
final-state interactions which may be different for the
two states in question (also about possible quite large
contributions from Sii and Pi3,' these could be crucial
since interference effects are concerned with amplitudes
rather than their modulus squared. Nonetheless, we
continue to forget about these states). Let us try to
form a picture of how the observed behavior of the E~
asymmetry could arise through a P&, D3 interference.
First, assume the picture of D3 as predominantly S-wave
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with constructive interference in channel IV
between D~g and D33 below resonance. Calculating with
the numbers already discussed, we obtain for 6&, the
production phase in channel IV, the form shown in
Figure 30(b). For purposes of illustration, we will

discuss two distinct models for J', t production: (i) all
I' wave ~.V*, (ii) all S-w-ave o..'V. For case (i) the decay
phases are coherent and so cancel. For case (ii), we
have to allow for the decay phase in the A'* band for D3.
One can do this approximately by forming the average
over the available portion of the A'* band as a function
of energy (6») [Fig. 30(b)j.This quantity is now to be
added to the production phase h~, and it is the sum
A= hi+ (bss) with which the phase of the P» amplitude
(production+decay phase) is to interfere. Making
rough allowance for "efficiency factors" (i.e., the over-all
production cross sections for Pj~ and D~3 to channel IV,
times relative probability of production being in the lV*

band), we deduce as a suitable interference phase e the
form shown in Fig. 30(c) corresponding to the fit to
the data shown as the dashed curve in Fig. 30(a). We
are thus led to a picture of the P~~ production phase
(+ decay phase which we assume small) as being of one
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0.2-
L

l0X

T,/

/
/

/
/

~02-

-OJ-

T ~

I,I-~&

l
T

300 400 500 600 700
T in NcV

800
300

400 500 600 700 800

T& in MeV

FIG. 30. (a) Forward-backward asymmtery of events in the N* '

band for reaction IV as a function of energy. Experimental points
for Kirz et cl. (Ref. 44) and approximate 6t (dotted curve). (b)
Plots of phases C1, b, 1, (833), and 5 (see text) as a function of
energy. (c) assumed form of the interference phase e as a function
of energy. (d) Alternative solutions for P» production phase as a
function of energy.
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of the three forms shown in Fig. 30(d). Evidently,
there is scope for a lot of phase variation of P~~ including
a second resonance, although this is obviously very
far from being a unique explanation. For example, one
could have the solution Z—e LFig. 30(d)g in which the
phase rises to a high value below 90' and then falls.
This resembles some of the elastic phase-shift
determinations. ""

In discussion of both the elastic and inelastic data
we have been led to note the possibility of a second P»
resonance occurring somewhere in the range 600-800
MeV. It should be strongly coupled to what we have
termed the pE channel. Being a distinct structure from
the lower resonance at 1410 MeV, it could very well

have diferent production properties at high energies.
The question of the existence of a Ett resonance (and

a fortiori of two resonances) is of interest in the quark
model since there would be difhculties in finding a quark
configuration to which it wouM naturally belong. 45

It may be that in situations where long-range forces
(one-pion exchange) dominate, there exist bound states
and resonances which do not have supermultiplet
companions. It seems that the deuteron may be one
such. 4'

45 R. H. Dalitz, in Proceedings of the Thirteenth Annual Inter-
national Conference on High-Energy I'hysics, Berkeley, 1966
(University of California Press, Berkeley, 1967), p. 233.

46 The question of a possible dibaryon supermultiplet to con-
tain the deuteron has been discussed by R. J. Dakes, Phys. Rev.
131, 2239 (1963}.

Partial-Wave Contributions to the Charge Channels
and Production Angular Distributions

Thus far we have obtained a general picture of what
happens to the Pj~ and D~3 contributions. We now
summarize these conclusions and brieRy review the
other partial-wave contributions. We also examine
more systematically the data on production angular
distributions.

In order to fix ideas, we extract from the partial-wave
analyses a rough average of the partial-wave production
cross sections for T =558, 604, and 646 MeV. These
are set forth in Table V, the numbers being contribu-
tions to o(tr p —+ a.trlV) in mb. We have already dis-
cussed a model for the charge branching ratios for D3.
What can we say for P&P Ke have argued for a fair-sized
branching ratio to the channel III. As a guess, let us
fix on 50%. If we then assume that E» decays entirely
to piV, 71-S*, and 0.$ in the proportions r~. r~.'r3, we
derive (assuming as before no over-all interference
between the two 1V* bands)

o(III):o(IV):o(V)= [art+(2/9)-rsj

:Lsrt+(5/9)rs+srs$:C (2/9)rs+srsj. (5.4)

It follows that no matter what the ratio of r2. r3, we
obtain

o(III):a(IV):o(V)= ts:5/g2: tts (5.5)

We are left with I'3 and S~ to apportion. Let us arbi-
trarily assume that they split as for the x)V* decay
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TABLE V. Partial-wave contributions to v P ~ p &$ in mb (rough average of the KPS predictions).

Tr
(MeV)

558
604
646

2

I=%

2.0
1.0-2.0
1.0-2.0

0.1
0.4
0.8

4.2 0.5
3.8 0.6
3.4 0.6

s+
2

1 I s

1.5 O.i
1.7 0.2
1.9 0.4

2

1=2
4.3 0.7
6.5 0.8
6.0 1.0

Total
estimated

from
production
experiments

13
14.5
15.5

Total from
phase shif ts

13.4
15-16
15-16

modes, i.e., in the ratio (2/9):(5/9):(2/9). We then
obtain the pattern set forth in Table VI.

Ke now have a hypothesis for the distribution of the
partial waves among the charge states. It essentially
6ts the total cross sections to the charge channels. It
is to be rioted that the 5» and I'3 contributions are far
from negligible and are necessary to get agreement with
the observed totals. One would like to have evidence
that it is these particular partial waves that are present.
For this we have to await more extensive data.

We now turn to the information on production angles.
The experimental data is presented in the form of dis-
tributions do/d(cosO;) and we have extracted the
coefFicients A i in a Legendre expression P A)P)(cosO;).
We state the formula for the A ~ in terms of partial-wave
production amplitudes which are derived in Appendix 8:
Ap= I~if'+

f
pif'+ f(fs"'I'+ f~s"'I'

+ I
ps"'I'+

I
ps"'I'

Ai=2 Ref pi* si —v2(pi* ds")—sr* ps('))
+.s(ps())a. ds(i) &ps(s)e. ds(s)) j (5 6)

As= ReLI(fs"'I' Ids' 'I'+
I
ps"'I' —

I p
+2V2(Pie Ps( )—st* ds( ))j

As ———3 Ref ssps("* ds(')+(6/5)ps(')* ds(')j.

The quantities si, Pi, ds" s), Ps" s) are functions over
the Dalitz plot and depend on the nucleon spin orien-
tation so that products such as ps(')* ds(') and

I pi I'
are to be interpreted as vector products in a Hilbert
space, i.e., spin sums and averages over the Dalitz
plot. The quantities averaged are different according
to which final particle is singled out as reference direc-
tion. It will be seen from the formulas for A~ and A2

that D3 and I'3 have each one set of spin components
which contribute positive curvature and one which
contributes negative curvature.

We now review the data. This is set forth in Figs. 31
and 32 and Table VII in which the quantities plotted
are Ai/Ap As/Ap and As/A p for reactions III and IV
with appropriate statistical errors. We use the notation
for example IV()s) to denote the distribution in cosO„
for channel IV. In order to show trends as a function
of energy, we have included as well as the data for 558,
604, and 646 MeV" "also that for 775 MeV" and for
460 MeV. 4' We note the following points:

(i) For channel IV, As/Ap is comparatively large
and positive at 558 MeV and thereafter decreases as
the energy rises for the distributions IV(n) and IV(7r ).
For IV(rr+) the data points have a more complicated
pattern and are possibly compatible with a value
remaining fairly close to zero.

(ii) For channel III, A-„./Ap is close to zero at 550
MeV for III(irP), III(s. ), and III(P). The latter shows a
systematic increase for higher energies.

(iii) For channel IV, the ratio Ai/Ap shows a pro-
nounced variation with energy for IV(s.+) and IV(7r ),
whereas IV(n) stays close to zero over the range 550
to 650 MeV.

(iv) For channel III, the corresponding coeKcients
show much less change.

(v) Only at 775 MeV for channel IV is the ratio
A s/A p significantly different from zero.

We have computed some values of A s/A p for different
isobar configurations for the case T,=558 MeV. (We
do not expect a lot of variation with energy say between
550 and 650 MeV. ) The results are shown in Table VIII.

TABLE VI. Possible branching ratios of the partial waves to p v p(III), v+p' n(IV), and m. v'n(V), all in mb.

558 MeV
IV V

604 MeV
IV V

646 MeV
IV V

Ds'
PI,
Ps
g b

Total
Expt.

0.45
2.35
0.35
0.45
3.6

4.0&0.5

3.74
1.9
0.9
1.1
7.6

7.5+0.8

0.63
0.45
0.35
0.45
1.9

1.35
2.2
0.4

0.4&0.1
44

4.98+0.54

4.95
1.8
1.1

1.1+0.3
9.0

7.87+0.91

1.15
04
0.4

0.4&0.1
2.4

2.7
2.0
0.5
0.5
5.7

4.65+0.27

3.4
1.67
1.3
1.3
7.7

7.4+0.23

1.7
0.33
0.5
0.5
3.0

a The Ds branching ratios cited are for the S-wave ~N+ Dis and Dss model discussed earlier. The pattern Dxs —+ 0.57xN's+0. 82o N with phase di6erence
developed to explain the channel IV Dalitz plot alters the ratios at 558 Mev to 0.16:3.56:1.10.

b It is hard to estimate the amount of Sg because of uncertainties as to the normalization of y production. We take a rough average.

"L. Bertanza, A. Bigi, R. Carrata, and R. Casali, Nuovo Cimento 44A, 712 (1966}."C. P. Poirier et al. , Phys. Rev. 148, 1311 (1966).
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TABLE VlI. Relative I egendre coefficients in the expansion of da/d cosO~; for reactions III and IV.

Tr Reac- No. of
(Me V) tion Events A I/Ao

f
A s/Ao As/Ao A I/A o

2

A 2/Ao A3/Ao A I/Ao
3

A s/Ao A s/Ao

460 III
556 III
604 III
646 III
775 III
460 IV
556 IV
604 IV
646 IV
775 IV

100
441

1316
1049
833
325
848

1841
1609
1598

0.24 +0.24
0.16+0.10
0.08 +0.06

—0.12 +0.07
0.08 &0.09
0.39&0.14
0.0 %0,07

—0.35 +0.03
—0.44 ~0.05
—0.08 +0.08

0.23 &0.29
0.12 &0.12
0.20 +0.08
0.19~0.08
0.49 %0.11

—0.38~0.10
—0.18~0,07
—0.30~0.05

0.11~0,07
0.04 &0.10

—0.62 +0.29
0.01&0.14

—0.03 +0.08
0.02 +0.09
0.21 &0.10

—0.27 &0.15
0.09&0.10
0.01 +0.06
0.22 +0.07
0.32 +0.10

—0.01 +0.14
—0.11%0.09

0.05 +0.06
0.14 +0.06
0.22 &0.07

—0.35 &0.11
0.20 +0.08
0.47 a0.05
0.59 &0.05
0.48 +0.05

—0.35 +0.19
—0.09 &0,11

0.07 &0.07
0.00 %0.08
0.09 &0.09
0.00 &0.14
0.29 ~0.10
0.13+0.06
0.06 ~0.06
0.20 +0.06

0.0 &0.27
0.03~0.13
0.13+0.04
0.04 +0.09
0.00a0.10
0.18~0.16

—0.09&0.10
0.03 +0.07
0.10&0.07

—0.13&0.07

—0.01+0.27
0.03+0.10
0.03 +0,07.
0.19&0,08

—0.18%0.10
0.28 +0.11

—0.05 ~0.09
—0.06 +0.06
—0.13&0.06
—0.36 &0.06

0.57 +0.31
0.04 +0.12
0.28 &0.08
0.36&0.09
0.39&0.10
0.02 &0.14
0.46 &0.10
0.28 &0.07
0.24 &0.07
0.26 +0.07

0.13~0.30
—0.14~0.14

0.08 &0.08
0.04 &0.09
0.11&0.10

—0.20 &0.16
—0.13~0.10
—0.24 +0.07
—0.05 %0,07
—0.41 &0.07

It will be noted that the simple hypotheses for D3 give
positive curvatures whereas those for P3 give predomi-
nantly negative curvatures. This follows from the con-
struction of the quantities dst' " and ps"'&. One can
check for example that the D3 state built from 0. 3' has
exactly the value 1.0 for As/As for the case when one
refers the azimuth to the nucleon direction. Other dis-
tributions are blurred through the rotation of axes but
the trend to positive curvatures remains. In order to
achieve negative curvature with D3, one needs to go to
more complicated configurations such as D-wave mX*.

The As/As values for channel IV thus support the
notion of a large D3 component. The large values for
IV(n) and IV(ir ) favor the hypothesis of D» —+ 5-wave
7t-X*. The isotopic Clebsch-Gordan coe%cients are such
that this is predominantly m.+.tY* resulting in approxi-
mate isotropy for m.+. A modest admixture of P-wave o..'V
with S-wave ark* is also compatible with the data. The
decrease with energy of As/As for IV(n) and IV(ir )
suggests a decreasing portion of D3 in channel IV. Our
model predicts a diminishing branching ratio to channel
IV but this is compensated by the rising D3 cross section.
It appears that one needs some additional effect perhaps
from the si* da"' interference to achieve full agreement.
If we accept the broad picture set forth in Table VI
with Ds comprising only 50%%uq of the total in channel IV,
the A2,/'A 0 values at 558 MeV are seen to be very large.
If there is as much as 0.9 mb of P3 contributing nega-
tive curvature, this remark holds a fortiori.

The increase in curvature in channel III is also in

accord with our picture. That it occurs predominantly
in III(p) is rather puzzling.

The trend in A t/A s for channel IV reveals an energy-
dependent interference effect. The behavior of this
quantity for the ~+ distribution is of course closely
related to the forward-backward asymmetry of iV*
already discussed. Once again we try to understand the
effect as an interference between D13 and a positive-
parity contribution. If this is P» and is to show no
asymmetry in IV(n), then we deduce from calculations
that the decay channels have to take a rather special
form. Thus for Dts +0.816

~

rriV*)—+0.573
~
o&V) (in

phase) we required P» ~
~

irX*)+0.56
~

o. 'V) —3.18
~
pÃ).

P'» could also be playing a part.
That As/As, which can be as large as 9/5, remains

small confirms the picture of D3 being predominantly
coupled to ds "& and Ps to ps&'&. The rather small values
of A t/A s for channel III deserve mention since we seem

definitely to require an admixture of opposite parity
contributions for this amplitude. %e have already dis-
cussed the question of Si, Pj interference at 558 MeV
and suggested that a very large production phase for
P1 could cause this interference to be small.

VI. CONCLUDING REMARKS

Ke have evolved the following picture of the pro-
duction phases and decay channels for the J=-', partial
waves. (1) Dts —+ S-wave irX* with production phase
as for elastic scattering. There is also evidence for the

TABLE VIII. Computed values of As/Ao(O;) for assorted production and decay channels. Except where
stated, all cases are computed for T = 558 MeV.

Partial
wave

D13
D13
D13

+D33

D13
P13
P1s

Des
+Dao
as above

Decay mode

S-wave mN~
S-wave ~N*
S-wave rrE*(4&= 33.5')J
S-wave vE(C =0') f
P-wave oN
S-wave pN
P-wave ~N*
P-wave AN*
P-wave pN (1+1= 1}+~ =,~ coupling
vE~ and oE
7rE~ S-wave (at 646 MeV)(

Channel
IV(III)

III
IV
IV
IV
IV
IV
III

III
IV

A 2//A p(01)
~'(~')

0.54
0.06

—0.01

0.19
0.66—0.72—0.40

0.41

0.03

A 2/A p(O~g)

0.54
0.69
0.91

0.19
0.66
0.24—0.40

0.63

A g/A p(03)
n(P)

0.32
0.55

0.53

1.0
0.0—0.29—0.40—0.50

0.24

0.41
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following: D~p~ P-wave OX (with the 0 parameters
which have been employed one requires different pro-
duction phases for ~A'* and ah'). (2) P» -+ S-wave 0A
below 400 MeV. Thereafter we have in addition either
or both of

P~~ —+ P-wave x.5'*,

P» —+ P-wave pX.

At 550 MeV and above, a substantial amount of the pE
decay channel seems to fit the data. It appears that a
very large production phase compatible with a second
P~~ resonance would be helpful in fitting the data on
forward-backward asymmetries. (3) S» and P&p have
to be present to bulk up the cross sections. We have no
comment on their decay channels except the remark that
a component S~q —+ p V could help to explain the sPm. P
Dalitz plot.

A novel conclusion of this analysis has been the
emergence of P» —+ pX as a significant decay mecha-
nism. One would like to interpret the facts in as model-

independent way as possible. Thus: (i) I=-', ~IV-+
s's. P necessarily has I = l. (ii) I,= I m l, =1, 3
(Bose statistics). (iii) Therefore any model with P» —+

~"~ P (say ~X*) has a large component of (7r~)!A' with
I =1, / =1. (iv) However, it is hard to see why m.,'6
final-state interactions do not cause the cross section to
leak into channel IV. Ke conclude that a large branch-

ing ratio of P~~ to channel III, if confirmed, sets a
challenge to theory. On the other hand, S» ~ p 4 would

be very stable against "leakage. "
The whole discussion hinges critically on the elastic

phase-shift analyses being broadly correct especially as
to the relative inelasticities in S& and P~. One awaits
revised phase-shift analyses incorporating the latest
polarization experiments which fortunately span the
region discussed here. "

The idea of strong p'V coupling to I'~~ ties in with the
recent pion photoproduction analysis of Chau et al."
These authors find a strong photoproduction of P~~

persisting up to photon energies equivalent to T„700

MeV. One can now consistently picture the photo-
proceeding via y-p coupling.

All conclusions are more or less tentative, being
Aawed by the unsystematic procedures to which one is
driven by the form and extent of existing data. One
therefore asks how future experiments might improve
matters.

Firstly, it is obviously desirable to gather data at
more energies with better statistics and especially to
perform experiments on as many charge channels as
possible at the same energy. There is also the question of
how the data should be presented (think of an experi-
ment with 6000 events at a given energy). Up to the
present, data on single-pion production has been
published in the form of averages: (a) over-all Dalitz-
plot distributions; (b) production angular distributions.
In theoretical analysis of the experiments, one has
attempted to distinguish between hypotheses by con-
fronting their predictions with such averages. The
results have been not altogether consistent and cer-
tainly not conclusive. It has been necessary to feed in
extra cd hoc assumptions at various points. Since in a
bubble-chamber experiment all kinematic variables are
determined for each event, it is evident that much
information is lost in the conventional presentation.

What is required is a compact way of recording corre-
lations between the production angles and position on
the Dalitz plot. This is afforded by the analysis of
Arnold and Uretsky" which is set forth in Appendix H.
According to Eq. (B4), the production intensity W has
the following expansion in spherical harmonics:

X I'; *(O,C)W ~(s,a&g,cop), (6.1)

in which W '=(—) W '* and terms with odd j+~
vanish.

Written out for the case J~( ~, this becomes

1 (3~
W(O, C,m&, pp, )=—W, '—

~

—~P~'(cosO)[cosC ReW~' —sinC &mW&'g+~ ~Pp'(cosH)
4~ &v2 j E~&6j

7
X[cos24 ReWp' —sin24 ImIFp'1+5Pp'(cosO)Wp ~ ~Pp (cosO'I[cos34 ReWp' —sin34 ImW3

k+ISOj
7—

~

—Pp'(cosO) [cosC ReW~' —sinC ImW&'j, (6.2)
~,VS

where the ten real functions 8'O', Re@'~', etc. depend on
the coordinates of the Dalitz plot. They are the general-

"P. J. Duke et c/. , preliminary data presented at I.P.P.S.
Conference at University College London, 1967.

'0 Y. C. Chau, N. Dombey, and R. G. Moorhouse, Phys. Rev.
163, 1632 (1967).

ization of the I.egendre coefficients employed in the
description of elastic scattering experiments. They con-
tain in principle all the information that a production
experiment can give.

We therefore propose the following procedure. (a)
Divide the Dalitz plot into cells. For example, we have
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found (cos83,&oi33) to be very convenient for this pur-
pose. (b) For each cell, determine the coefFicients W ' by
summing events with the appropriate weighting factor:

d(cos8)B~„= dC
(2j+1)1/3 —1 0

X I;"(O~,C)14'(0 C, cos83,&oi3') . (6.3)

One would extract the 8' "s up to whatever j value
gave signi6cant results, probably adopting a coarser
mesh for the higher values. The analysis has been pre-
sented in terms of the, normal coordinates 0", C which
seems rational and convenient. Since one is not now
averaging over the Dalitz plot, the 8' "s for any other
system can be computed by an explicit transformation.
The choice of the axis for C is arbitrary and could be
chosen, say, as the nucleon direction. Again there exists
an explicit transformation to pass from one choice to
another.

Once given the detailed form of the W "s over the
Dalitz plot, one would be able to make a much more
careful analysis. One would still not be in such a good
case as for elastic scattering, lacking polarization ex-
periments and the extra phase information that comes
from the coherence of the scattered with the incoming
wave. This entails an over-all phase uncertainty 0 (col,&o3)

in any determination of the production amplitude.
Aside from this, the way would be clear for fitting the
data meaningfully to a sum of partial-wave production
amplitudes. Production studies could begin to approach
the precision of elastic scattering analysis and fully
complement them in the unraveling of resonance decay
patterns

APPENDIX A: FURTHER NOTES ON THE
THREE-BODY ANGULAR FORMALISM

Angles 0&, C, ;, C;, 0, 0;, I, are de6ned in terms of
the unit vectors j~, j,, n, and j;, introduced in Sec. II.

j~ n=cosO

gg ' gi= cosO~, ,

[i7~—(jq n)n] j;=sinO cos(C+p;),

(A1)

(A2)

(A3)

where p, (i=1, 2, 3)= (0, —&3 X3) ol (X3 0, —&1) or

(—X,, X,, 0) according to which I7, is taken as the
reference direction.

g;&" gy = coseIt, ~ (A4)

[j~—(j~ jk)jaj.[j;;—(j'; j~)j3)
= Sln83 S1110~3 COSC'i, (A5)

j,"q, = cosXI„ (A6)

s, n= —sinO cos+, (s, to be defined below) (A7)

s, t7, = —sinO, cos+. (A8)
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Three-body states are specified by supplying (a) the
two coordinates on the Dalitz plot and so determining
the configuration in the production plane; and (b) Euler
angles (n,g,y) to specify the orientation of the produc-
tion plane. Thus if (b„b„,b,) are unit vectors along
"body-fixed" axes and (s„s„,s,) are the corresponding
space-6xed axes, we have

(b„b„,b,)=Z.s,-'(s„s„,s,),
with

g —~
—inJz ~

—iPJy ~
—iyJz

aPv

Thus cosg=(b, s,), sing cosn=(b, s ), —sing cosy
= (b..s*).

For the study of production processes, it is convenient
to choose s, parallel to j& and 8, arbitrary. The pro-
duction cross section is independent of the Euler angle
y. Standard body-fixed systems are as follows: (1) a
"normal" system with OZ normal to the plane of pro-
duction and OX in the direction of one of the outgoing
particles, say, j,: (n,g,p)=(C, O',4); (2) the "k(ij)"
system with OZ parallel to jI, and OX on the plane of
q& and jz, (n,g,y) = (C;,0;,4'). These systems are con-
nected by rotations through known angles and the
azimuthal wave functions for given J are related through
rotation matrices of these angles.

Thus, we define three-body states by
~ j»j»j3) or,

for example,
~
i013,&u33', 03,C»), or, using the linear

relation between cos83 and ~33, for fixed coi3', ~A&13',

cos83, 03,C»). Integrals over three-body phase space
are given by

d gy d g2 N'g3
8(Z—P~,)8(gq,.)

2&y 22 23

1
d(cos 0~3)d@3d%'dcoi3 da)33 (A9)

32$

gi2g3
dkui33d(cos0~3)dC 3d+d(cos83) . (A10)

16k(og2

The modifications to go to alternative coordinates are
obvious. For a general choice of Euler angles (ii,g,~)'

one has d(cosg)dna. It is convenient to associate the
(C», 03,+) system with the cos83 decomposition in
order to use j3 as a common quantization axis.

%e can now develop unit projection operators for
three-body states, using the phase-space transforma-
tions (A9), (A10) and the orthonormal property of the
rotation matrices,

1

dn d(cosg)

Sx
XD~3 3"(ngy) =8, , 8, ,8,„; . (A11)

2jl+1
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d gi d g2 d g3
J(3)=— Iqi, q2, q3)

2Ny 2co2 2co3

X8(E—p";)8'(Zq')(qiq2q3I (A12)

t' 871 ) dM12l423

pi~i; &2J+1) 32s

X Is; "12',(o,3',JAR;M)(s; &F12'«(u23'«JAR;~I; (A13)

(analysis by transversity spin components)

p 8~
Z I

Jument E2J+1~ 32$

X Is; r»12', "23 «JPP«m)(s«&12 «"23 «JPFmI «(A14)

(analysis with quantization axis in direction q; and
helicity components for spin)

t' 8~2 'I 1 (2Eq12q3)
Id(cos83)dko12'

»m" E2J+1~ 32sE co12

X Is;co12', cos83, cpm)(s;~12', cos83', JypmI. (A15)

We introduce the second angular momentum analysis
through the definition

Is/ 12'j12, JPP3m) =4(ql2q3/E"12)'"((2 j12+1)/4~)'"

X d(cos83)d .m»«(28«3) Is; ~122«cos83, Jpp3m) «(AI')

with m12 ——p+p3. It tlien follows from the properties of
the d q'» that

t' 16m')
J(3)= g

»m «12m«2 E2J+1~

previously defined, together with similar transfor-
mations Di,.„,.'12(X',m/2, 0) for the change of spin
quantization.

One requires the second angular momentum decom-
position for the n. (n.N) partition as well as for the (sr~)N
partition discussed above. In order to discuss the pro-
duction of xE isobars with specific angular momentum
properties in their own rest system, one has to describe
the nucleon spin using the helicity components v; in the
same two-body c.m. system. These are related to the
helicity components p; in the over-all c.m. frame through
the Wick rotations. ~ The transformation matrices are of
the form di,.„,.'"(p) with p=832 for the 1(23) partition,
p= p31 for the 2(31) partition, the Wick angles p32 and
P31 being defined below. The Wick angle P32 express the
relation between spin components in the (23) c.m.
system taken in the direction j23 and spin components
in the over-all c.m. system taken in the direction j3.
In the nonrelativistic approximation, the relative
motion of the two reference systems has no effect and
83'2 equals the angle between q23 and q3, X2—81 (see
Fig. 3). Relativistic eGects introduce an additional
rotation Q32.

P32 x2 81+~32

The angles Q32 were introduced by Stapp" and are dis-
cussed in Ref. 5. In the present notation, the Stapp
formula becomes

U1U23 sin81(1+yi+y23+p~)
sinO» ——— (A19)

(1+& )(I+~,)(1+& )

with U23=q23/M'«U, =q,/~23«V-=LI+U-23112 (n=23
1), y~=co3/N. It is easily verified' that for T &1 Gep,
Q3~ remains small; for example, taking T = 1 GeV and
~23= 1.236 GeV, Q3~& 9'.Thus we are justified in making
the nonrelativistic spin approximation.

We finally list certain kinematic relations among
alternative variables on the Dalitz plot:

x(s,"12'; j12mi2, Jpm
I

(A17) M23 =E+mi 2EG)1«—(A20)

The notation in Eqs. (A13) to (A17) is as follows:

J= total angular momentum;
A.= component of J in direction n;
X;=component of spin of particle i in direction n.

LFor (n, m, N) = (1,2,3) we only needX3. 7

p=component of J in direction j;;
p,;=helicity of particle i in the over-all c.m. frame

(we only need refer to p3);
m= component of J along space-fixed Z axis. Choosing

this to be j&, m is the initial nucleon helicity;
j»= total angular momentum of the 1, 2 subsystem;

es»=component of j» along j3.
The basis states of (A13) and (A14) are related through
transformations of the form D'„'(Xp/2, 0), with X=p;

"12=q12+m12, (the m; are the masses of final

particle 1, 2, 3) (A21)
'—(m™2jL '—(m —m)'j/4 ', (A22)

qi'= I-E'—(mi+~23)'jLE' —(mi —"23)')/4E' (A23)

"23 (I/2"12 )I-(E'—m3)(m2 mi )
+"12 (E+ml+m2+m3 CV12)

—4Eq3"12q12 cos83j. (A24)

Formulas for the angles X; in terms of the c.m. momenta
q; follow from the triangle of momentum LFig. 3(a)j:

costi= (qi' —q2' —q3')/2q2q3. (A25)

Formulas for the Wick angles P,, come from applying

» H. P. Stapp, Phys. Rev. 163, 425 (1957).
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spherical trigonometry to the Wick triangle t Fig. 3(b)) with the combinatorial factor Gsz' given by
with

cost &=y (the Lorentz factor) for the (12) system in
the over-all c.m. system,

cos$» ——y for particle 1 in the (12) c.m. system,
cose3=& for particle 3 in the over-all c.m. system.

Additional formulas are obtained by permutation.

APPENDIX B: ANALYSIS OF PRODUCTION
ANGULAR DISTRIBUTIONS

We briefly recapitulate the analysis of Arnold and
Vretsky" in order to clarify the remarks on parity
eigenstates, correct one or two numerical factors, and
recast the formulas for the present purpose. The object
is to develop a formalism for interpreting experimental
information on Ba/8 cosO;. The starting point is the
first angular momentum decomposition of Eq. (2.2).
We follow the notation of Sec. II.

Under the parity operation helicities change sign,
transversities do not. Applying this and properties
of rotation matrices, we deduce from parity conser-
vation that

(s,~„'; AAI Ts(s) lzzz)

= rzg'( —1)&'+i(s, zd "z Ali
I Tq(s) I

—zzz), (81)

where the intrinsic parity factors p and p' have the
values —1 and +1. By considering the effect of the
parity operator on a Anal state,

Gsr'= 2zr(2 J+1)"'(2J'+ 1)'"

X ( 1)x'—i/zL1 ( 1)~+a'+zing

XI, , II, , I* (86)
(J J' j &rJ

-A' A'-A) E-,' ——,
' 0)

'

and the dynamical coefficients (JA,J'A') given by

(JA,J'A') =Q Bss"((ui,zdz)Bs z,
x*= (J'A', JA)*. (87)

The dependence on the initial helicity ns, which can
take the values &-'„has been eliminated through the
relation Bqq™"=(—1)s+~ Bsq "", (81). Quantities are
now to be understood to have zzz=+-', . In the present
application, averages of the coefficients (87) over the
Dalitz plot are employed. Since presently available
information relates to Bo/8 cosO;, one has to rotate
axes and AU give the formulas

)2j+1 'z'

w(o, ,c,) =P
I

I';~*(O;,C;)Wia &, (88)
z~ 4 4~

with the W~' related to the previously defined Wsr"s
in the normal system by

I' Is,&u,,'; npy; X)
=P Dzzgs(nPzr+y)e '" Is)cv, ' AM X)

=p (—1)i "Dzrz, s(n8y) —
Is,(v 'AM li), (82)

W~'= Q Wzr 'Dzr zs'(0, zrj2, 0) .
3i' —J

(89)

we conclude that the parity of the state with total
transversity A and nucleon transversity X is (—1)i ".
Thus the formula for scattering from a state of definite
parity (a) is

2J+1)"'
Tx"+(s,~i,~z; 4', 0,+)= 2j 1/2k= —J 4zr )

XDp (C,O,+)Tsp "((ui,&az)-', L1a(—1) "j. (83)

This simple form results from choosing the x axis of
the normal system to lie along the direction j;. If it
lay instead along the direction j,, the rotation matrix
would be D,ir,iz'(&X, , zr/2, 0) and this extra factor
would have to be taken inside the average over the
Dalitz plot. Coefficients for (O, ,C;) analysis for different
values of i are thus not simply related. AU finally give
the simple formula, obtained by averaging over 4;,

We note that A. serves to label the parity.
The AU analysis can now be followed through to

deduce the spherical harmonic expansion for the pro-
duction intensity W off an unpolarized target (cross
section apart from a kinematic factor depending only
on s):

/2 j+1y 'I'
W(O, C,(ui, (uz) =Q Iz~( 4~)

X &z *(O,c') Wzr'(s, ~i,~z) (84)
Here,

1
(JA,J'A') Gzl'(JA, J'A'), (85)

2g JJ' AA'

—=W(0;) =p (2j+1)I';(cosO;)(2zrWoz). (810)
8(cos0,)

These authors give the special formulas resulting when

only states with J~& 2 contribute which is also the as-
sumption of the present analysis. They denote the
amplitude for production to states J=—'„A by 82& and
those for production to J= ~, A. by C~~. Note that the
formula for the G~J's does not depend on the nucleon
transversity X. There is thus a "parity doubling"
through the formulas, i.e., each term in the sum below
has two contributions.

The formulas for the relevant 8' ' in the normal
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system are

W3'= IBif'+ IB,I'+IC, I8

+ Ic, l
+ Ic,13+Ic,

Wl'= —-', [&3C8B1*+C1B,*—v2B,B,*
—VSB,C .*—B,C,*)

+5 (V'3)LC3cl*+(2/~&) Clc-1*+C 1C 8*),
Wo =8[fell + IC—ll' fell' IC-31 )

+-',%2[Bicl*+C1B1*—B 1C 1*—C,B,*),
W33= —-,'42[C8C,*+C,C,*)

+-,'[B1C 3*—C3B 1*),
W18= —(6/35) [C3C1*+C 1C 3*—v3clc,*),
IV38= —6/(7+5)C3C 3*.

(811)
p 1

1
pg-=

p —1

S —1-
1

—S'

D (3)—
D —3

p (3)—
p 3

D (1)—

p (1)—

-D —1-
3

D 1

3

p —1

(815)

where j' J, denotes X=&18. We can further exploit a
symmetry of the G~' coef6cients according to which
terms always occur in pairs:

(Jg J j1 )+( 1)J+J'+j+1+A-A'(J j1 I jI )

We therefore define abstract 2-vectors:

The corresponding terms with negative M are given in
terms of the above by the relation We can then rewrite the formulas for the Ag in terms

of these quantities with expressions such as
W 8j'= W8jj*(—1)~. (812)

D (3) .P (8)4=D 3P —84+/) —3P 33C

Terms with odd j+M vanish. The corresponding
formulas relating to d&r/d(cosa~, ) for the Wlj"s are

Wo"= IBll'+ IB—ll'+ IC3l'+ IClf'
+ IC, I8+ IC, I8=—A,

WO 3 Re{Bi*B-1—(+8)(Bl*c3 B—1 C—8)

',v2(C1B 1—* -B1C 1*)+—( /353v)

X[C3cl +(2/V3)clc 1*+C 1C 3 )}=—-', Al,

w, = —1'. Re{fc, I + fc, I

—Ic, f

—fc, f8 (813)
+2v3[C8C 1*+C1C 8*)+2&2[Blcl*—B 1C 1 )
—2(+6)[Blc 3'—C3B 1*)}—=—,'A8)

W3' ——(3/7) Re{—C3C 3*+-',V3[C8cl*
+C 1C 3*—v3clc 1*)}—= (1/7)A3.

Note that we have introduced the quantities
A j——(2j+1)W()j which are the actual coefficients of
p~(cosO, ).

It is convenient to introduce a more mnemonic
notation which emphasizes the J assignments of the
spin components. We therefore write in an obvious
notation

Pi Pl
D3")=-', d3&')+-'v3d3&'),

D (&) = &~3d3(&) d3( )

(816)

with similar formulas for the P, &') in terms of P3&".
As a result, we obtain

A() ——fsll + Ipll'p Id3 3'I'p Id

+ I
p8"'

I
'+

I
pl"'

I

'

Al= 2 Re{pl* sl —v2(pl* d3"' —sl p3&'))

+ 8(p3(1)8'.d3(1) lp3(8)3'. d3(3)) } (817)
A8=Re{ fd3"'I' —ld3"'I'+ fp8"'I' —

I
pl'" I'

+242(p *
p ' —s * d ')}

A 3= —3 Re{8p3&')* d3"'+ (6/5) p3"'*.d3"'}.

Note the relations

i.e., interpreted as a scalar product.
It turns out that more transparent formulas result if

alternative spin combinations are employed. Define
sl, pl d3&", d3") p3"' pl&" through the formulas

Sg=sg,

.C 3

D3'

p 1

p 3

p 3 D 3

—Sg'
+$

Sg ' Pg—'

(814)

sl —v2d8( )
I
'+

I
pl+v2p3

Al+A8 ——2 Re(sl —&2d3&'))* (p,+v2p3&')),

A()+A 1+A,+A 3
——

I sl+ p, —v2d8(3)+v2p3&')
I

'.
We have now achieved compact formulas which give

in particular a simple form for coeScient A2 in terms
of J=-,' components which contribute, respectively,
positive and negative curvature.


