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Superconvergence relations for t&0 are studied in the one-tower approximation, and a simple method
for their solution is introduced. In general, we find that, given a mass spectrum and one solution for the
couplings, an infinite number of other solutions can be constructed. In simple cases, we also construct the
first solution.

'HE saturation of nonforward superconvergence
relations' with an infinite set of single-particle

states'' has recently become a popular pursuit. The
problem divides itself naturally into two parts: the
saturation with (a) a finite number of external particles,
and (b) the whole tower as external particles. The
latter problem is clearly much more difficult than the
former, and we shall have only some indirect comments
to make about it. Our purpose in this paper is to note
a rather simple procedure for construction of solutions
with a finite number of external particles. In general,
we learn that, given a mass spectrum and one solution
for the couplings, one can construct an infinite number
of other solutions. 4 In simple cases, we can also construct
the first solution. Unless some further physical principle
can be invoked to distinguish between the solutions, '
it appears that the nonfor ward superconvergence
relations are dangerously close to being empty. "

Our order. of presentation is as follows. First we

study an example of a superconvergence relation derived
from large isospin and/or strangeness in the l channel.
Here, given any mass spectrum p,,' bounded by j' for
large j, we can construct an infinite number of ab-

solutely convergent solutions for the couplings. Then
we go on to consider the helicity-Hip superconvergence
relation recently discussed in some detail by Klein. '
Here things are more dificult, but we can show that if
one solution exists, then one can construct an infinity
of other, diferent, solutions. At least this weakened
result appears true in general for helicity-Rip relations.
I inally, we mention the application of our method to
the saturation of an infinite number of superconvergence
relations for form factors, and to the saturation of
current algebra sum rules.

Our first case is the superconvergence relation in the
E-K channel, due to I=O, strangeness 2 in the cross
(K E) chann-el. By charge-conjugation invariance,
only isospin-1 (0) resonances can appear in the even
(odd) partial waves. Moreover, from the isospin
crossing matrix, the I=O resonances appear with an
extra minus sign. Putting one (stable) particle in each
partial wave, and using crossing, the superconvergence
relation takes the form'
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The basic reason for this is that the resulting infinite array of
equations for an infinite number of unknowns can be viewed
without harm as a rectangular matrix equation, with many more
unknowns than equations.

' It has recently been noted by I. T. Grodsky LPhys. Letters
25, 149 (1967)j that a single-tower saturation of a supercon-
vergence relation can easily lead to anomalous singularities in t.
Probably any one-tower solution will have this difficulty, as one
is not attempting to maintain crossing. Part of this can be fixed
up by adding (lower) daughter andfor conspirator trajectories to
the game; e.g., see K. Bardakci and G. Segre, Berkeley Report
(unpublished).' In particular, one seems to lose the information gained from
the t=O superconvergence relation with the usual techniques.
In fact any subset of couplings that one chooses can be specified
arbitrarily, as long as there remains an infinite subset to be
determined.' In a way this may be good, because without this circumstance,
one could not hope to push on toward solving the harder problem
of the whole tower as external particles. That is to say, one may
hope that by putting a.'. larger infinity of constraints on the cou-
plings and masses, the multiplicity of solutions may be reduced.

where the couplings g; are constrained to be positive
(negative) for jeven (odd), and ttts is the mass spectrum.
By expanding the left side of this equation in powers
of t, and setting the coeKcient of each power to zero,
we obtain the upper triangular array

where

P a„;g;=0, rt=0, 1 ~,
2=n

(3)

is positive definite. The question is whether solutions of
this system exist.

We could proceed with a naive construction as
follows. We define a sequence of stages. The zeroth
stage is to pick go, say, equal to unity. The first stage
is defined by

&0,0+ tt0, ig1

thus determining gq. In the next stage, we add the e = 1

Note that, in the degenerate-mass case, these equations have
only the trivial solution.
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480,2g2+130, 8g8

G1,2g2+ $1,3g3 = rtl, lgl ~

(5)

equation, and, say, two more coup1ings g2, g3, while

demanding that the solution of the first stage is not
altered:

According to the condition (6), we can now pick j4
so large that the right-hand sides of Eq. (8) are as
small as we wish. It follows then that the solutions
g;,g;,g;, are arbitrarily small, " and in particular

Having two equations in two unknowns, we can deter-
mine gs and gs. In a similar way, the third stage (with
three equations) may be satisfied leaving g0. gs
unchanged by introducing couplings up to g6, and so
on in each stage. Clearly, at each stage, we could add

many more couplings, most of which could be specified
arbitrarily; the degree of arbitrariness in such a
procedure is vast.

There are two diS.culties inherent in the above
scheme. The first is that the various infinite series in j
may not converge. Secondly, the above construction
does not yet guarantee the correct signs of the couplings.

The first problem has been solved by Polya, ' who

found a sufhcient condition that the infiite sums be
absolutely convergent: There are an infinite number of
(linearly independent) absolutely convergent solutions

to infinite matrix equations of the form of Eq. (2), if

can be made arbitrarily small for n=0, 1 I since g;, is
also arbitrarily small for large j4—see Fq. (7)g Qy an
inductive procedure, Polya shows that the sum of the
moduli of all the terms added in all stages to the first
and second equations can be made arbitrarily small—
that is, the series converges absolutely. Of course,
a2, ;,g;4 is not small in general, but the additions to the
third equation in the next stage will be small, and so on;
in the end, all the sums will be absolutely convergent. '4

We now turn to the second problem; namely, that of
guaranteeing the correct signs of the g's. Continuing
to illustrate with the third stage, we can guarantee the
correct sign of gj4 by choosing j4 even (odd) if the right
side of Eq. (7) is positive (negative); beyond that, j4
is not specified. Suppose that j& is already much larger
than x=2, so that the asymptotic form of the kernel
(j"" le 2") is applicable. Then the solution of the
system (8) may be written

With a mass spectrum going asymptotically as p,' j,
the conditions of Polya's theorem are met for n&2."
Both Refs. 3 and 11. point out that these mass spectra
are probably the only onces that can saturate these

relations, so we will limit our discussion to these cases."
We will illustrate Polya's theorem by showing, e.g.,

how the third stage is satisfied, assuming go .gs have

already been determined. Instead of introducing three
new g s (j=4, 5, 6), we introduce four, which we call

gj1 gj2 gjg and g;4, where j1&j2& j3&j4 and where all

four numbers may in fact be large. All other g, 's

(3(j(j4) are set to zero. Then, taking account of the

previous stages, and choosing

gj4= ( l22, 2g2+4823g3)/182, j41,

we obtain the equations of the third stage

(7)

'G. P6lya, Commentarii Math. Helvitici 11, 234 (1938—9);
R. G. Cooke, Iwplete jttIatreces and Seqgeltce Spaces (MacMillan
and Co., Ltd. , London, 1950).' That is, if one imagines the saturating particles to lie on a
Regge trajectory, then, asymptotically a(s) must increase more

rapidly than s'~'.
n L T. Grodsky, M. Martinis, and M. 8'wiqcki, Phys. Rev.

Letters 19, 332 (1967l."Itwould be very interesting to establish the conditions on the
mass spectrum such that (a) no solution existed to the super-
convergence relation, or (b) a finite number existed.

ttsjig jl+tts, j,sgj4+480jlg je (jts, ,j4/jt2, j4) (482,2g2+lt2, 3g3) )

ttljlgjl+ jtrjl,gj2+rtrjlgj8 , (jtl,j4l,jt2j4) (132.2g2+, 182,8gs) y (8)

2 jrgjl+ 2 j2gj2+ 2 j3k3

j 2 a
ri 2(2—a)J2

2—a
; 2(2—a)J3

1

j 2—a
' 2(2—a)j1

j 2—a
-' 2(2—a)j2

j 2—a
; 2(2—a)J3

"Pblya shows that j1, j2, j3 can always be picked so that Eq.
(8) is not singular, if an infinite number of elements ao;, j=0, 1 ~ ~ ~

are nonzero, as is our case.
~ The "tails, " where everything is smaller than some q wj]l

start higher in j for higher e.
» Por g;„ the j4 column is in the center, making the numerator

determinant positive, so that we simply choose j2 of opposite
parity to j4. j& will have the parity of j4 again.

and similarly for g;„g,, The important point is that,
if we choose j1«j2«j&«j4, then the sign of the
denominator determinant is that of the product of the
diagonal elements (positive). This may be seen by a
columnwise expansion of the determinant, starting with
j32(2-a), its largest element. The same technique may be
applied to the numerator determinant, where it is clear
that the sign is negative, as the determinant is domi-
nated by (—j4' ) multiplied by its (positive) minor.
Hence g, , has the same sign as g 4, and we need only
choose jl to be some even (odd) integer if j4 was even

(odd)." These considerations can be generalized to
arbitrarily large-order determinants, as should be
obvious. Beyond the various evenness and oddness
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requirements, there clearly remains a great deal of
arbitrariness in the construction. "

Now we turn our attention to superconvergence
relations arising from helicity Qip in the cross channel,
e.g., the popular one in the x-p system with I=i
and helicity Qip 2 in the I, channel. Klein' has recently
written down the relation, attempting to saturate with
co and A2 towers and the pion, obtaining the system of
equations

a; (j+n)!z "(j) . (1o)~" (t P—4)" U—I).
in which all the a s (couplings) are constrained to be
positive. There is a chance of solution because G„(j)
begins negative but has an e-dependent zero and then
goes positive. The form of this equation is very similar
to our Eq. (2), and indeed, for this equation, the
conditions of Polya's theorem are still satisfied for

p,'& j'. On the other hand, the unitarity constraints
are quite different as, for any n, there are not an infinite
number of negative terms. Thus our basic technique,
which involves setting large blocks of each equation
(far to the right) to zero, cannot help in a direct
manner. "What we shall show, however, is that if one
solution of Klein's equation exists, then there are
infinitely many others. For this discussion, we redefine
Klein's a's and kernel as our g's and a' s.

Suppose we have a solution to Eq. (10) that we can
examine, and, in particular, learn the behavior of g;
as j—+~. We can now construct an infinite number of
solutions g, a la Polya, in which g =0 for all values
of j for which the given solution vanishes, and for
which's lim, „g /g;=0. For each of these it is possible
to 6nd a nonzero number a such that

~
ttg,

'
~

~g; for all j.
Then since g; and kg,

' satisfy the linear equations (10),
it follows that (g;+kg ) are new solutions that satisfy
the positivity requirement.

One might ask, in the general case, how many solu-
tions exist with the physical requirement that all the
couplings are nonzero (no gaps in the trajectory). By
the reasoning of the previous paragraph, our answer is
that, if there is one, there are an in6nite number.
Moreover, from a cursory examination of higher

~6 There are various other superconvergence relations, derived
from large isospin in the cross channel, to which the method may
be applied directly. For example, in ~-~ scattering with l= 2 in
the cross channel, a first moment superconvergence relation may
be written

Jp" s' ImA (u', t)dy'=0

The method works as well for these higher moment relations. In
this case, one plays E=O, 1 resonances (with diferent signs from
the crossing matrix) against one another.

"The reason for this difference is that, by putting in just these
particles, Klein has used only the diagonal (positive) entries in
the helicity crossing matrix. If one were to put in as well the whole
pion tower, there would be, in particular, an additional infinity
of negative terms, so that one might hope to extend our method
to this case. However there will be certain obvious Schwarz-like
inequalities, due to factorization, which would be difficult to
incorporate.

'8 This is possible if the Regge trajectory does not increase more
than linearly in s. Details will be given by D. Atkinson, Uni-
versity of Rome (unpublished).

helicity-Rip relations, it appears that at least this
weakened multiplicity result holds in general for
helicity-Qip relations. On the basis of the cases dis-
cussed above, we feel it worth conjecturing that, in
general, superconvergence relations with a 6nite
number of external particles" have (given a mass
spectrtnn) an infinite number of solutions for the
couplings.

To conclude, we mention some other possible
applications of our method. The 6rst is to form factors.
If electromagnetic form factors fall oR faster than any
power of t (the momentum transfer) one might hope
that they satisfy an in6nite set of higher supercon-
vergence relations

Ch'(V). ImP(P)=0 rt=0, 1, . . . .

» the approximation of an infinite number of (say,
spin 1) stable resonances, the equations can be written

g(p, ')"g =0
im

g 0 1 e ~ ~

"Our results can be extended to any finite number of external
particles: In such a case, one has a finite number of other equa-
tions of the form of Eq. (2), each to be satisfied by the same set
of couplings. This array can be written as a super-matrix equation
of the same form as Eq. (2). The question of what happens when
the entire tower is on the outside remains entirely open.~ It is not likely that any of the absolutely convergent solutions
attain the Martin bound LA. Martin, Nuovo Cimento 37, 671
(1965)g though it is possible that some conditionally convergent
ones do.

"'Note added in proof The argument in th. e paragraph con-
taining Eq. (11) is incorrect. It should be replaced by the follow-
ing. Suppose we have a solution to Kq. {10)that we can examine,
and, in particular, learn the behavior of g; as j—&co. Now we
can construct an infinite number of solutions g, a la Pblya, in
which g =0 for all values of j for which the given solution g;
vanishes, and for which lim; „g//g;=0. This turns out to be
possible if the Regge trajectory does not increase faster than
linearly; details will be given in D. Atkinson: /University of
Rome Report (unpublished)g. For each of these it is possible to
find a nonzero number s such that )eg/ ~

~g, for all j.Since g, and
eg,

' satisfy the linear equations (10), it follows that g, +eg, ' are
new solutions that satisfy the positivity requirement. In the
general case, one might ask how many solutions exist with the
physical requirement that all the couplings are nonzero (no gaps
in the trajectory). By the same reasoning, our answer is that if
there is one, there are an inhnite number.

where there are no sign restrictions on the couplings
g;, and p, ,' is the mass spectrum. The conditions of
Polya's thereni are satis6ed in this case for aey rising
mass spectrum, so, given a mass spectrum, we can
construct an infinite number of absolutely convergent
solutions" to Eq. (12). The method is also applicable
in principle to the tower-saturation of individual
current algebra sum rules"—given the (form factor)
inhomogeneities. Again because of the spin compli-
cations, we need one solution in order to construct an
in6nite number of solutions to these equations. '
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