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Hagen and Macfarlane,’® S, can be given in terms of
homogeneous product sums “k” appropriate to SU(6):

Sn = hn+3hn*_ hn+2hn—l* y

where!?
I(3n)
ha= 20 3(n—2k)(n—2k, k)
k=0
and
I(4n)
hat= Y Y(n—2k)(k, n—2k),
k=0
I(x)=integral part of x.
Thus
_ I(3(n+3))
S.= ¥ 3n+3—2k)(n+3—2k, k)
k=0
14m) I1G(n+2)
® X %(n—Zl)(l, n—21)— > L(n+42—2k)
=0 E=0

I(3(n—1))
Xn+2—-2k, )0 2 3n—1-2)0, n—1-2]).
1=0

15 C, R. Hagen and A. J. Macfarlane, J. Math. Phys. 6, 1355
(1965).
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The reduction of the SU(2) part, e.g., 3(n+3—2k)
®3(n—2) causes no problem. The reduction of the
SU(3) part can be achieved by using the elegant
formula of Coleman'® which we quote below.

(nm) @ (' ;")

min(z,m’) min(m,n’)
= Z Z (n_isn’hj;m_])ml—i):

£=0 i=0
where
(nn's mm')= (n+n', m~+m')
min (%,n’)
& > (nt+n'—2i, m+m'+i)
=1
i min (m,m’)

+ X (ata+i, mtm'—2).
j=1

Proceeding in this fashion, one obtains &, and £,.
After a straightforward but very lengthy and laborious
calculation, one then obtains the expression R, as
quoted.

16S. Coleman, in Proceedings of the Seminar in High-Energy

Physics and Elementary Particles, Trieste, 1965 (International
Atomic Energy Agency, Vienna, 1965).
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Regge-Pole Exchange and Direct-Channel Resonances in Models for
High-Energy Scattering Amplitudes*
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The behavior of the forward and backward =NV scattering amplitudes for momenta of 1-5 BeV/c has
been analyzed recently using models in which Breit-Wigner amplitudes describing direct-channel resonances
are added to a background amplitude given by the Regge-pole-exchange model. Although remarkably
successful in practice, the model has severe theoretical limitations, especially with regard to the treatment
of the tails of the resonant terms, double counting of the background contributions, and the restriction to
the Breit-Wigner approximation for sets of isolated resonances. The theory of Regge-pole-plus-resonance
(RPR) models is examined in detail for both single-channel potential scattering and the many-channel
relativistic case. A modified RPR model is developed in which (i) the double-counting problems are elimi-
nated, and (ii) direct-channel resonances are described in terms of their Regge-trajectory functions. There
is no difficulty with the tails of the resonant amplitudes in this formulation of the RPR model. Moreover,
the contributions of the entire set of resonances on a given Regge trajectory can be included in the scattering
amplitude. The relevance of these modifications of the RPR model to past analyses of #IV scattering is
discussed briefly.

25 FEBRUARY 1968

I. INTRODUCTION

T has become clear in the past year that a remarkably
successful description of w IV scattering for laboratory
momenta of 1-5 BeV/c can be obtained by adding
* Work supported in part by the University of Wisconsin
Research Committee with funds granted by the Wisconsin Alumni

Research Foundation, and in part by the U. S. Atomic Energy
Commission under Contract No. AT (11-1)-881, No. COO-881-120.

appropriate direct-channel resonance terms to the
Regge-pole-exchange amplitudes deduced from fits to
high-energy scattering cross sections. The rationale for
such models is simple: the Regge-pole-exchange ampli-
tude is used to represent the smooth average behavior
of the complete amplitudes, while the resonant terms
take into account the large deviations of a few partial-
wave amplitudes from that average behavior. Models
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of this type have been used to fit the resonance fluctu-
ations in backward 7*p scattering cross sections,! the
difference between w+p and =—p total cross sections,?
and the forward? and nonforward®* =—p — =% charge-
exchange cross section. The interference of resonance
contributions with the Reggeized p-meson exchange
amplitude has also been advanced as a possible ex-
planation of the polarization observed in the charge-
exchange reaction at 5.9 and 11.2 BeV/c.5® More
recently, the model has been used to predict the
polarization to be expected in the charge-exchange
reaction at lower energies,*!! and in a tentative analysis
of the polarization observed in elastic 7*p scattering in
the range of 1-3 BeV/c.12

Although notably successful from a phenomenological
point of view, the Regge-pole-plus-resonance (RPR)
model is not entirely satisfactory theoretically. First,
the resonant amplitudes have generally been described
by simple Breit-Wigner terms with constant widths and
elasticities.’® Such a description is valid only in the
immediate neighborhood of the resonance energy. At
lower energies, the resonant contribution may be
sharply suppressed by angular momentum barrier
factors, while at higher energies, the increasing com-
petition from opening channels may lead to a rapid
decrease in the elasticity parameter.* The smooth

1V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966);
Phys. Rev. 155, 1792 (1967).

2. Barger and M. Olsson, Phys. Rev. 151, 1123 (1966).

3 J. Baacke and M. Yvert, Nuovo Cimento 514, 761 (1967).

4 D. Reeder and K. Sarma (private communication), and Uni-
versity of Wisconsin Report No. CO0-881-149 (unpublished).

§ R. J. N. Phillips, Nuovo Cimento 454, 245 (1966).

( 6R. K. Logan and L. Sertorio, Phys. Rev. Letters 17, 834
1966).

7R. K. Logan, J. Beaupre, and L. Sertorio, Phys. Rev. Letters
18, 259 (1967).

8 G. Altarelli ef al., Nuovo Cimento 48A, 245 (1967).

9 B. R. Desai, D. T. Gregorich, and R. Ramachandran, Phys.
Rev. Letters 18, 565 (1967).

10 The charge-exchange polarization was measured by P.
Bonamy et al., Phys. Letters 23, 501 (1966). The polarization of
the recoil nucleon in this reaction would vanish if only p exchange
were present. There are unfortunately a number of objections to
the treatment of the resonance contributions to the amplitude in
the foregoing theoretical papers, and it is unlikely that these
explanations would survive a more careful calculation. A possible
exception is the model of Desai et al., Ref. 9. Alternative explana-
tions for the observed polarization in terms of Regge cuts or
lower-lying p-type trajectories have also been advanced [V. M.
de Lany et al., Phys. Rev. Letters 18, 148 (1967); H. Hogassen
and W. Fischer, Phys. Rev. 22, 516 (1966); R. K. Logan et dl.,
Ref. 7. For more detailed comments, see the talk of L. Durand
in the Report of the Argonne Symposium on Regge Poles [Argonne
National Laboratory Report, 1966 (unpublished)].

11 A, Yokosawa, talk given at the Colloquim on Polarized Tar-
gets, Saclay, 1966 (unpublished), and private communication.

12 P D. Grannis, H. M. Steiner, and L. Valentin, in Proceedings
of the Thirteenth Annual Internatzonal Conference on High-Energy
Physics, Berkeley, 1966 (University of California Press, Berkeley,
Calif., 1967).

13 Modified resonance forms have been used in Refs. 8 and 9.
However, the form used in Ref. 8 is not simply connected to the
direct-channel Regge-pole amplitudes. The Khuri form used in
Ref. 9 is more satisfactory, but leads to difficulties with unitarity
at high energies (see Sec. II).

1 Since the elasticity of a resonance gives the probability that
the =N system scatters through the eigenchannel [in the sense of
Sec. ITIB] in which it sees the resonance, rather than through the
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residual contribution of the resonant partial wave far
from resonance is presumably given by the background
amplitude, that is, the exchange amplitude in the RPR
model. The tails of the Breit-Wigner resonance ampli-
tudes may lead to a significant overestimate of the
background amplitude. Difficulties of this type were
noted by Barger and Cline! in their study of backward
wtp scattering, and by the author in connection with
the early fits of the 7—p charge-exchange polarization.*7

A second objection to the RPR model as generally
used concerns the treatment of the vV resonances as
isolated or uncorrelated. The work of Barger and Cline!
and Barger and Olsson? has demonstrated rather
convincingly that the higher 7V resonances are Regge
recurrences of the lower states.!® It is clearly desirable
from a theoretical point of view to treat the contribu-
tions of these direct-channel Regge trajectories in their
entirety. As we shall see, such a treatment eliminates
most of the problems noted in the preceding paragraph.
The fact that the parameters of all the resonances on a
given trajectory can be expressed in terms of a single
trajectory function a(s) and the Regge residue 8(s),
both of which vary smoothly with s, has further
practical advantages. First, it is probable that many
fewer parameters are needed in the phenonenological
analyses than have actually been used.’* Second, since
the smoothness conditions on the Regge trajectory and

increasingly large number of inelastic channels, it is clear physi-
cally that this parameter should decrease rapidly with increasing
energy. It is plausible also that at a fixed energy, the elasticities
(in the foregoing sense) should decrease monotonically for de-
creasing 7, corresponding to our expectation that close collisions
should be less elastic than grazing collisions. If this is the case, we
may use the results of Ref. 1 for the high spin resonances to bound
those parameters for the lower partial waves, hence, to study their
general behavior with increasing energy. For example, the
elasticities of the §7, 7, 4*7, and %>~ members of the N, sequence
are given at resonance as 0.76, 0.20, 0.08, and 0.01. The foregoing
argument suggests that the first three parameters should be
smaller than the fourth at the position of the 15~ state, hence,
decrease extremely rapidly with increasing s. This results in strong
suppression of the high-energy tails of the lower resonances [for
example, the contribution of the §~ state at the position of the 2~
state would be ~1/76 of that obtained from the simple Breit-
Wigner result], a point which can be crucial for phenomenological
studies. As we shall see, these correlations are built into the
Regge-pole model.

16 Three baryon Regge trajectories seem to be well established:
As; with isotopic spin /=3, positive parity P=+1, and odd
signature = (—1)i"2=—1; N, with =%, P=+1, r=--1; and
N, with I=4, P=—1, r=—1. Recent phase-shift analyses
provide some evidence for the existence of additional trajectories
with different quantum numbers, and of low-lying secondary
trajectories with the foregoing quantum numbers. [Cf. V. Barger
and D. Cline, Phys. Rev. Letters (to be published).]

16 The Barger-Cline and Barger-Olsson analyses of backward
and forward =*p scattering [Refs. 1 and 27 include some 16
resonances on the No, N,, and A; trajectories. To specify the
masses, widths, and elasticities of these resonances using” even
simple Breit-Wigner resonance amplitudes thus requires 48
Earameters, more than can be fitted uniquely using current data

the author would like to thank V. Barger for a useful comment on
this point]. If additional resonances or Regge trajectories must
be included, the number of free parameters in an “isolated reso-
nance”’ treatment becomes prohibitive. The apparent smoothness
of the masses, widths, and elasticities of the resonances used in
Refs. 1 and 2 suggests that rather few parameters will be necessary
to specify the Regge trajectory and residue functions.
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residue functions restrict rather severely the possible
variation in the parameters of a given resonance, it is
less likely that the contributions of very inelastic
resonances, for example, those associated with low-lying
Regge trajectories,'® will be obscured than in analyses
in which the parameters of the stronger resonances are
allowed to vary freely. Finally, the parameters of
resonances with masses higher than those so far ob-
served can be predicted once the energy dependence of
the trajectory and residue functions is known approxi-
mately. As noted by Altarelli et ¢l.® and Desali ef al.,?
such higher resonances are of particular importance for
the RPR model of the high-energy m—p — 7% charge-
exchange polarization.

A final point which has caused some confusion with
respect to the RPR model concerns the possibility that
in adding a Regge-pole-exchange amplitude and a sum
of resonant amplitudes, one is counting the same con-
tributions to the scattering amplitude twice. It could
be argued, for example, that the complete scattering
amplitude is given by the sum of all the s-channel
Regge-pole amplitudes, whence the ¢-channel exchange
amplitude is superfluous. Although possibly correct in
principle, this argument is deceptive in that only the
highest few trajectories may lead to resonances. The
important, but smooth contributions of the s-channel
poles in the left half of the angular momentum plane are
contained in the Regge background integral. It is
presumably these contributions which can be described
by the {-channel exchange amplitude.'” The remaining
double-counting and background problems associated
with the treatment of the tails of the resonant ampli-
tudes are eliminated in the modified RPR model dis-
cussed in the following sections.

In the present paper, we wish to consider in some
detail the theoretical basis of the RPR model. For
clarity, we will consider initially the case of single-
particle potential scattering, for which we can obtain
relatively simple and rigorous results. The generaliza-
tions necessary for the realistic case of multichannel
scattering unfortunately introduce some practical
problems. The physical ideas basic to the proper
description of resonance phenomena in the RPR model
nevertheless remain clear. The main uncertainties in a
proper treatment of the model are fortunately confined
to the lower partial waves, and as a consequence are
probably not of major importance for high-energy
scattering.

II. SINGLE-CHANNEL POTENTIAL
SCATTERING

The scattering amplitude for a superposition of
Yukawa potentials
1 ]
V()=—- / o (W)’ ()
rJu

17 This is at least the case for nonrelativistic potential scattering
(Sec. II).
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can be expressed using the Sommerfeld-Watson trans-
form in the familiar form

2a,+1
A(s)=—m2 ——Bu(s)Pay(—2)

7 SINTAy

—1/2+i0 ) ]+1
+3i / 4 AG)Pi(—x). @)
—1/2—i0

sinwrj

Here s is the square of the momentum, s=p2(2m=1),
 is the cosine of the scattering angle, and ¢=2p%(x—1).
The sum runs over all the Regge poles in the right half
J plane, Rea,>—3%. We have ignored the minor
complications associated with exchange potentials and
the signature of the trajectories. The pole terms lead to
resonances in the scattering amplitude whenever one of
the trajectory functions a.(s) approaches a positive
integer:

20,41

sinray,

—Tm

8(5)Pan(—2) =

2j+1  Bulsy)
si—s+1il/2 Rean’ (s;)

Pi(x), (3)

for Rean(s;)= 7, m Ima,(s;)<<1. Here s; is the value of
s for which Rea,= 7, and I'/2=TIma,(s;)/Rea,’ (s;). At
sufficiently high energies, all the Regge poles retreat
into the left half j plane, Rea,<—%, all #, and the
entire scattering amplitude is given by the background
integral in Eq. (2). In contrast to the pole terms, this
function is expected to vary smoothly with s, approach-
ing the Born approximation to the scattering amplitude
at high energies. It is plausible that one can obtain a
useful representation for the scattering amplitude at
somewhat lower energies by approximating the back-
ground integral by the Born amplitude [the equivalent
for potential scattering of the f{-channel exchange
amplitude of the relativistic theory], and retaining
appropriate Regge-pole terms to represent any resonant
contributions to the full amplitude. In particular, if the
pole terms are approximated by a finite sum of Breit-
Wigner amplitudes as in (3), one obtains the analog for
potential scattering of the simple RPR model used in
in Refs. 1-7.

The difficulties with the simple RPR model noted in
the Introduction are also present in the potential
scattering model. It is clear, for example, that there is
some double counting of the exchange contributions,
since each Regge-pole term contributes asymptotically
to the Born amplitude. Secondly, the approximation of
a Regge-pole term by a sum of Breit-Wigner amplitudes
is clearly not valid. The Breit-Wigner approximation
[Eq. (3)]is adequate only in the immediate vicinity of
a resonance [|an(s)— 7]<<1] and fails with respect to
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a given resonance as a,(s) moves away from the value
of 7 in question. Furthermore, representation of the pole
term by a sum of resonant amplitudes will evidently
lead to an extraneous background amplitude: Only the
single resonant term is present for a,(s) near an integer
[Eq. (3)]; the tails of distant resonances do not con-
tribute. On the other hand, one cannot use the Regge-
pole amplitudes as they appear in Eq. (2) for scattering
near the forward direction, as P,(—x) is logarithmically
divergent for x — +1 for noninteger values of a. The
same problem arises for backward scattering if the
trajectories of even and odd signature are distinct.!® As
noted by Khuri,” the divergent parts of the Regge-pole
amplitudes are cancelled by nonresonant contributions
from the exact background integral. The Born ampli-
tude unfortunately does not contain the relevant terms.

It is evident that to obtain a satisfactory version of
the RPR model for potential scattering, we must use a
representation for the scattering amplitude with the
following properties: (i) The resonant parts of the
Regge-pole amplitudes should be treated in their
entirety; the Breit-Wigner approximation should be
avoided. (ii) The Regge-pole amplitudes should have
the correct analyticity properties for x~2=1. (iii) The
asymptotic parts of the Regge-pole amplitudes (those
parts which are contained in the Born amplitude)
should be deleted. Two such representations have been
proposed: the Khuri representation’® as modified by
Ahmadzadeh,?® and the Cheng representation® as
modified by Abbe ef /.22 The Khuri representation is
not entirely satisfactory, as will be seen later. We shall
therefore use the Cheng representation. In its simple
(unmodified) form, the Cheng representation expresses
the S matrix as a product of factors each of which

18 The origin of this difficulty is easily seen by considering the
partial-wave series for a single Regge-pole term with definite
signature,
1 2a+1

L
sinmo

[Pa(_x)ﬂ:Pa(x)]
=L 2j+1)4r (5,931 (= 1)71P; (),

Arete(j,5)= 2a+1)/L(i—a) (j+e+1)].

For large j and x==1, the terms in the series decrease only as
771, and the series consequently diverges logarithmically. [The
series converges absolutely for |x| <1 because of the 772 decrease
of the Legendre functions for large 7, |x| <1.] In contrast, the
complete partial-wave amplitudes for the Yukawa potential of
Eq. (1) decrease for large 7 as ¢77/4/7, wheze £ is defined in Eq.
(6). The exponential decrease of the amplitude for j— » is
associated with the angular momentum barrier penetration factor
for a finite range potential. This factor appears in both the Cheng
and Khuri forms for the Regge-pole amplitudes, Egs. (9) and (12).
There is consequently no convergence problem for x==+1 when
those representations are used.

1 N. N. Khuri, Phys. Rev. 130, 429 (1963).

2 A, Ahmadzadeh, Phys. Rev. 133, B1074 (1964).

2 H. Cheng, Phys. Rev. 144, 1237 (1966). This representation
holds for continuous superpositions of Yukawa potentials, Eq.
(1), for which the weight function o (u') decreases exponentially for
u' — . We will restrict our attention to these potentials.
r’(gl” \g; J. Abbe et al., Phys. Rev. 140, B1595 (1965); 141, 1513
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corresponds to a single Regge pole:

SG=TI Sa (i), @)
an*(s) e()\—j)f(s) an(s) e()\—j)f(s)
Su(iys)= exp‘ / - / -—~d>\} .
—w A—j — A—j
s)

The parameter £ is defined in terms of the minimum
value of u in Eq. (1) as

E=cosh™(14-u?/2s) = u//s, w¥/sK1. 6)

It is readily verified that |S.(4,5)] =1 for real j and s,
s>0. The Cheng representation thus has the important
property that the unitarity of the S matrix is preserved
even if the product in Eq. (4) is restricted to a finite
number of Regge poles. [ This feature is not shared by
the simpler Khuri representation. ]

The behavior of S,(j,5) in various limits is easily
deduced. We will confine our attention to the case
£ Ima,(s) <1 which appears to be of the most interest
physically.? For this case, InS,(j,5) is well approxi-
mated for | j—Rea,| £ not too large as

P e(Rean—iE_ |

J )
InS.(j,5) =1n +2i Imay,
J—an

, (7
j—Rea, )

where the argument of (j—a,*)/(j—an) is defined so
as to approach O+ for j— «. For j~Rewa,, this
expression shows the expected resonant structure:

*

Salis) 0 e tiiman, ®)
I~ Rean ]__._an

the background phase 2¢ Ima, is generally small for the
cases of interest. On the other hand, for j sufficiently
large, j—Rea,>>Ima,, the phase shift is exponentially
damped as would be expected for a potential of finite
range?:
2t Imay,
InS.,, (j,S) — ¢~ (—Rean)t s (9)
j—Rean,

and the partial-wave scattering amplitude in a single-
Regge-pole approximation may be expanded as

ne )_(5—1) 1
P= 2i\/s —9\/3 j—Rea

% Even for the rather large value u=1 BeV, £ Ima<0.4 for the
baryon Regge trajectories discussed in Ref. 1 if Ima is estimated
using the Breit-Wigner approximation [Eq. (3)7]for the resonances
at laboratory momenta below 5 BeV/c.

% This estimate actually gives an upper bound on the partial
phase shift for j7>Rean,

Ima
g~ (i—Rea)§

(10)

1054 (59| S 22 o=-momm,

For large 7, the limit in Eq. (9) should be used rather than the full
expression in Eq. (7). The two expressions differ by terms of order
[Iman/(j—Rean)p. The approximation in Eq. (7) is most
accurate near the resonance.
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A similar result for InS, is obtained for j<Rea,; and - o 6]
—J » & () exp[ (\— 7)£
Reanmp>lman SG=ew| [ =
2 Imay, ) N
InS,(j,5) = ————¢Rean=DE4 2qrf, (11 —oo J

j—Rea,

However, the exponential factor in Eq. (11) may be
large enough in this limit that |InS,|>1. It is not
possible in that case to approximate the scattering
amplitude as in Eq. (10).

It is interesting to compare the foregoing results with
those of Khuri,*:?> who obtains for each Regge pole in
the right half plane a contribution to the partial-wave
scattering amplitude of the form

AxE(4,s) LB
n )=~
Py

S j—an

e (j—an)t .

(12)

In a single-pole model, the residue function B.(s) is
equal to Ima,, and Khuri amplitude coincides with the
large-7 form of the Cheng amplitude, Eq. (9).26 It is
evident, however, that the individual Khuri amplitudes
may exceed the unitarity limit for large Rea, and small
7, as the exponential factor may become quite large.
The complete partial-wave amplitude is unitary only
if the background contributions are included. As a
result, use of the simple form of the Khuri representa-
tion in an RPR model, with the resonant contributions
described by a sum of partial-wave amplitudes of the
form given in Eq. (12), may result in large spurious
contributions from the low partial waves. [For a&>>1,
these are of order e*/a?, large compared to the resonant
contributions.] In contrast, the Cheng representation
maintains the unitarity of the S matrix, albeit at the
expense of some analytical complication.

Although the Cheng representation is suitable for the
treatment of resonance phenomena, the form given in
Eq. (5) is not satisfactory for the discussion of high-
energy limits or for use in an RPR type model, since
each Regge pole contributes asymptotically to the Born
amplitude. The necessary modification of the Cheng
representation has been given by Abbe et al.,2 who
observed that the .S matrix could be written as

S(j,9) =690 Su(4,5) (13)

where 83 is the Born approximation to the phase shift,

53(],5)—2—\“/; o (1 z< 5 u

S

2% The assumption of Ref. 19 that the background integral can
be eliminated in terms of the Regge poles in the left half plane is
not correct. Thus, 4 (4,5) cannot be written simply as a sum over
the Khuri amplitudes 4,X(j,s). The result is nevertheless correct
for the poles in the right half plane, which lead to the interesting
resonance effects. . )

2 More generally, if the individual phase shifts InS» and their
sum are all small, as for j — », 4(j,5) is given for the Cheng
representation by a sum of terms of the form given in Eq. (10),
and the Khuri and Cheng representations coincide.

i exp[— (j+n)E]

_E Jjt+n

X / a(u’)anl<1—|—ﬁ—>dp’]. (15)
P 2s.

Here o(u') is the weight function for the potential of
Eq. (1), and the parameter £ is defined as?’

£=cosh™1(142u%/s). (16)

It is easily checked using the asymptotic form of the
normal trajectory functions

[0l e
L5

0 2

i |5
an(s) — —nt+—r o(W)Pps| 14— )du’', (17
Ot [ ewre (), an

that (v/s) InS,(4,5) vanishes for s — o . The functions
InS,.(j,5) in the unmodified form of the Cheng repre-
sentation do not have this property, each term con-
tributing part of the Born approximation for the phase
shift as s — o0 .22

The modified Cheng representation appears to be
satisfactory for practical calculations for simple
Yukawa potential scattering.?® However, only the
asymptotic contributions of the normal Regge tra-
jectories [those which approach the negative integers
for s — o] have been removed. Abnormal trajectories
which move to e« in the left half plane are also known
to exist. While their contributions to the phase shift
vanish for s — o [but not uniformly in #7, it is quite
possible that important nonresonant contributions
persist at finite energies, especially for potentials for

7 Since the Born approximation to the phase shift has been
extracted, the potential must act at least twice in generating

InS,. The maximum effective range of the interaction which
appears in the angular momentum barrier penetration factors is
therefore one-half that characteristic of the Born approximation,
and p in the parameter £ is replaced in Z by 2u. Abbe et al., Ref. 22,
show that this choice leads to an amplitude having the correct
analyticity as a function of s and #.

% The smallness of the contributions to S of low-lying trajec-
tories is evident from Eqs. (15) and (17). Numerical calculations
by Abbe ¢t al., Ref. 22, show in fact that a single-pole approxi-

mation for S gives remarkably accurate results for the .S matrix
for an example of Yukawa potential scattering in which only a
single Regge trajectory reaches the right half plane. The results
are much better than those obtained using the modified Khuri
fepresentation, Ref. 20. Cf. also W. J. Abbe and G. A. Gary
[Phys. Rev. 160, 1510 (1967)7], for a more extensive comparison
of the modified Cheng representation with exact results for strong
Yukawa potentials. We are unaware of any tests of the Cheng
representation for potentials which lead to many resonances and
high rising trajectories. Calculations for the potential in footnote
30 would be particularly interesting.

¥Y. I. Azimov, A. A. Ansel’'m, and V. M. Shekhter, Zh.
Eksperim. i Teor. Fiz. 44, 361 (1963); 44, 1078 (1963) [English
transls.: Soviet Phys.—JETP 17, 246 (1963); 17, 726 (1963)7.
N. F. Bali, S. Y. Chy, and R. W. Haymaker, Phys. Rev. 161,
1450 (1967).
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which Rea, becomes large for one or more trajectories.®
In the latter case, the partial phase shifts for small j
and a given # may increase exponentially over some
range of s as Rea, increases [cf. Egs. (11) and (15)].
The resulting unphysically rapid increase of the com-
plete phase shift is not cancelled by contributions from
the lower normal trajectories, nor is it eliminated at
intermediate energies by subtracting the Born contri-
bution as in Eq. (15). It is probable that the increase is
prevented by contributions from the abnormal tra-
jectories,® but rather little is known about these terms.
We expect, in any case, that the complete phase shift
will increase by ~, but not much more, as the energy
of a resonance is passed. The exponential increase in the
phase apparent in the individual terms in Egs. (11) or
(15) is clearly spurious.

The foregoing problem can be eliminated, at least for
practical purposes, by working with the difference
between the phases InS,(j,s) and InS,(0,s) given by
Eq. (135), and treating the total S-wave phase shift
separately. Thus, for ‘“‘unusual” potentials [or in the
more interesting case of relativistic scattering ], we can
rewrite S(74,s) as

N (j,S) = eXp{ 2idp (j,s)-—- 2163 (07S)+ 248 (O)S}H Sn(];s) )

(18)
where

InS,(7,5) =105, (4,5) —InS,(0,s) 19)

and the phase shift §(0,s) is to be calculated directly, or
treated phenomenologically. The unphysical increase
in the low j phase shifts for increasing a,, Rea.=>7, is
substantially offset by the subtraction. It is possible,
therefore, that for reasonable potentials, the effects of
the abnormal trajectories will be important only in the
calculation of the S-wave phase shift. [For example, it
is readily checked that the phase difference InS, does
not become large for the known N trajectories.] The
modifications in the following results introduced by this
change in representation are rather minor, and will not
be considered in detail.

The partial-wave scattering amplitude 4 (j,s) can be
written using the modified Cheng representation in the
convenient form

A(f,5)= (e¥¥8—1)/2in/s+e2%(S—1)/2in/s, (20)

where S=]], Sa. For s sufficiently large, |205| <1, and
the first term approaches the Born approximation
Ag(7,5)=085(4,5)/+/s. The resonant contributions to
A (4,s) are contained entirely in the second term. Since
this term vanishes more rapidly than the first for

3 For example, many resonances and rather high rising tra-
jectories would be obtaned for a damped oscillator potential,
72¢7#", u small.

31 The author would like to thank Professor Peter Kaus for an
interesting discussion of this point. The difficulties with the
modified Cheng representation have been noted independently by
Professor Kaus and Professor R. Blankenbecler (private com-
munication to P. Kaus).
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s— o, A(4,s) approaches 45(7,s) in this limit as would
be expected. We are most interested in high, but not
asymptotic, energies, for which 0z is small, and at most
a few Regge poles are in the right half plane. Provided
the potential is such that a region of this type exists
(this is apparently the case for the Yukawa potential28),
we can approximate the leading term in Eq. (20) by
the Born approximation. Furthermore, since the con-
tributions of the low-lying Regge trajectories to InS are
generally quite small, it is reasonable to retain only
the leading (resonant) trajectories in the calculation of
that function.?® The complete scattering amplitude then
assumes the form

A(s,)=Ap(s,2)+ (2iv/s)™
X2 2+ 1) (S—1)P,(x), (21)

where

As(s,0)= f o W) —— (22)

wr—t
with ¢{=2s(x—1). The contributions to S of the Regge

poles in the right half plane can be approximated using
Eqgs. (7) and (15)%:

- - n* R n NE -1
lnS,,(j,s)zIn] ‘ }2iImanexp[( e J)E]
Jj—an j—Reay,
i exp[— (j+n)E] /‘°° )P (H_M'z)d (23)
- o . — Jdu'.
Vs Jjt+n u g ' 2s .

The results in Eqgs. (21)-(23) constitute an analog of
the RPR model for potential scattering, but an analog
in which the resonance contributions are treated
properly. Several points should be noted in this con-
nection. First, the use of the modified Cheng repre-
sentation permits the resonant contributions to the
scattering amplitude of any set of Regge poles to be
included in their entirety. In particular, the treatment
of the resonances is not restricted to the Breit-Wigner
approximation. Second, since the smooth asymptotic
form of the Regge-pole terms is explicitly extracted and
appears only in the Born (or exchange) amplitude,
there is no problem of double counting of these back-
ground contributions. Third, the contribution of a
given resonance is large only for j~Rea,, s~s;; the
resonant amplitude is sharply cut off for 7> Rea, by the
angular momentum barrier factors, especially if the
potential is of short range; the residual phases InS, are

% For a simple Yukawa potential with a range parameter u, the
last term in Eq. (23) is replaced by
»
,._1(1+25),

;& expl=(j+m)]

/s Jj+n
where g is the coupling strength. It may be possible to use this
simpler form much more generally as an approximation to the
integral if p is replaced by an average or effective range parameter,
and g by an effective strength. The effective value of x should also
appear in £.



1686

reduced above resonance by the background sub-
traction, and vanish for s — c. Finally, the resonant
contributions to the.S matrix appear in a product form,
rather than as a sum, a point which may be important
in situations in which more than one trajectory must be
considered. Perhaps the main practical defect of the
present results is the apparent necessity of describing
the Regge-pole contributions through the partial-wave
series in Eq. (21); we have in any case been unable to
find a simple approximation for this series. However,
the exponential cutoff for large ;j makes the series
suitable for computer evaluation.

IIT. RELATIVISTIC SCATTERING
A. Elastic Scattering

In the absence of an adequate dynamical model for
relativistic scattering, the generalization of the results
of the preceding section to physically interesting cases
is somewhat speculative. Nevertheless, the physical
ideas involved are clear. It is plausible, first, that the
role of the Born amplitude in Eq. (21) should be
assumed in the relativistic theory by the Regge-pole-
exchange amplitude®: The Born amplitude describes
the smooth high-energy behavior of the scattering
amplitude in potential theory, the Regge-pole model,
the corresponding behavior of the relativistic amplitude.
In either case, the asymptotic amplitude gives the
smooth limiting variation of the partial-wave ampli-
tudes as functions of the angular momentum 7, and the
square of the total energy in the center-of-mass system
s. The Regge-pole model seems, furthermore, to describe
properly the average behavior of the scattering ampli-
tude at rather low energies, well into the resonance
region. We consequently expect the exchange amplitude
to give an adequate description of the smooth back-
ground scattering, with resonant contributions to the
amplitude confined to rather narrow bands in j or s.

It is clear that we should look for a relativistic analog
of Eq. (23) for the modified partial-wave amplitudes.
The problem is unfortunately complicated by the
multichannel character of high-energy scattering.
Furthermore, rather little is known about the j-plane
properties of the complete .S matrix. There are several
possibilities at this point. Perhaps the most satisfactory
theoretically for elastic scattering is to follow the pro-
cedure of Cheng? [or Abbe e al?? for the modified
amplitude] and write a Cauchy representation for the
logarithm of the relevant S-matrix element. Assuming
that the boundary conditions for |j| — o« are those
given by Cheng, and that the (important) singularities
of S are isolated poles, one obtains a representation for
the diagonal S-matrix elements similar to that in Eq.
(5), with branch points at the poles a, and the zeroes

% We interpret the exchange amplitudes in a generalized sense.
It may be necessary, for example, to include contributions from
moving cuts as well as poles. See, for example, Ref. 10.

LOYAL DURAND,

IT1 166
&, of the matrix elements. [The representation is
correct for many-channel potential scattering, with
potentials of the type considered by Cheng.?'] Thus, for
a particular matrix element S,;,3¢

Su=I1 (Sii)a, (24)
with
Fn(s) pO—DE(S) an(s) pO—E(s)
(Sii)nzexp[ / ——d\— / —dk].
e A—j e A—j
(25)

The parameter £(s) depends as before on the location
of the leading singularities of the partial-wave ampli-
tudes.?® Both £ and the position of the zeros &, may
depend on the channel in question. The pole positions
a, are common to all channels.

Because of the multichannel character of the scatter-
ing, the zeros @,(s) are displaced from the points e,*(s)
characteristic of the single-channel problem, and the
individual matrix elements are not unitary. As a
consequence, the low-lying trajectories may change the
magnitude of S;; even if they do not contribute signifi-
cantly to the real phase shift. Note, however, that the
effects of these trajectories decrease rapidly for increas-
ing 7, in agreement with our expectation that the
scattering should be more nearly elastic in grazing
collisions.

It is interesting to examine the inelastic effects in
detail for a single factor (S;;),. We will again consider
only that case which appears to be of the most interest
physically. If [a,—a.|£<1, we can approximate
In(S::)» quite accurately as

J—@n €X [(&n“ )E -1
(S~ (g P DEITL
J—an J—an

&n=%(a,ta,).

This approximation reduces to that in Eq. (23) for
@w=ay,*. The (complex) phase shift is again exponen-
tially damped for j— «, as would be expected for a
finite-range interaction [cf. Ref. 247. On the other hand,
for j<Rea,, Rea,, the phase shift grows exponentially,
and will lead to a unitarity violation |.S;;|>>1 unless
Rea,>Rea,. [It is possible also that the unitarity
violation is prevented by the contribution of lower-
lying or abnormal trajectories. ]

(26)

% The Cheng representation does not hold in its present form
for the off-diagonal matrix elements. However, for such important
processes as 7~ p charge-exchange scattering, the scattering ampli-
tude can be expressed in terms of the diagonal matrix elements
using isospin invariance. The nonrigorous representation in Eq.
(44) gives a useful form for the ofi-diagonal matrix elements in
more general situations.

3 See, for example, N. N. Khuri and B. M. Udgaonkar, Phys.
Rey. Letters 10, 172 (1963). More than one value of £ may appear,
as in the case of =V scattering discussed by these authors. How-
ever, a single effective value £ is probably sufficient for practical
purposes (Ref. 32).
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The behavior of S;; near a resonance j~a, is deter-
mined primarily by the first term in Eq. (26). We can
distinguish several cases.

(i) If the resonance is elastic, @, =a,*, and the
discussion parallels that of the preceding section. In this
case, the phase shift is real, |S;;|=1, and the point
representing S;; on an Argand diagram moves rapidly
around the unit circle in the counterclockwise direction
as the position of the pole a,(s) moves past the integer
value j. [Rea,(s) increases with s in the resonance
region. ]

(ii) If the resonance is inelastic, the zero @, of Sy; in
the j plane moves toward the real axis, | Im&,| <Imas,.
The single-factor representation for S;; will have a
magnitude less than unity provided (Re&,—Rea,)?
+Ima&,?<Imea,? Proper behavior in the j plane is also
assured if Re@, > Rea,, as noted above. If &, remains in
the lower half j plane, the track of S;; in an Argand
diagram circles the origin counterclockwise as the
resonant energy is passed, but remains inside the unit
circle. The phase of .S;; again increases by ~2r through
the resonance region.

(iii) If the zero &, moves into the upper half j plane,
again with the unitarity restrictions satisfied, the phase
of S;; does not change greatly as the resonance is passed.
However, the magnitude of S;; decreases markedly for
&~ j, and the resonance appears as a small counter-
clockwise loop on the track of .S;;. The loop does not
circle the origin.

The foregoing behavior of the .S matrix near a
resonance is of course familiar from reaction theory.
The power of the representation in Egs. (24)-(26)
consists in the fact that it determines the behavior of
the partial-wave amplitudes as functions of j as well
as s.

It is desirable at this point to extract the smooth
asymptotic part of the phase shift in Eq. (25), as in the
modified Cheng representation for potential scatter-
ing.22 The resonance fluctuations in the .S matrix will
then be localized as functions of j or s. In accordance
with our previous assumptions, the asymptotic form of
the scattering amplitude is given by the Regge-pole
exchange model. Both - and #-channel exchanges may
be present. The smooth high-energy limits of the
partial-wave S-matrix elements or phase shifts can
therefore be determined by partial-wave projection
once the exchange amplitudes are given. To complete
the transition from Egq. (25) to a modified Cheng
representation for S, it is then necessary only to
identify that part of the asymptotic phase shift which
is to be associated with each Regge pole.

Although clear in principle, the foregoing construction
leads to some difficulties in practice. First, the correct
parametrization of the Regge-pole exchange amplitudes
is generally not known except for near-forward or near-
backward angles. The resulting uncertainties in the
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partial-wave amplitudes are fortunately rather small
for the higher partial waves. Since the prominent high-
energy resonances are also associated with large values
of j,! extraction of the background phase shift for these
states is probably not a serious problem. The uncer-
tainties are much greater with respect to resonances on
lower-lying Regge trajectories.

A second problem is associated with the necessity of
identifying the contributions associated with individual
Regge poles. We shall assume that the exchange ampli-
tude can be adequately represented in the relevant
region as®

a(s,t)

1
Aexch(s,t)=——/dt’
/s t'—

where (=2p%(x—1), with p the 3-momentum of the
particles in the center-of-mass system. Then

! / d ¢ 1 —tl 28
t'a(s,t)Q .
o wetsoo( +2P2) e8)

The second term in Eq. (28) will be small at high
energies,®” and may be identified with the complex
phase of S;;. We may therefore follow the procedure in
the second paper of Ref. 22 using this asymptotic
approximation for the phase, and obtain as the modified
Cheng representation for S;;

@7

(S u) exch ™

S,,(],s) = 6“1} (Su)n ) (29)

where the complex quantity i¢ is given by the second

% This representation is of course equivalent to a dispersion
relation in ¢ for the exchange amplitude. The existence of such a
dispersion relation is not obvious if a(f) — « for t— «, as
suggested by current data. It is actually sufficient for our purposes
that Eq. (27) give a reasonable approximation to 4exch- (s,2) in the
energy range of interest. Such representations are readily ob-
tained. For example, a p exchange amplitude of the form

B(2) (s/50)*O[1—e~im]/sinma

is well approximated for |¢| £2m,? as

ol din[a()—a(0)]
B”( ) e e

X{ (mp*—)[1—ta’ (0) In(s/50) 1}~

This approximation is obtained by extracting the known zeros of
B, and using the product representation for the trigonometric
functions. The function B (t), which contains the remaining ¢
dependence of the amplitude, is essentially constant for the models
which have been proposed for p exchange in 7N scattering. The
foregoing approximation is of the desired form over the region in
which «() is well approximated as a(f) =a(0)-+#’(0). More
precise approximations are easily constructed.

37 We assume that the high-energy behavior of the scattering
amplitude is determined by the exchange of the Pomeranchuk
trajectory. In this case, the second term in Eq. (28) decreases
logarithmically for s — .
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term in Eq. (28), and
@n(8) Y
(Sii)n=exp{ / fﬁ&fjﬁi&d}\
exp[— (j+n)&(s)]
j+n

o) Py )
B ] exp[ (A J)E(s)d)\ i

o A7 B 2pV/s

X / dl’a(s,t’)Pn_1<1+2t—;2>} . (30)

The parameter £(s) is determined by the position of the
cuts in ¢ associated with two-particle intermediate
states.?

A final problem is associated with the exponential
increase of the phase shifts for small 7 if a, becomes
large and Re&,<Rewa,. As noted in the preceding
section, this problem can be circumvented for practical
purposes by subtracting the S-wave phase shift as in
Egs. (18) and (19). We will not consider the details.

The complete high-energy scattering amplitude in-
cluding both the Regge-pole-exchange and resonance
terms can now be approximated following Egs. (21)
and (22):

A (5,8) = Aexen(s,t)
+ Qivs)7L 25+ 1)e#(S—1)Py(2). (31)

It is plausible that, with the asymptotic phases ex-
tracted, only a few Regge trajectories need be included
in the evaluation of .S. In particular, the inelasticity
associated with low-lying trajectories which do not
contribute to the resonance amplitude, is included in
the factor e%.

The expressions in Egs. (26) and (28)-(31) provide
a generally satisfactory version of the RPR model for
the treatment of high-energy resonances in elastic
scattering. In particular, the present model does not
suffer from the difficulties noted in the Introduction.

B. Inelastic Scattering

As was noted previously, the foregoing representation
is applicable only to the diagonal elements of the S
matrix, that is, to elastic scattering.® It is consequently
of interest to obtain an alternative representation which
is applicable to the full S matrix. The representation
which we shall discuss is nonrigorous. However, it
incorporates the essential features of the modified Cheng
representation, and, moreover, is simpler both to
interpret physically, and to use in actual calculations,
than that given above.

A natural approach to the many-channel problem is
through the eigen-S matrix. In the neighborhood of a
resonance, .S may be written as the sum of a slowly
varying background matrix B, and a matrix R which
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contains the resonance pole in 7 (or 5), R« (j—a)™,
S=B-+R. (32)

The S matrix can be diagonalized by an orthogonal
transformation,

S=0TDO0, (33)
where
0T0=00T=1 (34)
and
D= (&2%), (35)

Since the eigenvalues of S are simple phase factors,
it might be supposed that they could be expressed in
terms of the s-channel Regge poles using a Cheng or
modified Cheng representation. This is not the case:
unless the background matrix B is a multiple of the unit
matrix, the eigenvalues of .S will contain cuts as well as
poles in the j plane, and the Cheng integral will contain
extra contributions which cannot be expressed simply
in terms of the Regge-trajectory functions.® A related
problem arises from the fact that the eigenphases cannot
cross except in special circumstances.® Thus, if a
resonance occurs in one of the eigenchannels, the rapid
increase of the corresponding phase 28 by ~ 2z will in
general carry the resonant phase past one or more
others. The phases do not cross. Rather, the resonant
behavior is transferred from one eigenchannel to the
next, with the corresponding phases interchanging their
roles. As a consequence, the elements of the coupling
matrix O change rapidly near the “crossing point.” This
typical “level-crossing” behavior is of course associated
with the branch points of .S, which lie rather close to the
resonance poles.® Since these complications are absent
for the physical S matrix, which has only dynamical
singularities in the j plane, it is evident that they are in
a sense spurious as far as the representation of physical
quantities is concerned.

The problems associated with the eigenphase repre-
sentation of S’ can be avoided in the neighborhood of a
resonance using a method discussed recently by
McVoy.® As noted above, the level-crossing problems
are absent if the background matrix is a multiple of the
unit matrix. Since the matrix B presumably varies
slowly as a function of j through the resonance region,
and R becomes small away from resonance, B must be
approximately unitary, B'B~1. Thus, B can be diagon-
alized (at least approximately) by an orthogonal
matrix Og,

B=035"Dz0p. (36)

 This is easily seen, for example, by considering a two-channel
problem. The corresponding results for the eigen-S matrix con-
sidfred as a function of s are discussed in detail by K. W. McVoy,
Ref. 39.

3 K. W. McVoy, lecture notes for the International Course on
Nuclear Physics at Trieste, 1966, ICTP Paper No. SMR 3/21
(unpublished). C. J. Goebel and K. W. McVoy, Phys. Rev. 164,
1932 (1967). The results quoted for the j-plane behavior of S are
strictly analogous to those given by McVoy for the behavior of S
as a function of s.
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A modified S matrix with a unit background can thus
be defined as

$=Dp1205S05TDp 2= 1+ D 1205 ROsTDp ™12, (37)

The matrix $ is unitary, and can be diagonalized by a
second orthogonal transformation Ok,

$=0r"[1+AzJOr=14+0r"ArOkz, (38)

where Ag is the eigenmatrix of the modified resonance
term. If the resonance in question corresponds to an
isolated pole, only one element of Az will be nonzero.
The corresponding eigenvalue of 8§ will be a simple phase
factor, 1-+Agr=¢??; all other eigenvalues are unity.
Because of this unit background, the level-crossing
problems characteristic of the eigenvalues of S are not
present for 8.%

It is plausible that the resonant eigenphase of $ can
be represented near the resonance by a modified Cheng-
type integral. It is not necessary that the representation
be exact: the resonant contribution to the S matrix is
expected to be significant only for j~a,. The modified
Cheng representation has this characteristic. Thus, we
will assume that the resonant term in the eigenrepre-
sentation of $ can be approximated by the usual product
of terms of the form given in Egs. (4) and (5). Note in
particular that the end points of the integrals are at
a,(s) and a,*(s), since the eigenphase is real.

The extraction of the asymptotic contribution of the
Regge poles to 8 causes some difficulty, in that the
asymptotic phase shift is not given directly in terms of
the exchange amplitude in the channel of interest. All
channels are involved. On the other hand, the results
of Sec. II suggest that the proper result is®

$=]1S.,, (39)
with
an*(ﬂ‘) — N
Sumexp { / opLO DI
—o A—7
an(8) — NE
3 f exp[ (A\—E(s)] N
. A—j
pitma (S)eXpE— ('] +n)é(s)] (40)

jtn

The last term removes the asymptotic contributions of
the first term for large 7 and for large s, provided in the
second case that a,(s) — —# for s — . The first two
terms can again be approximated quite well for physi-
cally interesting values of the parameters by the ex-
pression in Eq. (17). It should perhaps be recalled that
the apparent exponential increase of the phase shifts for

4 Note that the asymptotic phase of & is zero. The actual back-
ground phase has been extracted in the construction of this
matrix.
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small j and increasing a, can be eliminated if necessary
by removing the j=0 term as in Eq. (18), and writing
8 as 8(j,5)=8(0,5)[In [Sa(4;5)/@0(0,5)].

An approximate representation for the S matrix may
now be obtained by expressing .S in terms of &:

S=B+4ATArA, (41)
where the complex matrix 4 is given by
A=0rDp'?0Op (42)
and
Ap=6—1. (43)

In this form, the Regge-pole exchange amplitudes give
the smooth high-energy contribution to Bj; only the
terms relevant to the particular reaction in question
need be known. The resonant terms appear in .S in a
form very similar to that, for example, in Eq. (20). In
particular, Ag is multiplied by a factor containing the
sum of the background phases in the entrance and exit
channels. The factorization property of the residues of
the s-channel Regge poles is also evident. Except for the
background phase factors, the elements of the 4 matrix
are essentially the square roots of the partial widths for
the decay of the resonance into the various channels.
For a resonance in channel j, 4;ce®T 12, We may
therefore expect the elements of 4 to decrease rapidly
in magnitude as the energy and the number of channels
which communicate with the resonant channel increase.
It is plausible also that the elements of 4 decrease with
decreasing j; close collisions are expected to be less
elastic than grazing collisions, and the angular momen-
tum barrier is lower."

The form of the RPR model for particle reactions
which follows from the foregoing discussion and the
representation of Eq. (41) for S is

A(5,0)=A exen(s,)

P’ . )
+<2ip Vg)‘}; (2j+1)8(7,9) @—1)P;(x). (44)

The usual two-body phase space and flux factors have
been extracted from the complex function 8(j,s); the
final 3-momentum in the center-of-mass system is
denoted by p’, the initial 3-momentum by p. The
function B(J,s) acts as an effective elasticity factor. At
a fixed energy high enough that many channels are
open, the magnitude of B is expected to increase
smoothly from a rather small value for j~0, and ap-
proach 1 as j — o [cf. Ref. 14 and the remarks follow-
ing Egs. (25) and (26)]. However, it may be possible
for practical purposes to neglect this j dependence and
use an effective value appropriate to any resonant
contribution to the sum. The error introduced with
respect to the low partial waves is reduced by their low
statistical weights, while the high partial-wave ampli-
tudes are exponentially damped by the angular momen-
tum barrier penetration factors.
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IV. CONCLUSIONS

We have seen that it is possible to formulate a precise
analog for potential scattering of the relativistic RPR
model which has proved so useful in the analysis of
high-energy scattering data.’® The complications
arising from the many-channel aspect of relativistic
scattering render the model somewhat less precise in
that situation. However, satisfactory versions of the
RPR model can still be formulated. The results are
given in Eq. (31) for elastic scattering, and, in a some-
what more convenient form, applicable to both elastic
and inelastic scattering, in Eq. (44). The theoretical
uncertainties in these results are probably not of great
practical consequence. The important advantage of the
present results compared to the simpler early versions
of the RPR model is the elimination of the double-
counting problem noted in the Introduction, and the
possibility of treating entire sequences of resonances as
correlated states, parametrized by the Regge trajectory
and residue functions.

As is clear from our derivation, the RPR model is
basically an intermediate-to-high energy approxima-
tion. The proper high-energy behavior of the scattering
amplitude is built into the representation.®* The model
will be useful for the description of resonance phe-
nomena if there exists an energy region in which the
smooth average behavior of the partial-wave scattering
amplitudes is adequately described by the exchange
terms, yet one or more s-channel Regge poles continue
to move to the right in the j plane.? Although such a
region need not exist, the results of Abbe et al.??8 for
potential scattering, and the success of the simpler
versions of the RPR model,'? are most encouraging. On
the other hand, the model will certainly fail at low
energies as contributions to the exchange amplitude
from low-lying f-channel trajectories, or the f-channel
background integral, become important. It should be

4 The rate at which the resonance contributions vanish relative
to the Regge-pole exchange amplitudes is not completely clear.
For single-channel potential scattering, the extra term in 4 (s,?)
vanishes as 1/4/s relative to Ag(s,) [cf. Egs. (15) and (23)].
However, in the relativistic many-channel problem, the rapid
decrease of the factors 8 in Eq. (44) as new channels open can
lead to a much sharper diminution of the resonant contributions
at high energies. This is probably the case, for example, for =V
scattering (Ref. 14). In other cases, it may be necessary to
extract more of the smooth high-energy contribution of the s-
channel Regge poles than is done in Eq. (40) before the resonant
amplitudes are clearly separated in their energy dependence from
the exchange amplitudes for low-lying {-channel Regge poles.

427t should be observed in this connection that high-energy
scattering amplitudes are generally dominated by the contribu-
tions of high partial waves. Since these are determined primarily
by the long-range exchanges, they may be expected to satisfy the
conditions necessary for the validity of the RPR model. That low
partial waves violate these conditions may be relatively un-
important as a practical matter because of their low statistical
weights.
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emphasized, finally, that the approximations which
have been made in our discussion are those appropriate
to the s channel; the RPR amplitude is not suitable as
given for continuation to other channels.

We conclude by noting several situations in which the
modifications in the RPR model may be especially
important.

(i) As was noted by Barger and Cline,! the tails of
distant s-channel Breit-Wigner resonances contribute
a large background to the amplitude for backward #*p
scattering. [This background is much reduced for 7—p
scattering by cancellation between the 7=1 and T=3%
resonance amplitudes.] Since the resonance terms
contribute significantly to the scattering amplitude only
for j~a, this unphysical background will be absent in
the modified RPR model.

(ii) A similar background problem exists in some
calculations of the m—p — 7% charge-exchange scatter-
ing*7; the calculated polarization is particularly sensi-
tive to this background. Contributions from very
inelastic high-energy resonances are also important for
the high-energy polarization.®® The polarization should
be recalculated using the modified RPR model including
entire Regge trajectories. This would constitute a
rather clear test for the explanation of the observed
polarization in terms of s-channel resonances.

(iii) The fact that the resonant terms in Eq. (44) are
modified by the background phase can lead in principle
to apparent shifts in the masses of resonances as ob-
served by different methods, for example, in total cross
sections or in differential cross sections or polarizations.
The apparent shape of a trajectory may also be changed
by these mass shifts; the low-energy break in the N,
trajectory as determined by Barger and Cline! may be
a spurious effect of this sort.

(iv) Finally, the parametrization of the resonant
amplitudes in terms of the smooth Regge trajectory and
residue functions provides a method of extracting
information on highly excited states from data on total
or differential cross sections which is much more power-
ful than the standard method using sums of uncor-
related Breit-Wigner terms.
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