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A physically interesting representation for baryon isobars for the group of strong-coupling theory
[SU(2)QxSU(3))XT24was obtained by Goebel and others as an induced representation. It is shown that
the Goebel representation cannot be obtained by a straightforward contraction on SU(6), but that it can
be obtained by contraction on SU(2)QXSU(6).

I. INTRODUCTION

ECENTLY, the strong-coupling theory came once
again into prominence with emphasis on the Lie

group structure of the static models. ' ' The group of
strong coupling is G= E)&T, where K is the group of the
invariance, e.g. , SU(2)3SU(2) or SU(2)SU(3), etc.
and T is the Abelian group generated by the meson
source currents which commute in the limit of strong
coupling, and various unitary irreducible representa-
tions of this Lie group give the possible isobar spectra.
The number of isobars for any irreducible representa-
tion is inhnite since the group concerned is noncompact
and therefore all the unitary representations are neces-
sarily infinite-dimensional.

For symmetric pseudoscalar meson theory, as was
shown in CGS, the Lie group G is [SU(2)3SU(2)jX Ts.
Ke use to denote direct product and && to denote
semidirect product, in agreement with CGS.Some repre-
sentations of this group were obtained by CGS by using
the procedure of group contraction on SU(4). The
physically interesting nucleon isobar series (8) has
i= j= ~, —,', and arises as the limiting sequence of
representations of SU(4) characterized by if,0,0}when

f +oo throug—h odd integers. There is another interest-
ing series (F), the hyperon isobar series, which has
j=i&~=~, ~3, . The representation for the series
(I') was obtained by Singh and Udgaonkar' by ex-
ploiting the equivalence of the strong coupling with
bootstrap condition. The representation for the hyperon
series cannot be obtained by a straightforward con-
traction procedure on SU(4) for the obvious reason
that any representation of SU(4) has ~i j~ = inte—ger.
It can, however, be obtained by using contraction on
SU(2)8SU(4) as shown by Babu et aL' Both (8) and (I')
have also been obtained as induced representations. '

' T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
35 (1965), to be referred to as CGS.

' V, Singh, Phys. Rev. 144, 1275 (1966).
' V. Singh and B. M. Udgaonkar, Phys. Rev. 149, 1164 (1966).
4 P. Babu, A. Rangwala, and V. Singh, Phys. Rev. 157, 1322

(1967).
5 C. J. Goebel, Phys. Rev. Letters 16, 1130 (1966).
e T. Cook and B. Sakita, J. Math. Phys. 8, 708 (1967).' C. J. Goebel, in Proceedings of the 1965 Midwest Conference

on Theoretical Physics (unpublished).
'C. J. Goebel, in Non-Compact Groups &s Particle Physics,

edited by Y. Chow (W. A. Benjamin, Inc. , New York, 1966).
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II. CONTRACTION OF SU(6) AND SU(2)QXSU(6)
TO LSU(2)QXSU(3) $&& Ts4

The generators of SU(6) satisfy" (with i, j=1, 3
and et, P, y=1, g)

[J;,J;g=ie,;sJI„

[1;,F j=0,
[F~ I'tt j=if~evFr

(I)

(2)

(3)
' For SU(3) we shall always use the (P,q) notation which cor-

responds to the Young diagram {p+q, q}.For SU(6), however, we
use the Young diagram notation. For SU(2) we just give the spin.

"R.Capps, Phys. Rev. Letters 13, 536 (1964).
"See, for example, A. Pais, Rev. Mod. Phys. 38, 215 (1966).
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When the group of invariance is enlarged to SU(2)
SU(3) the corresponding group of strong coupling is

[SU(2)3SU(3)j&& T,4. The isobar belong to one of its
representations will be characterized by j(a,b) where

j is the spin of the isobar and (a,b) denotes the SU(3)
multiplet. ' Of physical interest would be the most
economical isobar series which contains in it the nucleon
isobar series (8). It would therefore be natural to de-
mand that the SU(3) multiplet (a,b) has the appro-
priate nucleon isobar in it, i.e. , j(a,b) be such that it has
an i = j, 7=1 member with j=half-odd integer.
Written out explicitly, only those j(a,b) occur for which

jmax~~ j~~ jmin& where

j =-'s(a+2b)+-,' if
=-', (2a+b) ——,

' if

j; =-'s(a —b)+-' if
= -', (b—a) ——', if

We would further like all SU(3) multiplets (a,b) with

(a—b) =—0 mod 3 to be represented once and only once
with the exception of (0,0) the SU(3) singlet, which can-
not have an i =j member with j=half-odd integer. Ke
denote such a representation by P. Such a representa-
tion was in fact obtained by Goebel' as an induced
representation. (The sequence was also conjectured by
Capps" from a bootstrap argument. ) The question we

would like to ask is whether it is possible to obtain the
isobar series (P) by contraction on SU(6). We answer
the question in the negative and then show how this
series can be obtained by contraction on SU(2) SU(6).
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[J;,A; )=ie;,kAk

[~-,A'p) =if-pvA'r

(4) violate the condition (C):

Jmsx~& g~& &min (C) q

[AiaqAj p) = 3bij jape&r+seijk(3bap Jk+dapyAkg) ~ (6)

If we now introduce A; = (jl; /e and take the limit as
e —+0 keeping 8; finite, we obtain the algebra of
[SU(2)SSU(3))XT34. Relations (1)—(3) remain un-

changed, while in relations (4) and (5) A;, is changed to
Q„Relation (6) changes to

['miay'mjP) e (33)bijfaPr+r+te eijk(gaPJk)

+4eeijkifaPy @kg
g-+0

Consider'3 now SU(2)SU(6). We add three more
generators J to the set (1)—(6) such that

where j and j; are given in Sec. I.
In order to prove the above assertion, we have to

consider the j(a,b) decomposition of any representation

ffr f2 f3 f4 fs} of SU(6). Fortunately, however, we do
not need to carry out the complete decomposition,
for it suQices to consider only the constituent of

(fr,f»fs, f4,fs} with the highest sPin. This is given by'4

J= rs(fr+ f-s+ fs f4 f—s), —(44,b) = (fr—fs, fs—fs)
8(f4 fs, f—s)

There are six cases to discuss and we consider them one

by one.
Case 1:fr&0, f3= fs f4= fs—-=0. Here

[J,J )=ie;jkJk',

LJ'' Jj)=o
[J''P'-) = o

~

LJ,Aj.)=0.
Let us introduce ii;=J;+J,'. Clearly,

[ol' ij)o=i @egkk

[u, ,p-)=0,

[8'A4 )=[J~+J'', Aj-)=is'jkAk. ,

(10)

(12)

J= sfr ) (&,b) = (fr,0)(0i0) = (fr~0).

Now 3ft (fr,0) satises condition (C) if

jmsx= jmin S(2f1+3) J 3jr )

i.e., if fr 3 Th——us . only (3,0,0,0,0} can give rise to
constituents which satisfy the condition (C). In «ct,
the decomposition in this case is the familiar one:
(3,0,0,0,0}=3(3,0) 63(1,1) and the condition (C) is
clearly satisfied.

Case2: f,&~f,&0, f;=f4 f,=0. —

(13) J=s(fr+f3), (4k, b)= (fr—fs, js)(0 0) =(fr—fs, fs) ~

[A iaq jP) 238ijfaPTFT+ Zeij k~aPrA kv'

+»ijksbapgk —gk ) .

Taking the limit e —s 0 with A; = 8, /e, where 8; is

6nite, we again obtain the Lie algebra of the strong-
coupling group, [SU(2)8SU(3))XT 4. 3

In order that the representation of [SU(2)SU(3))
X T34 so obtained by contraction from SU(6) [or from

SU(2)3SU(6)) be faithful we must, of course, take
sequence of representations of SU(6) [or of SU(2)
SSU(6)) of higher and higher dimensions and f'mally

take the limit as the dimension goes to infinity. "The
question we now ask is whether there exists a sequence
of representstions of SU(6) [or SU(2)SU(6)) such
that in the limit it provides the representation P.

III. IMPOSSIBILITY OF OBTAINING REPRESEN-
TATION "P" BY CONTRACTION FROM SU(6)

Let t fr,fs,fs,f4, fs} characterize a particular repre-
sentation of SU(6). In this section we shall show that
for any choices of fr, fs, fs, f4, fs (excePt {3,0,0,0,0})
this representation contains constituents j(a,b) which

44 SU(6) XO(3) was considered in a diferent context by K. T.
Mahanthappa and E. C. G. Sudarshan, Phys. Rev. Letters 14,
163 (1965).

13Innonu and E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 39,
510 (1953).

Now we have to consider separately the three pos-
sibilities ft —fs& fs, fr fs fs, and—fr———f3& fs.

(a) If fr —js& fs, j .=3[(fr—fs)+2fs)+3 and
condition. (C) fails unless 3[(fr—fs)+2fr) &~ sr (fr+ fs),
i.e., 3 &~fr+2fs&4f» which is impossible.

(b) If fr fs= f» jm,—„=fs—3 and condition (C)
fails unless 3(2fs—1) &~ sr(fr+f3), i.e., 0&~f3+1, which
is impossible.

(c) If fr—fs& fs, jm, =-', [f3+2(fr—fs))——,
' and

again condition (C) fails unless 3[f3+2(fr—fs))—~~

~& 3 (fr+ fs), i.e., f4 ~&Sf3+3, which is impossible since

fr&2fs.
Case 3: fr~& fs&~ fs/0, f4= f3=0.

J=s(fr+f3+f3) ~ (~,b) =(fr—fs, fs—fs)(0i0)
2) 2 3 ~

Again we have to discuss separately the three pos-
sibilities fr—fs) js—fs, fr js fs fs, a—nd ——ft —fs-
&fs fs.

(a) If ft —fs& fs—fs,

j sx 3[(fr—fs)+2(fs —fs))+y
and condition (C) fails unless j, &~ 3(fr+ f3+fs), i.e.—,
3&&ft+fs+7fs, which is impossible.

'4 A. M. Perelomov, V. S. Popov, and I. A. Malkin, Yadernaya
Fiz. 1, 533 (1965) [English transl. : Soviet J. N|rcl. Phys. 2,
382 (1966)g.
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(b) If f, f—,= fa f—a, jm, =(f&—fa) —
a and condi-

tion (C) fails unless j .x&~a(fa-+fa+fa), i.e., 0&&fa
+2f,+1, which is impossible.

(c) If fa fa&fa fa

j--= a [2(fa—fa)+ (fa—fa)3—
a

and condition (C) fails unless j,„~& a(f4+ fa+ fa), i.e. ,
2fa —fa& fi~&5fa+5 fa+3 or 0&3fa+6fa+3, which is
impossible.

Case 4: f,)~ja~) fa)~ f4~0, ja 0——
~=

a (fi+fa+ fa f4),—
( b) =(f f., f—. f )3—(f,0)

=(fa fa+—f4, fa—fa)+other terms if any.

Ke again consider three possibilities:

fa—fa+ f4(),=,&)fa—fa

(a) If fa fa+f4&—fa fa, —

and condition (C) fails unless

&max~& a(fa+fa+fa f4 fa) q

i.e., 5f4+2 f4~&5fa+4fa+3 or 0)2fa+3, which is also
impossible.

Case 6:fa) fa&&fa~&f4~& fa/0
~= a (fa+fa+ fa f4 —fa)—,

(4zP)=(fa —fa, fa—fa)8(f4 —fa, f;)
1 2 4 o)

(fa fa+f4 fa 1 fa fa+f—a 1)—
+other terms if any.

YVe shall now show that, a(fa+f—a+fa f4 f—,)(f,—f, —
+f4 fa 1—, fa—fa+ f—; 1) do—es not satisfy condition
(C). As before we discuss the three possibilities f4 fa-
+f4 f4 1()—, =,—()fa fa+f—4 1Sep—arately.

( ) If f -f.+f -f.--»j -f.+j.--1,

J ~ = a[2(f" fa+f 1)+(fa fa+f4 f 1—)l+—a
and condition (C) fails unless

j „.. ~&a (f4+ fa+ fa f4 fa)—, —

j-..= a[(fa—fa+ f4)+2(fa —fa))+ a

i.e., 5f4+Sf: fa 7fa —3~& f—a&2f—a fa f4+—2f:—or
6f4+3f;&3f,+6fa+3, which is-impossible.

(b) If fa f+f f—1=f—f-a—+f —1, —
j--= (fa—fa+f.-—1)—aj--= l[(f fa)+2(f— f +f )j—

and condition (C) fails unless
and condition (C) fails unless j, ~& a(fa+fa+ —fa f4), —
i.e., 2fa fa f4& f4~&—5fa—+5fa+3 7f4 or 0)3—fa+6fa

6f4+3 ~—& 3fa+3, which is impossible.
Case S: fr= fa~& fa~& f4~& fa/0

jmxx~~ a(f4+ fa+ fa f4 f")

i.e., 2f4~& 2fa+ f.+2, which is impossible.
(c) if f4. fa+f4 fa —1&fa —fa+—f; 1, — —

and conchtion (C) fails unless j,„.&~ a(f4+ fa+fa f4), —
i.e. ) 3 &&f4+fa+7 fa 5f4&~—fa+ fa+2fa&
impossible.

(b) If fa fa+ f4= f—a fa, j ~
—=(fa—fa)

COnditiOn (C) failS unleSS j . ~&a(f4+ fa+fa f4)—
0~) f, f,+3fa —f4+1 o—r 0&&fa+2fa 2f4+1&—f2+1.

(c) If fa fa+f«—fa fa)—

J= a(fr+ fa+ f-a f4 fa), — —
(~P) = (o, fa fa) (f4 f—., fa)—

=(f4 fa, fa fa+fa—)+oth—er terms if any.

Here again the three possibilities f4—fa(),=,()fa
fa+ fa must —be discussed separately.
(a) If f4 fa& fa fa+—fa, —

j-*=aL(f4 fa)+2(fa fa+—fa)j+l—
and condition (C) fails unlessj, &~ a(f4+f.+fa f4 fa)——
i.e., 5(fa+f4)) 5 (f4+2f4) ~& 9fa+14fa 10f4—6 or 15—f4
+6)9fa+9fa, i.e., 2& fa. This is impossible since the
only choice compatible with this is fa ——fa——fa——f4——fa ——1,
which contradicts f4 fa& fa fa+ f—a-

(b) If f4 f4= fa fa+fa—j *=—(f4—fa) a

condition (C) fails unless jm,x &~a (fr+ fa+ fa f, fa), — —
i.e., 4f4&~4fa+2fa+1 which is impossible since

fa& fa& f4

(c) If f fa&f- fa+f, — —
j--=a[2(f —fa)+(f —fa+f )j—l-

jm..=-', [(fa—fa+ fa—1)+2(fa—fa+ f4—fa —1))—-',

and condition (C) fails unless

Jmxx) a(fl+fa+fa f4 fa) 1

i.e., 2f. fa f4+2fa) f—a&~5—fa Sfa 7f4 f—4+9 —or-
6f4+3fa&3fa+6fa+9, which is impossible.

This completes all the possible cases.

IV. REPRESENTATION P BY CONTRACTION
FROM SU(2)N)SU(6)

We have seen in Sec. III that no sequence of repre-
sentations of SU(6) can contract to produce the repre-
sentation (2') of [SU(2)SU(3)$&(T 4. Thae reason for
this was that every representation of SU(6) (except.
(3,0,0,0,0},i.e., (2zz+3, zz, zz, zz, zz} withe=0) contained
constituents which violated the condition (C). Consider
now the representation given by (2zz+3, zz, zz, zz, zz}. The
constituents with the highest spin here are

n

a(2zz+3)(zz+3, 0) (0, zz)= aa(2zz+3) p (zz+3 —z, zz —z).
i=p
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Though i2(2n+3)(zz+3, I) satis6es the condition (C)
and hence is an admissible constituent for (P), none of
the other constituents, zz(2zz+3) P; i" (I+3 —z, «z —i),
satisfies the condition (C). One checks easily that these
inadmissible constituents are precisely those which
occur in the decomposition of (1){2tz+1,I—1, I—1,
zz —1, zz —1).Since a representation of LSU(2) SSU(3)]
)&T24 obtained by contraction from a sequence of
representations of SU(6) need not be irreducible, one
might hope that a representation obtained by con-
traction from the sequence {2N+3,zz, zz, zz, zz) is re-

ducible, and that one irreducible part is just the one
obtained by contraction from the sequence (1){2N+1,
«z 1, zz ——1, zz 1,—zz —1) the remaining irreducible part
being just the representation (P). Unfortunately this
is not the case and one has to consider more complicated
combinations of representations of SU(6) in order to
recover the isobar series of interest to us.

Consider the following reducible (direct sum) repre-
sentation 0. of SU(6).

o.„:{2m+3, «z, zz, zz, «z) Q3 {2«z+1, «z 1, zz —1, «z —1, zz——1}
Q {2«z—1, zz —2, n, 2, «z 2—, «z —2) . —

Let us denote by Z„ the representation (1){2«z+1,zz —1,
zz —1, zz —1, N —1}of SU(2) SU(6). Let us denote by
0.„, the reduction of 0. with respect to SU(2)SU(3),
and by Z„, the reduction of Z„with respect to SU(2)
8SU(3). We can show that (see Appendix for a sketch
of the derivation of this result)

a =Z+R,
where

We can easily see that R„ is nothing but the basis for
the representation I' which was obtained by Goebel.
For example consider, the Grst term in R„, viz. ,

T(-,'n) m 2i+1

3L2(m+i «—)+3](3m+3 i—, 2z) .
m 0 i=o r=O

Here it is clear that 3m+3 —z)2i. Hence

j .„=-3L(3m+3—z)+2(2i)]+-,' =-,'L2(m+i)+3]

which corresponds to r =0 in the above sum and

j- -= sl:(3m+3 —z) —(»)1—
2
= 2I:2(m—z)+1)

which corresponds to «=2i+1 in the above sum. The
condition (C) is thus satisfied for this term. It is not
dificult to see that the remaining four terms also
satisfy the condition (C). It is also not diKcult to see
that in R„(as «z~~) each (a,b) such that (a b)—
=Omod 3 is present once and only once with the ex-
ception of (0,0), which does not occur. First of all it is
clear that for all the terms (a—b) =0 mod 3. Further,
the first term contains all u)b with b even, and the
second term contains all a& b with b odd. The third term
gives all u= b, while the fourth term gives all a&b with
a odd, and the last term gives all a& A with a even.
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APPED'DIX

z(x~) m 2i+
R„= P P g ~L2(m+i «)+3](3m—+3 i, 2z)—

nz=oi=or=o

Z(-;(~ —1)) ~
+ P P P —,'L2(m+i —«)+51(3m+4 i, 2z+1—)

~=o i=o r=o

s+1 $ —1

+ Z & -', L2(z —«) —1](z,z)
i=1 r=O

We sketch a derivation of the result

We have

o- =Z +R„.

0 „={2zz+3,«z, «z, zz, «z}

3{2m+1,zz —1, «z 1, «z —1, zz —1}—
g {2zz —1, zz —2, zz —2, «z —2) .

I(-', (m+2) ) —1 m —1 2(m, +i) —1

-,'l 2(2m —z —«&
—1]

Denoting the representation conjugate to {fi, f&,f&,f4,f&}
by {fi,f&,f&,f4,f&)*, we note that

i=o r=o

i=o r=o

X (2m —1—2i, 2m+2+i)
Z(y(a+1)) m —1 2(nz+i) -2

+ 2 Z Z —;L2(2m—z—.)—3]

{&+3,0, 0, 0, 0}8{hz,0,0,0,0}~
= {«z+3, 0, 0, 0, 0) {zz,«z, zz, N, «z)

= {2«z+3, «z, «z, I, «z}

+{2N+1, «z —1, «z —1, zz —1, zz —1}
+ . +{3,0,0,0,0) .

X(2m 2 2i, 2—m+—1+z), Hence

where I(x)—= integral part of g.
Clearly, as shown in Sec. II, both O.„and Z„will con-

verge to a representation of l SU(2)SSU(3)]XT 4. Inz

the limit n —+~, since both 0 and Z„are basis for the
representation of [SU(2)SU(3)]XT$4 R is also a
basis for the representation of

l SU(2)SSU(3)]X&24

S„=—{2zz+3, zz, «z, «z, «z)

= {«z+3, 0, 0, 0, 0) 13 {zz,0,0,0,0}*
—{«z+2, 0, 0, 0, 0}ta {zz—1, 0, 0, 0, 0}*.

Let us now denote by S„ the decomposition of S with
respect to SU(2)SU(3). Then using the notation of
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Hagen and Macfarlane, "S„can be given in terms of
homogeneous product sums "k" appropriate to SU(6):

8n kn+ska km+2k' —r

where~'
1($~)

k„= Q —,'(n —2k)(n —2k, k)
A=0

I(gn)
k„*= P -,'(n —2k)(k, n 2—k),

mirI (n,m')

i=0

min(m, e')

(n ,
—' 'j—; j,—m' )—,

'

j=0
where

(n, n'; m, m) = (n+n, m+m')

The reduction of the SU(2) part, e.g. , s(n+3 —2k)
-', (n —2) causes no problem. The reduction of the
SU(3) part can be achieved by using the elegant
formula of Coleman" which we quote below.

(n, m) 3 (n', m')

Thus
I(x) =integral part of x.

I(;(~+3))
—',(n+3 —2k) (n+3 —2k, k)

A=0

min(m, n')

(n+n' —2i, m+m'+i)
1=1

min (m,nt')

+ g (n+n'+i, m+m' 2i) . —

r(&n)

g P ~s(n —2l)(l, n —2l) — P —', (n+2 —2k) Proceeding in this fashion, one obtains 0-„and Z„.
A=0 After a straightforward but very lengthy and laborious

I(~ (e —1)) calculation, one then obtains the expression R as
X (n+2 2k,—k) 8 p -', (n —1—2t) (l, n —1—2l) . quoted.

L=o

t=0

"S. Coleman, in Proceedings of the Seminar iN High Ertergy-"C.R. Hagen and A. J. Macfarlane, J. Math. Phys. 6, 1355 Physics and Etemerttory Particlesl Trieste, 1965 (International
(1965). Atomic Energy Agency, Vienna, 1965).
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Regge-Pole Exchange and Direct-Channel Resonances in Models for
High-Energy Scattering Amplitudes*

LO&AL DVRAND III
&cportraent of Physics, Urtiwrsity of Wi'sconsin, Modisort, Wiscortsin

(Received 28 September 1967)

The behavior of the forward and backward rrft7 scattering amplitudes for momenta of 1—5 Ilev/c hss
been analyzed recently using models in which Breit-Wigner amplitudes describing direct-channe]. resonances
are added to a background amplitude given by the Regge-pole-exchange model Although remarkably
successful in practice, the model has severe theoretical limitations, especially with regard to the treatment
of the tails of the resonant terms, double counting of the background contributions, and the restriction to
the Breit-Wigner approximation for sets of isolated resonances. The theory of Regge-pole-plus-resonance
(RPR) models is examined in detail for both single-channel potential scattering and the many-channel
relativistic case. A modified RPR model is developed in which (i) the double-counting problems are elimi-
nated, and (ii) direct-channel resonances are described in terms of their Regge-trajectory functions. There
is no difhculty with the tails of the resonant amplitudes in this formulation of the RPR model. Moreover,
the contributions of the entire set of resonances on a given Regge trajectory can be included in the scattering
amplitude. The relevance of these modifications of the RPR model to past analyses of ~N scattering is
discussed briefly.

I. INTRODUCTION
' T has become clear in the past year that a remarkably

- successful description of mX scattering for laboratory
rnomenta of 1—5 BeV/c can be obtained by adding

*Work supported in part by the University of Wisconsin
Research Committee with funds granted by the Wisconsin Alumni
Research Foundation, and in part by the U. S. Atomic Energy
Commission under Contract No. AT(11-1)-881,No. COO-881-120.

appropriate direct-channel resonance terms to the
Regge-pole-exchange amplitudes deduced from 6ts to
high-energy scattering cross sections. The rationale for
such models is simple: the Regge-pole-exchange ampli-
tude is used to represent the smooth average behavior
of the complete amplitudes, while the resonant terms
take into account the large deviations of a few partial-
wave amplitudes from that average behavior. Models


