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The Lr(6.6) symmetry is used to write down peripheral amplitudes for the processes Pp ~ (X,E*)YY.
The requirements of unitarity are approximately enforced on the amplitudes so derived by the inclusion
of a,bsorptive corrections. Assuming a value of G~~rr /4s and adopting a prescription for dealing with the
mass splitting in U(6, 6), we find satisfactory agreement for the angular distributions in all cases and obtain
satisfactory absolute values for h.A. and X+2, but not AZ'. The energy variation of the cross section is
satisfactorily reproduced for AX and Z+Z in the intermediate momentum range from 3.0 to 5.7 GeV/c;
but not for AZ'.

I. IM'RODUCTION

'N this work we are primarily interested in (-,'+)
- - hyperon-antihyperon pair production from proton-
antiproton interactions at high energy. There are six
such I'P channels:

Experimental information on these reactions is available
at various energies from the CERN' and Brookhaven'
groups between 3.0- and '/. -0Ge V/c incident antiproton
mom enta.

The most striking feature of the observations is the
extreme forward peaking of the angular distributions.
Typically, the majority of the events are concentrated
in the region 1.0)cos9&0.8, where 0 is the center-of-
mass p, I' scattering angle. This feature is very sug-

gestive of a peripheral production mechanism, and
further evidence for this view may be obtained from
an examination of the various production cross sections.

The Z Z+ and ™™+cross sections are very much
smaller than the others, and these two configurations
are precisely those which cannot be reached from the
initial state with the exchange of an I=-,' $=1 meson.
We are led therefore to consider the production of AA,
AZ', Z+Z, and Z'Z' pairs by the exchange of either
E(0—

) or E*(1—).
The possibility of constructing a peripheral model

for these processes has been discussed by various
authors: (i) Early pole calculations'4 pointed to E
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as the intermediate pa, rticle. (The amplitude for E
exchange approximates to the form f/(mx' —f), where
] is the square of the four-momentum transfer and
(&0 for the physical region; this clearly represents a
backward peaking, and was rejected as in conQict with
experiment. ) (ii) Durand and Chiu' drew attention to
the importance of including corrections for the effect
of absorption into competing channels in the initial and
final states. (A more complete discussion of these
"absorptive effects" is given in Sec. III.) These authors
include these effects in a discussion of pprAX, and
confirmed the dominant role of E~ exchange against E
exchange, finding the latter to be too forwardly peaked.
(iii) Cohen-Tannoudji and Navelet repeated the cal-
culation of Durand and Chiu, taking spin fully into
account. In this case, E exchange was found to be
i usus ciently forwardly peaked. (iv) All the above
investigations assumed a p„-type coupling at the E~XA
vertex. Hogaasen and Hogaasen' generalized the E*-
exchange absorption model to include an admixture
of a Pauli-type term 0-„„g„and concluded that if the
Pauli-type term was more than approximately the
same size as the Dirac-type term, the model would no
longer fit the data.

All of these calculations admit of a contribution
from E exchange.

This discussion illustrates the considerable freedom
of maneuver one has in peripheral calculations, which
arises from three main sources:(i) there is often a
wide variety of particles to be considered as inter-
mediary; (ii) there are often alternative couplings
possible at the vertices; and (iii) the values of coupling
constants which enter the calculations (e.g. , grcq~,
grcz&, grr~srr, gz~») may usually be chosen freely.

Rather than use an arbitrary mixture of E- and
E*-exchange matrix elements which would be varied at
will to fit the experimental data, it seems preferable to

~ L. Durand, III, and YaIn Tsi Chiu, Phys. Rev. Letters 12,
399 (1964).' G. Cohen-Tannoudji and H. Navelet, Nuovo Cimento 37,
1511 (1965).' H. Hogaasen and J. Hogaasen, Xuovo Cimento 40, 560 (1965).
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FIG. 1. The one-particle-exchange diagrams for the anni-

hilation process p+P ~ Y+Y.

assume some higher symmetry in which the Lagrangian
and the coupling constants are Nniqlely determined,
and to compare the model against experiment. In this
work we assume the U(6,6) symmetry, s which is not
in conQict with physical unitarity, and we impose
unitarity requirements in terms of the absorption
model. Earlier calculations by the authors' on the AA

channel at high momentum (3.7 Gev/c) have given a
fair description of the magnitude and angular distribu-
tion of the differential cross section. As we shall see,
the form of the V-X interaction predicted by U(6,6)
is realistic and we expect the main features of this
interaction to be preserved in any alternative theory.

2m' I"
J5—— 1 Xy5Ã z)+(g)3)p,

S )4ms
(2.2)

l
1+ l(&&)z

2mVi

t' 2m I' rli
+( 1+

l
X Q los(s/3)r (2.3)

V k 4m'

where E is the baryon of mass m, q is the Tnomentum
transfer, S is the pseudoscalar-meson mass, and V is
the vector-meson mass. In the U(6,6) symmetry,
S= V=tt (the "meson mass"), but we wish to keep
open the possibility of setting S and V to be different,
and of thus splitting the mesons into the pseudoscalar
and vector nonets. I'„and r„are the conventional
forms for "electric" and magnetic interactions, "
rather than the Dirac and Pauli terms, i.e., y„and

A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London) 284A, 146 (1965);285A, 312 (1965); M. A. B.Bsg and
and A. Pais, Phys. Rev. Letters 14, 267 (1965); B. Sakita and
K. C. Wali, ibid 14, 404, (1965);. Phys. Rev. 139, B1355 (1965).' H. D. D. Watson and J. H. R. Migneron, Phys. Letters 19,
424 (1965).

II. U(6,6) INTERACTION

The U(6,6) interaction Lagrangian is given by

I-=G(~s V s+~.~.), (2 1)

where y5 and y„are the pseudoscalar and vector nonets
and G is the "U(6,6) coupling constant. " The U(6,6)
prediction for those parts of the pseudoscalar and
vector currents relevant to the interaction of the
eightfold baryons with the 0 and 1 mesons are

PI

FIG. 2. The production P+P —+ Y+Y in the s channel, or the
elastic scattering p+ Y —+ P+Y in the t channel.

&r„„q„; the coeKcients of I'„/2m and r„/4ms are the con-
ventional Sachs" form factors Ii g and FJvl, respectively.

The basis of our model is an amplitude corresponding
to Eq. (2.1), which contains a contribution from each
of the E and Xe poles (Fig. 1). We see that, apart
from the question of the choice of S and V, there is
no arbitrariness in the model. )The U(6,6) coupling
constant 6 must be chosen so as to reproduce the known
value for G ti~'/4ir. ]

It should be emphasized that, a Priori, one might be
hopeful of satisfactory results. First, as is well known,
the U(6,6) symmetry is badly broken, but we might
hope that, in the present case, the effect of this breaking
might not be too important, as we are dealing with
reactions only involving particles from the same SU(3)
multiplets, namely the baryon octet. The mas differ-
ences between p (938 MeV), A (1115 MeV), and
Z (1195 MeV) are small, while the difference between
the E mass (494 MeV) and that of E* (891 MeV) is
at least much less than the full variation of the meson
masses, e.g., from the ir (135 MeV) to Io (1019 MeV).
Secondly, the U(6,6) predictions for the three-point
function are very much better than those for the four-
point one "and, in the present calculation, we use only
U(6,6) expressions for specific vertices.

Finally, the currents as given in Eqs. (2.2) and (2.3)
by U(6,6) resemble very much a form which one expects
on general grounds. The vector current contains a
large magnetic-type term, of the order 3 or 4 times that
of the electric term, and there exists considerable
evidence for a vector-Ineson interaction of this form,
e.g., for p in electromagnetic form-factor data or from
the Stodolsky-Sakurai model. "Again, any breaking of
the symmetry with choices of S&V will emphasize
the scalar coupling relative to the vector one. %e
therefore consider the currents given to be of a rea]-
istic form.

I R. G. Sachs, Phys. Rev. 126, 2256 (1962).
"R. Delbourgo et al. , Senna~ oe High-Energy Physics and

Etememtary Particles, Trieste (International Atomic Energy
Agency, Vienna, 1965), p. 455.

~ L. Stodolsky and J. J. Sakurai, Phys, Rev. Letters 11, 90
(1963).
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The explicit form of the currents for the processes exchange of pseudoscalar and vector particles Lwith
under consideration can be found in Appendix A. The masses at the physical poles, i.e., u(E)=495 MeV and
matrix element for the diagrams of Fig. 1 with the y, (E*)=891MeV] is given by

a"—q.q./t '
T=Mi" (q')Mi'(q')8(p&) v( —ps) u( —p4) u(ps)

2m u'(E*)—t 2m

~p fpv qgqv(u+~i"(q')~ '(q')8(pi) n( —Ps), u( P)~—.u(p )
2m u'(E*)—t

gpv qvqvlu
+~2 '(q')~1 (q )8(p&)rp( Ps) u( P4)

u'(X*)—t 2m

Ct~ VJV» &+~s"(q')il .'(q')~(pi)v" (—Ps) u( —P4)
u'(E*)—t 2m

+Ms" (q')lies'(q')8(p&)ps&( —ps) u( p~)—vsu(ps), (2.4)
p'(K) —t

g —
(p +ps)2 —4E2 —+12

t= (pi+ ps)'= —2p'(1 —cose),
u= (pi+ p4)'= —2p'(1+cos8),

(2 5)

where E and p are the energy and momentum of each
particle; 0 is dined as the scattering angle between
the incoming proton and the outgoing baryon.

In order to include absorptive corrections in the
diagrams of Fig. 1, the matrix element T is diagonalized
in the helicity representation of Jacob and Wick."We
define

y, =(},}nlrl} „X,-), (2.6)

where pi, ps and —ps, —p4 are the 4-momenta of the
incoming antiproton and proton and outgoing anti-
baryon and baryon, respectively (Fig. 2). P„and I'„'
are the sum of fermion momenta at the particle and
antiparticle vertices, respectively. The relation between
the F's and the M's is given in Appendix A. The super-
scripts I and II of the form factors refer to the upper
and lower vertices of the diagrams of Fig. 1. We con-
sider m as the average mass of the four baryons in
each particular channel: mJ ——m2 ——m3 ——m4 ——m, i.e., the
mass diBerence between the proton and the other
baryons is negligible, as is reasonable at high energy
considered in our case. In the center-of-mass system"

cog 1
—:2lv'I',

dQ (16irE) '
(2.7)

where the summation is over the 16 helicity amplitudes.
The next step consists in the evaluation of the

independent helicity amplitudes whose general form is
given by Eq. (2.4). We choose our coordinate system
with the initial antiproton moving along the positive
s axis and the outgoing antibaryon moving in the x-s

plane at an angle 0 to the s axis. The Dirac spinors in

the center-of-mass system are written as direct prod-
ucts of Pauli's spinors:

where the P's label the helicities of the particles and
the index i specifies the helicity dependence" (see
Table I). For the AA, Z+Z, and 5'Z' channels, the
restrictions imposed by parity and charge-conjugation
invariance reduce the number of amplitudes from 16
to 6, which we define in Table I. The AZ and Z'A.

channels, however, are described by a set of 8 indepen-
dent amplitudes, as charge conjugation only relates the
AZ' and Z'A. channels which are physically distinguish-
able."Our normalization is such that the differential
cross section for unpolarized particles in the initial
state is given by

~&1 I

(E+m) '~' —2xi(E+m)

+Kg

(E+m) "' 2Xsp

~
—ioy8/2~

(E+m) 't' —
2Xs (E+m)

+X4= e
—i oy8/2g

(E+m) "' 2X4P

(2.8)

~ Vfe use the metric g„,= (1, —j., —j., —1).
'4 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.} 7, 404 (1959}.
"The extraneous two amplitudes for the AZO process are defined in terms of helicities as:

@~=&+-:+kit'I —-2+2&

es= &+s—
s l&l —

s
—s).
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where X), is an eigenstate of ~0-, and the representation is such that yo is Hermitian, y, anti-Hermitian, and
pp=pp+I'F2+2. (The Dirac spinors are normalized so that ug= —8'p= 2m. )

The contributions to each y, from the pseudoscalar- and vector-exchange diagrams (thus giving rise to inter-
ference effects) must be added to give the total U(6,6) amplitudes (g—= cos8):

pl M II(q2)M I(q2)[4m2(2E2+P2(1+g))(1+g))
t12(K*)—t 4m'

+ (1/2m)[MI'1(q )M,'(q')+M, "(q')M, '(q'))[4m(E'+P') (1+g))

+M2" (q')M 1(q2)[SP2+2mp(1+g)), (2.9a)

2 M1II(q2)M1I(q2)[ 4E2(2E2+p2(1+g))(1 g))
t22 (K*) t 4—m'

+(I/2m)[M1" (q')M '(q')+M21'(q')M, '(q'))[ —4E2m(] —g))+M "(q2)M '(q')[ —2m2(1 —g))

+ Mp" (q')M, '(q')[ —2P'(1 —g)), (2.9b)
t22(K) t—

M I» (q2) M Il (q2) [4m2(2E2+ P2 (I+g) )(I+ g))
t22(K*)—t 4m'

+ (1/ 2m) [M111(q2)M 21 (q 2)+M 211(q 2)M 11(q 2))[4m (E2+P2) (1+g))

+M2" (q')M21(q')[2(E'+P') (1+g)) (2.9c)

p, = MI" (q')MI'(q')[4E2(2E'+P'(1+g))(1 —g))
t22 (K*) t 4m'—

+ (1/2m)[M II(q2)M~I(q2)+M II(q2)M I(q2))[4E2m(1 g))+M II(q2)M I(q2)[2m2(1 g))

+ M2"(q')Mp'(q') [—2p'(1 —g)), (2.9d)
t22(K) t—

ppp — Mill(q2)Ml (q2) [4mE(2E +p2(1+g)) s1118)
t12(K*)—t 4m'

+ (1/2m)M I'I (q')M2'(q') [4E(E'+P') sin8)+ (1/2m)M2' (q')Ml'(q')[4m'E sin8)

+M2' (q')M2'(q') [2mE sin8), (2.9e)

The remaining two amplitudes" required for the description of the AZ and Z A channels are

(2.9f)

MI (q )Ml (q2)[—4mE(2E2+P2(1+g)) sln8)
t22(K*)—t 4m'

+ (1/2m)MI (q )M, (q'}[—4m%' sin8)+ (1/2m)M2 (q }Ml (q') [—4E(E'+P') sin8)

+M2" (q')M2'(q') [—2mE sin8), (2.9g)

%8= %7 (2.9h)
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III. ABSORPTION EFFECTS

Ke now consider how the Born amplitudes as given
above

I
see Eq. (2.9)j are modified when the effects of

the strong elastic interactions in the initial and final
states are taken into account.

The inclusion of such effects to give an "absorption
model" was originally proposed by Sopkovich, " and
has been widely discussed recently in several reviews
of the peripheral. model, "where further references and

reN. J. Sopkovich, Nuovo Cimento 39, 186 (1962); J. D.
Jackson, in Proceedings of the 1966 Stony Brook Conference
on High-Energy Two-Body Reactions (unpublished}; J. D.
Jackson, Rev. Mod. Phys. 31, 484 (1965}.J. D. Jackson, in
Hjgh ErIergy Physics, Proceedings of the 1965I.es IIouches SNmmer
Sshool (Gordon and Breach Science Publishers, Inc., New York,

discussions can be found. We conhne ourselves to
give a summary of the procedure. The physical idea
behind the model is that the opaque core which one
particle displays to another at high energies in elastic
scattering and the consequent diffraction peak. ought
to show up in inelastic processes. These effects are just
statistical manifestations of the very many open
competing channels, the presence of which rejects on
the amplitudes in any one channel through unitarity.

1966}. A. C. Hearn and S. D. Drell, in High-Energy Physics
{Academic Press Inc., New York, to be published) (SLAC-
PUB-176, ITP-200, 1966}.Uri Maor, in Proceedings of the Con-
ference on Nuclear and Particle Physics, University of Glasgow,
1966 (CERN/TC/PHYSICS 66—26) (unpublished}.
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We use a prescription given by one of the authors' in
a previous publication, according to which the cor-
rected or unitarized partial wave T'J(W) is related to
the Born amplitude T'(W) by

Tp
' =supp Tp +Tp ~S ''j', '(3.I)

where cr and P label the channels, and S ' and Spp'
are the S-matrix elements for elastic scattering in the
initial and final states. This formula ma, y be simply
derived using the K-matrix formalism and an approxi-
mation scheme in which only the unitarity sects of
the presumably large elastic scattering amplitudes are
retained, while the direct sects of the typically small
inelastic amplitudes are neglected. The result is valid
relativistically, and is independent of any restriction
on the range of the various forces. The formal differences

rv H. D. D. Watson, Phys. Letters 17, 72 (1965).

TABLE I. Helicity amplitudes for the reaction pP ~ FY.

Q) 24(pp)
X4Xa(FF)Q

+++-
—+

ge—ge
+2

pe
&3

p4
pe

g2—Ve
0'e

between this treatment and the usual one (Sopkovich")
which gives

Tp-"= (&Spp') Tp-'(v'S-') (3 &')

are discussed further in Ref. 17. The two formulas
become identical when the initial- and 6nal-state
elastic scattering parameters are set identical, as in the
conventional approach to the application of the ab-
sorption model.
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1n the application of Eq. (3.1), the forms for S
and Spy& are taken from experiment. In practice, one
usually has no information on the form of the elastic
scattering amplitude in the final state. In the absence
of such information, we assume all PF elastic ampli-
tudes to be identical to the pP amplitudes, which is a
plausible approximation. As noted above, the general
feature of elastic interactions at high energy is the
diGraction peak, and this is independent, to a large
extent, of the nature of the particles involved. In the
present case all particles involved are spin--,' baryon-
antibaryon pairs, and one would be surprised if the
elastic amplitudes were very different.

Equation (3.1) is readily generalized to include spin.
Inserting indices to label the spin helicity representa-

tion, we have

&M~l T~."i~i~2)

+ 2 &&&&2 I
Tpa I+& ~& )&+1&&

I san
I
nl+&)3 (3~ 2)

0.1'ny'

We make the following assumptions regarding the
form of the elastic scattering amplitudes:

(i) As noted above, we take S '=Spy'.
(ii) We assume S & only involves non-helicity-

changing amplitudes. (There is no evidence, at these
energies, for important helicity-changing terms and,
intuitively, we indeed expect these to be absent. )
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~ ~ ~

(m) Vv'e parameterize pp elastic scattering in terms
o a Gaussian model of radius u, setting (n1cx1IS'In1n1&
=1—Ce J&J+'&I"'&'. In this, we have taken the two
independent non-helicity-changing amplitudes to be
equal. The parameters v

I
—= v(E)g and C are obtained

from experiment" and, typically, v '~200 MeV; the
parameter C is found to be equal to unity.

With these assumptions, Eq. (3.2) greatly simplifies;
the new helicity partial-wave amplitudes T '(W),
where i specifies the helicity dependence (see Table
I ) 1S

T &(W) = P1 e1&&+—"I"'1"j'T1(W) (3.3)

which gives the unitarized or corrected amplitudes
1'(W) in terms of the Born amplitudes T,' (W).

'

%e have shown in Sec. II how the six independent
helicity amplitudes p;(i= 1 6) for the reactions

These can be decomposed in the helicity representation
of Jacob and Wick as

~1=(+5+2 I
T I+k+2&

=& (2i+I)(+l+ll T '(W) I+l+l&doo'(8),

l50—

d(COS e} Ioo

pb

50

LO

cos 8

7.0 GeV/C

5.7 GeV/C

5 0 GeV/C

~1=(+5+II
T

I

—l —l)
=Z (»+1)(+-:+-.IT. (W) I

—:—:)d.. (8),

(+1 1
I
Tl+1 1)

=r. (2~+1)(+!—ll T. (W) I+!—l&d '(8),

FiG. 6. p+p~z+P. The predictions of the anode] gt
3.0, 5.7, and 7.0 GeV/c.

or, in general,

~'= 2 (2i+ 1)T"(W)d.,'(8),
J

where
X=X2—'Ag, p, ='A4 —)3.

(3 4)

~ =(+-,' —',ITI —:+-,'&

=2 (»+I)(+l—ll T '(W)
I

—l+l&d- '(8)

v ~=(+5+k I
T I+i—k&

=2 (»+1)(+-',+-',
I
T (W) I+l—:)d (8),

«=(+k —ll Tl+2+l)
=2 (2i+I)(+l —l I

T '(W) I+l+l &de1'(8)

and similarly for the other two helicity amplitudes for
the processes pp —1AZ and pp —+Z'X:

v7=(+l+l I TI —l+-',
&

=2 (2i+ I)(+2+ 2 I
T1'(W)

I

—2+ 2 &d-»'(8),

v 8=(+k—
2 I

T
I
—

2
—

4&

=2 ( i+I)(+l—l I Ta'(W)
I

—l —l&d01'(8),

18 . Czyzewsk1 et al. , in Proceedil s of the 5'e
Coefereece oe Elementar Paoe n ary articles arfd High-Energy Physics

, e 1te y G. Bernardini and G. P. Pu i '
d F '

Bolo 1963) VoI I 232

d 1„1(8) functions
onversely, making use of the ortho l't fogona ity o the

d „(8)d „'(8)d(cos8) = L2/(2 j+1))b;,',

we obtain the partial-wave helicity amplitudes

1

T,'(W) =— q,d1„1'(8)d(cos8) .
—1

(3.5)

The explicit form of the T and y in terms of Legendre
polynomials are given in Appendix B. The differential
unpolarized cross section according t th b
model is obtained from Eq. (2.7) by sub t
or q;.

IV. COMPARISON WITH EXPERIMENT

In comparing the model ~ith experiment, there is
considerable ambiguity as to the treatment of the
masses in U(6,6). As far as the position of the poles

The unitarized scattering amplitudes can then be
written in the form Lremembering Eq. (3.3)):

v»'=Z (2i+1)LI—c "~"'"'"*jT"(W)d "8' 3.6)
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is concerned, these ought to be assigned at points cor-
responding to the physical masses of the exchanged
particles.

The question of the choice of 5 and V, the pseudo-
scalar and vector masses, is less easily settled. We have
taken an ad hoc choice of SU(3) masses, 5=417 MeV. ,
V=850 MeV, the mean mass of the pseudoscalar and
vector nonets, respectively. This prescription has been
been used elsewhere with success. "The present point
of view has the advantage that no further ambiguity
arises when we wish to relate the U(6,6) coupling
constant to the m.EE coupling constant, using

G.~~=G[1+(2m/5) 7 (5/3) . (4 1)

More explicitly, the determination of the D:F ratio
and the relative contribution of the pseudoscalar- and
vector-exchange mechanisms are uniquely predicted by
the U(6,6) theory. Indeed, we find our results very
sensitive to a variation of the relative contribution of
E and E*exchanges, and in general, to alternate choices
of the masses in U(6,6).

The predictions of the model are shown against
experiment in Figs. 3 to 6, for the various channels
and at various energies. The solid curve gives the pre-
dicted result correct in absolute magnitude, assuming
a value of 14.9 for G ~~'/4m. For the dashed curves,
the results have been normalized to correctly reproduce
the observed number of events in the erst experimental
interval to facilitate comparison.

It will be seen that in all cases the angular distribu-
tion is well reproduced over the whole energy range.
In addition, in the intermediate energy range under
consideration, the absolute magnitude of the differential
cross section is approximately correct for AA and
Z+Z, but for AZ' (and Z'A) the predicted value is too
small by a factor of about 4; this particular feature of
the model results from a destructive interference of the
D and -', F couplings at the E+pZ vertex.

In discussing the energy variation of the cross
section, we recall the large experimental errors of the
data. This makes it difficult to draw de6nite conclusions
about the energy dependence. For AA, the theoretical
cross section seems to decrease more slowly than the
experimental results between 3.0 and 5.7 GeV/c, where
it starts rising. For Z+Z, the experimental energy
variation is much weaker than for AA. The theoretical
cross section falls within the limit of experimental error
up to 5.7 GeV/c, where again it starts to rise. In the
case of AZ' (and Z'A), the energy variation of the model
is wrong, the theoretical cross section showing a slight
increase, whereas experiment shows a sharp decrease
between 3.0 and 5.7 GeV/c. In Fig. 6, we give the
predictions of the model for pp ~Z'Z', where the model
predicts a rise of the cross section, in disagreement
with experiment. We are encouraged by the fact that
agreement is best in the experimentally most accessible
channels,

As expected, the model is relatively successful in
predicting the energy dependence of the cross section
for AA. and Z+Z in the intermediate momentum range
3.0 to 5.7 GeV/c. As the energy increases, the vector-
exchange contribution takes over, leading to the well-
known breakdown of vector-exchange models at high
energy.

V. CONCLUSION

These calculations show good agreement with experi-
ment as to the angular dependence of the produced
particles in all cases and good agreement in absolute
magnitude for AA and Z+Z —in the energy range under
consideration, but not for AZ' (and X~A), which is too
small by a factor of four. These results are determined
from G &z and can be considered as very satisfactory.

We wish to emphasize that the predictions of the
model depend critically on the use of U(6,6) symmetry
at vertices. Other two-body 6nal states such as en,
X*X*, and V*V* are also determined by the same
model. Good agreement with experiment for pp~ Nn

has been achieved in the momentum range 3.0 to 9.0
GeV/c. ig Calculations are in progress to extend the
predictions of the model to the N*N* and F*Y*
channels. "
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APPENDIX A' EXPLICIT FORM OF
THE CURRENTS

The vector interaction as given by Eq. (2.3) can be
written as

J„=Fo(P„/2m)NN+F~N(r„/4m')N, (A1)

where Fc and F~ are the Sachs'0 form factors. LThe
symmetric and antisymmetric couplings have been
implicitly included in (A1).7 For subsequent algebraic
work, it is more convenient to rewrite J„ in terms of
E„and y„ in the conventional manner:

J„=Mi(q') (P„/2m)NN+&2(q')Ny„N, (A2)

where the relations between M~, M~ and Fc, F~ are
given by

~l FC FM p

3II2——$1—(q'/4m') 7F~. (A3)

"J. H. R. Migneron and K. Moriarty, Phys. Rev. Letters
18, 978 {1967)."J.H. R. Migneron and K. Moriarty (to be published).



166 ABSORPTION MODEL AND U(6, 6)

The explicit forms of Mt(qs) and M&(q') for the required
couplings of mesons with baryons in the annihilation

p+p ~ Y+Y are (the sr'pp coupling constant has been
normalized to unity):

quite generally in terms of Legendre polynomials. (The
resulting expressions contain no derivatives of Legendre

polynomials. ) Written in terms of Jacobi polynomials, "
the dq„t(8) functions assume the form

E*Xp:

M, (q') =%3(2m/ V)[1—(q'/4ms)] (A4)
d~.'( )— (coss8)~+"

M, (q') = —43[1/ (2m/V)][1 —(q'/4m')] (As) &t,'(sin —'8)~ "P, q~ "~+"(cos8). (81)
E* Z'p'

Mr(q') = —a[2+ (m/V) (1+(3q'/4m'))] (A6)

The dq„t(8) function satisfies the relations

(82)
M (q')=l[1+(2 /V)][1—(q'/4 ')]. (A'l)

For our particular values of X and tt, Eq. (81) gives
E*'2+p

(x—=cos8)
Mt(q') = ——ssV2[2+ (m/V) (1+(3q'/4m'))], (AS)

doss (8)=Pse''(x),
M (q') =-'v2[1+ (2m/V)][1 q'/—4m'] (A9)

(For simplicity of writing, we have omitted the y„
in the couplings. ) The pseudoscalar coupling of mesons
with baryons can be written in a similar way (Ys s
omitted):

dttt(8) =cos'(-', 8)P; ts '(x),

d tt&(8) = sin'(-'8)P t"(x)

I/2

dtot(8) =
~

cos-'8 sin-', 8P; t' '(x) .

E Z'p:

Ms (q') = -', [1y (2m/5)][1 —(q'/4m')]. (A11) (84)Ps '(cos8) =P, (cos8) .

E Xp:

~g[1+ (2m/g)][1 (qs/4ms)]. (A10) The other dq„'(8) functions are obtained from Eqs. (82)
and (83).

We note first that

E Zp'

M,, (q') = tsv2[1+. (2m/g)][1 —(q'/4m')]

Any Jacobi polynomial P,"" can be written as a linear

(A12) combination of Legendre polynomials by making use of

the two recurrence relations"

APPENDIX 8: PARTIAL-WAVE HELICITY
AMPLITUDES T,&'(W)

Equations (3.4) and (3.5) have to be evaluated for
different j values. Since we deal with high-energy
reactions, large j values will contribute significantly.
It is therefore necessary to find some way of computing
readily the dz„&(8).

We show how the dq„'(8) functions may be written

', (2+ot+P+—2rt)(x+1)P„s+'(x)
= (rt+1)P„~t s(x)+.(1+P+rt)P s(x), (85)

-,'(2+n+P+2tt) (x—1)P ~+'~(x)

= (n+1)P ~, ~—(1+cr+rt)P„~(x). (86)

For the polynomials occuring in Eq. (83), one

obtains in this way

p, e, s (x)— [jP +t(x)+ (2j+1)Ps (*)+(j+1)P'-t(x)]
(2j+1)(1+x)'

P, t''(x)= [jp+ (*)—(2j+1)p (*)+(j+I)»- ( )],
(2j+1)(1—x)'

2j
P; t"(x)= [Ps-t(x)—P +t(x)].

(2j+1)(1—*')

(87)

s' M. E. Rose, Elementary Theory of Angnlar Momentnm (John Wiley 8z Sons, Inc. New York, 1963); A. R. Edmonds, Angnlar
Momentnm in Qnantttm Mechanics (Princeton University Press, Princeton, N. J., 1957).

E. D. Rainville, SPecial Ennctions (The Macmillan Company, ¹wYork, 1960), pp. 264-265.
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Interserting (B3) and (B7) into Eq. (3.5), the partial-wave helicity amplitudes are written as

1

2'i'(W) =— dx q iP, (x),
2 -1

T~&(W) ='-dx p2P, (x),
2

T3'(W) = d* LjP/+i(x)+(2j+1)P/(x)+ U+ )P -i(x»
2(2j+1) i 1+x

(BS)

T4'(W) =
1 p4

LjP+i(x) —(2j+1)P (x)+(j+1)P-i(x)7
2(2j+1) i 1—x

Lj(j+1)7"'
Tg'(W) =

2(2j+1)
+5

dx LP, i(x)—P;~i(x)7,
(1—x')"'

Ej(j+1)7"' '
v

T6'(W) = dx
'

P,+i(x) —P, ,(x)7.
2(2j+1) i (1—x')'/'

The partial-wave helicity amplitudes T7&(W) and T8& '(W) (necessa'ry for the AZ' and Z'X channels) take a
form identical to T8'(W) with the obvious change of subscripts.

In a similar way, the independent unitarized scattering amplitudes (3.6) can finally be written in terms of
Legendre polynomials":

v i'= Z (2j+1)Ti"(W)P/(x),

q2' ——g (2j+1)T2' (W)P, (x),

T3'&(W) 1
~3'=2 . LjP+i(x)+(2j+1)P (x)+(j+1)P-i(*)7,

1+x 2j+1
T4'&(W) 1

w, '=Z Pj P;+i(x) (2j+1)P;(x)—+(j+1)P, i(x)7,
1—x 2j+1

p5 1

Lj(j+1)7"'LP-i(*)—P+i(x)7,
/=i (1 x2)&/2

T6'&(W)
~ '=Z Lj(j+1)7"'LP/+ (x)—P - (x)7

/=i (1—x')"'

(89)

'3 The explicit calculations were performed up to j=30.


