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Maximum Number of Collisions for Three Point Particles*
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A simple method of obtaining n,„, the maximum number of binary collisions for three point particles
with masses ns&, m2, and m3 interacting through zero-range forces, is presented. The result is that n js
the smallest integer greater than or equal to x, where cos(3-/x) =pmrm~/(rar+mp) (ms+m3)g'~'. (Here m3

is the smallest mass, and x&3.) Also, the magnitudes of the moments after any number of classically
allowed collisions are simply expressed in terms of the initial momenta.

Two other sets of xnomenta, (ps, qs) and (ys, q3), are
obtained by a cyclic interchange of subscripts in (1).
The nonrelativistic kinetic energy Ho is easily written as

Hp=jpp/2mr+ks'/2ms+ks'/2ms ——p +q
3= 1,2,3. (2)

These three sets of momenta are linearly dependent on
each other, as can be seen from

and

P1= —A 3P2—83gg q

q1= $3P2—A 3/2

Ps A 391++pql y

g2= —83Py—c4 3/1 ~

(3)

(5)

* Supported in part by the U. S. Atomic Energy Commission.
t Current address: Laboratory for Theoretical Studies, NASA-

Goddard Space Flight Center, Greenbelt, Md.
f National Academy of Sciences—National Research Council,

Resident Research Associate.
'M. Rubin, R. Sugar, and G. Tiktopoulos, Phys. Rev. 146,

113Q (1966).

166

~ ~

E present below a simple method of obtaininge, the maximum number of classical binary
collisions allowed by energy and momentum conserva-
tion for three point particles of arbitrary mass. Pre-
viously, only an upper bound for e „has been ob-
tained. It is of some interest to have n, in solving
the Schrodinger equation using the I'addeev equations
because the eth iterated kernel of these equations is
not compact for e&m . It is also interesting because
the nonrelativistic conditions for Landau rescattering
singularities are identical to the conditions for classically
realizable rescattering of point particles. Hence, those
singularities involving only three particles appear in

diagrams in which e binary collisions occur, where

e&nm~.
We work with three particles with masses m1, A&2,

and ms and with 1nornenta k1, ks, and k3. We shall use
the following linear combinations of the momenta in

the center-of-momentum system:

yr ——(mpks —msks)/[2msm3 (ms+ ms) j
q, =[—1„(m,+m, )+m, (k,+k,)$/

[2mr(ms+ms) (mr+ms+m3))'". (1)

where

A, = [mtms/(m1+m3) (ms+ms)g' '
83 [ms(——mt+ms+ms)/(mt+ms) (m, +ms)$' ' (7)

Ass+833=1. (g)

Note that these relations depend on only one param-
eter containing the masses. We shall use superscripts
in parentheses to indicate the number of collisions that
have previously occurred; for example, p&(4) is the
relative momentum of particles 2 and 3 after the fourth
collision.

Because we consider only point particles with zero-
range interactions, all momentum vectors except the
initial and final ones must be collinear. If any collision
deQects the momentum vectors of the two colliding
particles away from this collinear axis, clearly no further
scattering can occur. This restriction is not valid in
the case of hard-sphere scattering where additional
collisions are allowed. '

We 6rst consider the sequence of collisions in which
particle 3 bounces back and forth between the two other
particles. (I.ater, we show that the maximum number of
collisions occurs when ms is the smallest mass. ) In each
of these elastic collisions, the relative momentum of the
two particles involved changes sign; i.e.,

y('+1) p(i)

If we look at the momentum coordinates before the
anal collision, we see that the existence of this collision
is determined by the sign of the relative momentum of
the two particles involved. Hence, one condition for
maximum rescattering is that this momentum be zero.
We now consider the time-reversed sequence of events
and start with p("=0 and g(" of arbitrary magnitude.
Upon following the sequence of successive scatterings,
we arrive at a configuration in which two particles are
receding from the third and also from each other.
Obviously no further scatterings are possible. The
limiting condition for the existence of the Anal collision
is again that the relative momentum of the two par-
ticles involved be zero.

Consider the initial system in which particles 1 and 3
have almost zero relative momentum after their erst

' G. Sandri, R. D. Sullivan, and P. Norem, Phys. Rev. Letters
13, 743 (1964).
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collision. Let particle 3 be the particle in the middle on
a collision course with particle 2. We choose the positive
direction of our scattering axis to be the direction of
the initial vector q2"). Let j be a unit vector in this
direction. The conditions for no further scattering
the (qi,pi) system are

y, =c~j ) c,&0

Im[(As+iBs)")=0. (24)

Solving (23) and (24) for As given n is equivalent to
ending the cosine of a complex unit vector whose eth
power is —1. The solution is

Let us consider the equalities in (10) and (12). Both
may be written as

q& ——d&j, dz+0 As&"'= cos(m/n+2mn. ). (25)

and in the (ps, qs) system

p2=c2j ) c2

q2 ——d2 j, d2&0.

(12)

(13)

All solutions except m=0 can be excluded by requir-
ing themasses be positive and that the (n —1)th collision
be allowed; i.e., A 3&"'&0 and A 3'"'&A 3&" '&. Hence the
solution is

As&"&=cos(n/n).

We now express p&"& and q'"& in terms of p"& and
q«& by induction. From (3), (4), and (9), we have

p, l»= —A, (—p, «&)—B,q, «&=Re(A, +iB,)p, «&

—Im(As+iBs)qs "&, (14)

q, '»=B, ( p, «&) —A, q, «&= —Im(A, +iBs)p, ~'&

—Re(As+iBs)qs«&, (15)

where the expression As+iBs is introduced to simplify
notation. From (5), (6), and (9), we have

ps "&=—As( —pi "&)+Bsqi&'&=Re[(As+iBs)')ps«&
—Im[(As+iBs)'jqs«&, (16)

q, ~'&= —Bs(—p, &'&) —A,q, &'&= Im[(As+iBs)')p, «&

+Re[(As+iBs)'jqs"'. (17}

From (3), (4), and (9) again, we have

Pi's& ——Re[(As+iBs)'~P, "&—Im[(As+iBs)'$qs«&, (18)

q, "& = —Im[(As+iBs)')ps& & —Re[(As+iBs)'jq, «'.
(19)

If we assume that (14) and (15) are true for the super-

scripts and powers increased by n, then we can show

that (16) through (19) are true for the superscripts and

powers increased by e. Hence

pl"&= Re[(As+iBs)")ps«& —Im[(As+iBs) jqs«&,
n= 1,2,3, (20)

qi'"&= —Im[(As+iBs)"jPsf ' —Re[(As+iBs)"]qs's&,
n= 1,3,5, (21)

If A3)A3'"), at least one more collision is allowed
since the final two-body relative momentum is then
finite and of the appropriate sign. 33&"~ is thus the
limiting case of n, =n+1 collisions. If As ——As&"&,

only n, =e collisions are allowed since the 6nal two-
body relative momentum is then zero. Hence four
collisions are not allowed for three equal masses since
A3 ——A3"' ——COS3X = g.

We may also solve (26) for n given As. In this
case, e is the smallest integer greater than or equal
to x, where x=n/cos 'As.

We now set m3 ——1 and plot the results in the x, y
plane, where x=1/mi and y=1/ms. The boundaries of
the regions with diferent values of m ~ are given by
[As&"&)'=1/(1+x)(1+y), where As&"& is the nth
solution of (26). These curves are hyperbolas with
asymptotes x= —1 and y= —1. Some typical values of
As&"& and the coordinates of the point 1/mi ——1/ms are
given in Table I.A few of the curves are drawn in Fig. 1.

Since the boundary for e „=4 goes through the
points (x,y) = (1,0) and (0,1) we see that for two equal-
mass particles and one heavier particle, only four
binary scatterings are allowed. This is the case for
electron-hydrogen scattering. For E-d scattering,
m „=4;for x-d scattering, e ~=7; and for electron-
deuteron scattering, e =31. Of course, if m3 ——0,
+max= ~-

By examining all sequences of scattering, we now
show that the maximum number of binary collisions

TABLE I.Typical maximum values of the mass ratio A3 [Eq. (7)g
and minimum values of 1/mi=1/m2 for a given n

Re[(As+iBs)")&0, n= 1,2,3, (23)

For n= 1, (23) cannot be satisfied. For n=2, Eqs. (12)
and (13) cannot be satisfied with the lightest particle
in the middle. Hence three collisions are always possible.

qs'"& ——Im[(As+iBs)")Ps's&+Re[(As+iBs)")q, «&.

n=2, 4,6, (22)

Setting p, «&=0, (11) and (13) require
4
5
6
7

10
15
20
25
30

0.707
0.809
0.866
0.901
0.951
0.978
0.988
0.992
0.994

1/mi=1/ms

0.414
0.236
0.155
0.110
0.051
0.022
0.012
0.008
0.0055
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occurs for the previously considered sequence of scatter-
ing in which the lightest particle scatters back and forth
between the two heavier particles. In order to include
the physical processes in which the particles can change
their order on the axis, we must generalize (9) to allow
for the possibility of forward scattering for each collision
in the scattering sequence; i.e.,

I.O

.8

4-

~(i+I) ~(i) (27)

Using cyclic permutations of Eqs. (3)—(8), we obtain

p, &"&= (Ref(Ai+iBi) '(A2+iB~)~'(A3+iB3)»fp2&"
Im—[(A,+iB,)» (A,+qB,)»

&& (A3+iB3)"'3v2"') (—1)"" (28)
and

q, &"'= (—)"ImL(Ai+iBi)»(A2+iB2)»
(A 3+iB3) &fp, &0&+ (—)"ReL(A &+iB&)+'

y (A,+iB,)»(A,+zB,) ~jq, ~'&, (29)

where X~ is the number of transformations between
the "2" and the "3" system. X2 and Ã3 are similarly
defined.

n= total number of transformations; j= 1, 2, or 3. (30)

E~ is the number of forward scatterings.
Starting with the "2" coordinate system, it can be

shown that if X», X2, and X3 are all odd or all even,
then j=2. If 1V i is odd (even) while E2 and 1V3 are
even (odd), then j=3. If 1Vi and 1V2 are even (odd)
while 1V3 is odd (even), then j=1.The combinations
(1Vi,lV2, 1V3) = (even, odd, even) and (1Vi,1V2,1V3)= (odd,
even, odd) are not allowed when the initial coordinate
system is the "2"system.

The conditions for no further scattering are similar
to Eqs. (10)—(13).The limiting conditions for no further
scattering are

Im((A i+ iBi)~'(A 2+iB2p'(A 3+iB3)NI) =0 (31)

.0 .4 .6
[/m&

1.0

FIG. 1. Regions of maximum number of binary collisions in the
1/m]. versus 11 m2 plane for ms =1. Points on the curves belong
to the region with the lower e, . For the point where all three
masses are equal, e~, =3.

and

Re[(Ai+iBi)»(A2+iB~)»(A~+iB3)»](0. (32)

The problem of finding the allowed values of X~,
X2, and E3, given the masses of the three particles,
reduces to finding all sets of (1Vi,lV2, 1V3) such that

1Vi cos 'Ai+1V2 cos 'A2+1Vg cos 'A3(m. (33)

If m3 is the smallest mass, cos 'A3 is smaller than
cos 'A& and cos 'A&. Clearly the maximum number of
scatterings allowed by (33) then occurs when 1V&——1V2——0
and 1VS attains its maximum. In this case, (33) reduces
to (26). Hence, maximum scattering occurs when the
smallest mass particle bounces between the other two
masses.

In general, p;&"& in (28) is not zero, allowing one more
collision. In this case, Eqs. (28) and (29) still express
the magnitudes of the Anal momenta in terms of the
magnitudes of the initial momenta. The 6nal q is still
either parallel or antiparallel to q&, and the direction
of the anal p is arbitrary, as is the direction of the
initial y2.


