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It is shown that if standard methods are used to apply the Regge-pole theory to relativistic problems in
which the external particles have nonzero spin, then there exist constraint equations which enforce relation-
ships between the residue and trajectory functions of the participating poles in the region ¢~0. The con-
straint equations follow directly from general quantum-mechanical principles and it is therefore essential
to satisfy them. Moreover, the number of constraint equationsincreases roughly as the fourth power of the
spin of the external particles. The structure of the constraint equations also differs radically according to
whether the #-channel process has equal-mass particles in both the initial and the final state or unequal-mass
particles in both the initial and the final state. A separate treatment of the various situations is given.
Several examples are worked out in detail: #N — #N, #N* — «N*, mp— wp, NN — NN, and pp — pp.
The discussion of the general case in which the external particles have arbitrary spins requires a slight
extension of previously given methods for the Reggeization of processes with spin. A very simple, and
completely general scheme for the Reggeization, and for the classification of the Regge poles involved,
is given. Finally, a discussion is given of the fundamental underlying group-theoretical origin of the con-
straint equations, and it is suggested that the necessity to satisfy them artificially represents a weakness
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in our present methods of applying Regge-pole theory to relativistic processes.

I. INTRODUCTION

N the past year it has begun to become rather ap-

parent that our present methods of applying
Regge’s original ideas, developed within the context of
potential scattering, to more realistic situations in-
volving the relativistic scattering of particles with
arbitrary masses and spins, suffers from a certain
naiveté. The appearance of several papers' pointing
out paradoxes, pseudoparadoxes and downright idio-
syncrasies in the predictions of and requirements on
the Regge-pole theory has borne witness to this
situation.

In the present paper, we shall show that there is a
class of constraints, the existence of which follows
directly from the general principles of quantum me-
chanics, which are automatically satisfied in any
“decent” theory but which appear in the Regge theory
in a very complicated and restrictive guise. These
constraints enforce relationships among the residues
and/or the trajectories of quite dissimilar Regge poles,
and lead to very powerful experimental predictions. It
was our original motivation to examine and explore the
phenomenological consequences of these constraints but
our present feeling is that the requirements are so
artifical, and even arbitrary, that it is much more likely
that their existence is simply a manifestation of a weak-
ness in our standard method of Reggeizing relativistic
problems.

Two classic examples of these constraint conditions
have already appeared in the literature.

* Supported in part by the Air Force Office of Scientific Re-
search OAR, under Grant No. AF EOAR 65-36, with the European
Office of Aerospace Research, United States Air Force.

t Present address: Department of Physics, Westfield College,
Kidderpore Avenue, London, N.W.3, England.

! M. L. Goldberger and C. Edward Jones, Phys. Rev. Letters
17, 105 (1966); D. Z. Freedman, C. E. Jones, and J. M. Wang,
Phys. Rev. 155, 1645 (1967).
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(i) In backward wN scattering, in which the ex-
changed Regge poles are fermions, Gribov ef al.? showed
that the Regge poles have to occur in pairs of opposite
parity, with trajectory functions a(#) which intersect
at u=0.

(ii) In the theory of nucleon-nucleon scattering it
has been known for a long time® that some of the
t-channel helicity amplitudes are related to each other
as {— 0, namely, in the notation of Ref. 3,

fl—ztf4——f3~t as t—0. (1)

Since the f; receive contributions from various types of
Regge pole, Eq. (1) enforces a relationship amongst the
trajectory functions and residue functions of dissimilar
Regge poles. The consequences of Eq. (1) were partially
analyzed by Volkov and Gribov* some time ago, but for
inexplicable reasons their work seems to have passed
unnoticed. More recently, Durand® has reexamined
Eq. (1) and discussed alternative methods of satisfying
it.

In both the above examples, the results quoted are
reached by means of a study of the relationship be-
tween the Regge-pole trajectory and residue functions,
and the invariant functions (4, B in #N; Fg, Fy, Fr,
F4, Fpin NN) used in the epxression for the scattering
matrix of the process concerned. It is the assumed
analyticity of these invariant functions, i.e., their non-
singular behavior at =0 or #=0,% which leads to the
above results.

2V. N. Gribov, L. Okun’, and I. Ya. Pomeranchuk, Zh.
Eksperim. i Teor. Fiz. 45, 1114 (1963) [English transl.: Soviet
Phys.—JETP 18, 769 (1964)7.

3 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).

4¢D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 44,
%09683) 51963) [English transl.: Soviet Phys.—JETP 17, 720
1963)].

5 Loyal Durand, III, Phys. Rev. Letters 18, 58 (1967).

6In a theory with exchange of mass-zero particles, this would
not be true.
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Since the Regge poles which contribute to the above
process also contribute to a vast number of other pro-
cesses, it is of great importance to inquire as to the
existence of analogous equations of constraint in other
processes, and as to whether the conditions imposed on
the Regge-pole functions in satisfying, say Eq. (1), are
sufficient for, or even compatible with, the conditions
demanded by these further constraint equations.

There is little hope of discovering or studying con-
straint equations in general by the methods used in
the 7V and NN cases since to begin with one has little
idea of how to go about formulating the decomposition
of the scattering matrix into invariant functions. How-
ever, the clue to an alternative method emerges when
one realizes that the particular combination of #-channel
amplitudes occurring in Eq. (1) has a very simple
significance. It is just that combination of f-channel
amplitudes which for £~ 0is equal to one of the s-channel
NN — NN helicity-flip amplitudes, i.e.,

fi—afi—fa=¢s for i=0, 2
¢i={(+3—3[d|—3+3)

in the notation of Ref. 3. The behavior demanded in
Eq. (1) is then just a consequence of the kinematical
requirement that for § — 0, (where 6 is the s-channel
c.m. scattering angle)

where

¢4 « sin?(36)
. )
The constraint (1) is thus an immediate consequence of
the conservation of angular momentum and of the fact
that for processes of the type my+me— mit-mq, 0 is
proportional to ¢ for small 8. In this form the generaliza-
tion to processes involving particles of arbitrary spin is
fairly straightforward, and will be dealt with fully in
Sec. IV.” We mention here only that one finds a vast
number of constraint equations; their number going
up roughly as the fourth power of the spin, for ex-
ample, in processes like fermion-fermion scattering.

In processes analogous to backward (# small) =V
scattering, which we prefer to describe as forward (¢
small) processes of the type m+tme—: mgtmy,
(m15£ms), the point =0 does not coincide, at finite
energies, with the point {=0, so that the above method
is not directly applicable. Nevertheless, one finds that
a very similar approach, using the properties of the
crossing matrix, suffices. One also finds constraints
analogous to (1) at #~0in all processes of type #;-+m5—>
me—+my, mi%£ms even when the exchanged Regge pole
is bosonic. The precise description of this situation and
the differences between the fermionic and bosonic cases
are dealt with in Sec. III.

7 In the course of preparation of this manuscript we received a
copy of a paper by E. Abers and V. Teplitz [Phys. Rev. 158,
1365 (1967)] which applies rather similar methods to the question
of the Reggeization of field theories.
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Since the same Regge poles which contribute to pro-
cesses like #my4-my— mi+mo will also contribute to
processes of the type mi-+ms— me+-my one is again
faced with the question of compatability: Are the pro-
perties enforced on the Regge-pole functions by con-
straints arising in the first type of process automatically
compatible with the properties enforced in the latter
type of process? The answer to this question depends
to some extent on the fact that the constraint equations
do not lead to unique statements about the Regge tra-
jectories and residues, and there is an element of
arbitrariness involved in our choice as to what pro-
perties we shall consider acceptable.

Basically we shall divide the solutions of the con-
straint equations into three main types.

(a) Conspiratorial: If the constraint equations are
satished by demanding a relationship between the
Irajectories of different Regge poles, (i.e., poles with
different internal quantum numbers), we shall say
there is a conspiracy among them.

(b) Evasive: If the constraint equations can be
satisfied without demanding a relationship amongst
trajectories, but simply by enforcing certain conditions
on the residue functions, then we shall say that a con-
spiracy is evaded, and shall refer to the situation as
evasion.

(¢) Daughterlike: 1f the constraint equations are
satisfied by demanding the existence of sequences of
Regge poles with the same internal quantum numbers
but different trajectory functions then the solution will
be called daughterlike.®

There always exists the possibility that the Regge
poles can satisfy the constraint equations by decoupling
themselves completely from the process at {=0. This
is a rather unacceptable situation which we shall refer
to as trivial evasion.

In this paper we show the following:

(1) For bosonic poles or poles of even fermion
number it is never necessary to have a conspiracy. The
conditions, which lead to the necessity for the existence
of pairs of opposite parity fermion trajectories, are
automatically satisfied by the requirements of the
factorization theorem when the poles are bosonic or of
even fermion number (Sec. III).

(ii) The constraint conditions analogous to (2), for
the case of arbitrary spin, do not require a conspiracy
and can always be satisfied by a nontrivial evasive
solution. This result is valid fo all orders in s, and leads
to s-channel amplitudes whose contribution from each
Regge pole has a behavior in ¢ as ¢ — 0 which is factoriz-
able for all s (Sec. IV).

(iii) In any process the leading term as s — <« of the
contribution of each Regge pole to the s-channel

8In a conspiratorial or daughterlike situation it may also be
necessary to enforce some conditions on the residue functions.
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helicity amplitudes has the behavior

feasap® o illo—clHib=dD a5 {0

in the absence of conspiracy.

Although conspiracy is not necessary, there is no
obvious reason why it might not nevertheless occur.
We have been unable to solve the general problem of
compatibility for conspiratorial solutions. It does seem,
however, from looking at examples, that the standard
conspiratorial solution used in the NN problem* will
not work in other cases. This, we feel, is very reasonable
since if there are conspiracies the NNV process ought not
to be a good place to find them since only three of the
four possible types of Regge pole can occur in nucleon-
nucleon scattering. In this paper we have looked only
at conspiracies of the parity doublet type, and the
relevant behavior of f.4;45'® is given in Eq. (68).

The question of daughter trajectories is not dealt
with in detail here, and a brief discussion of their role in
equal-mass constraints, where they can provide an
alternative to the evasive solution, is given in Sec. VI. A
critique of the group-theoretic approach® to the con-
straints at ¢=0 is given. The proof of the uniqueness of
the Lorentz-pole hypothesis!® is questioned, and the
general problem of group theory for unequal-mass
processes is touched upon.

From the various solutions there follow very striking
experimental consequences. For the evasive type, large
numbers of amplitudes vanish or get related to each
other for ¢{=0. For the conspiratorial and daughter
types, one is predicting the existence of hitherto un-
identified Regge trajectories which ought to manifest
themselves as particles and resonances. Thus if one
continues to take the Regge-pole model seriously, one
can hope to distinguish between the types of solution
experimentally.

In what follows, we shall make use of the concept
of the kinematically normal behavior (k.n.b.) of an
amplitude. It is defined as the most singular behavior
an amplitude may have consistent with the finiteness of
all experimental parameters. It is this behavior which
is yielded for example, by Wang’s analysis of singularity-
free helicity amplitudes.!! In practice, however, in any
dynamical theory the actual behavior of amplitudes
may differ from their k.n.b. (For example, k.n.b. is not
consistent with the factorization theorem.) Whenever
this is so, there will always be some experimental con-
sequence. Some analysis in this direction has been
carried out in Wang’s later paper.!!

In Sec. IT we discuss the kinematics and crossing
properties of an arbitrary mass scattering process. With

9 A. Sciarrino and M. Toller, University of Rome, Internal
note No. 108, 1966 (unpublished); M. Toller, Nuovo Cimento 37,
8631 (1965); D. Z. Freedman and J. M. Wang, Phys. Rev.
Letters 18, 863 (1967).

10 J. Finkelstein and J. M. Wang, University of California Radia-
tion Laboratory Report No. UCRL-17500, 1967 (unpublished).

1 Ling-Lie Chan Wang, Phys. Rev. 142, 1187 (1966); 153,
1664 (1967).
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Fic. 1. Definition of the scattering channels.

only minor modifications, we shall follow the notation
of Ref. 11.

In Secs. ITII-V we study the constraint equations for
processes of the type mi+ms— ms+ma with mi=£ms,
MaFEma; Mmitmy— maitme and  matme— my+ms,
me#ms, respectively. Several examples are worked out
in detail.

In Sec. VI we consider the group-theoretic approach
to the constraints at {=0 and in the final section (VII)
we attempt to discuss at a more fundamental level the
origin and cause of the constraints and their implications
for the Regge theory as presently interpreted. We com-
pare the situation at =0 in the Regge-pole theory with
the simpler case of elementary particle exchange. Some
remarks are made which may be relevant to recent
attempts to generalize the concept of Regge poles.?

II. KINEMATICS, CROSSING,
AND REGGEIZATION
A. Kinematics
We consider a scattering process
A+B—C+D

involving particles of arbitrary mass ma, mg, ---,
arbitrary spin s4, sg, - - -, and four-momenta p, ps, - - -
The physical process takes place in the s channel (see
Fig. 1) and the ¢ channel is defined as the process

D+B—C+A,
with the definitions
s=(patps)?
and )
t=(pa—pec)*.

The first particle on either side of a reaction formula is
to be treated as “particle number 1,” in the sense of
Jacob and Wick,!? when defining helicity amplitudes.

Following Wang!! we define s-channel helicity ampli-
tudes fea;ap(s,8), which are related to the Jacob-Wick

12 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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helicity amplitudes as follows:
fea;as® (5,8) = 2w (spen/p aB) Y * fea;ap 2> WiR) - (5)

Subscript @, b, - - - refer, of course, to the helicities of
particles 4, B, ---, etc.,, and pap and pep are the
magnitudes of the c.m. momenta of particles 4, B, and
C, D.

In an analogous way we define f-channel helicity
amplitudes f.a.a5(¢,s), where @, d are the helicities of
A, D the antiparticles of 4 and D.

In the c.m. system of the s channel, with scattering
angle 6, defined as the angle between 4 and C, we have

cosfs= (1/ 845 Scp)[2si+s2—s > m?
+ (ma?—mz?) (mc*—mp?)], (6)

8= [s— (mi—m;)*][s— (mi+m;)?] Q)

with
and
2 mP=m g mp*-me*-mp?. @®)
We also have for the c.m. momenta
piit=(1/4s) 8;52, ji=AB or CD. 9)
The physical region for all three channels is given by

#(s,0)>0, (10)
where

o(s,0)=st( > m*—s— ) —s(mp>—mp?) (ma2—mc?)
— t(mA"’—m32) (mCZ— mp2)— (mAszz—mgzm&)

X (mA2+mD2—mB2— mcz) . (11)
In terms of ¢ we have
sinf,=2[s¢(s,£)1'*/ 8488cp, 0L60,<w. (12)

In the c.m. system of the / channel, with scattering
angle 6, defined as the angle between D and C we have

cosb,=(1/TzcTpp)[ 2st+ 12—t m?

+ (mp2—mz?) (me*—ma?»], (13)
with
Ti?=[t— (mit+m;)* | t— (mi—m;)?] (14)
and _ _
pit=(1/4)T:2, ij=AC or BD. (15)
Finally,
sinf,= 2[#p(s,) ]2/ T2cT 85 - (16)

B. Crossing

The helicity amplitudes of the s and ¢ channels are
related to each other via the crossing matrix of Trueman
and Wick?® as follows:

fcd;ab(a)= Z Mca;dbc,i’;a'b,fc’ﬁ’;a’ v ® ’ (17)
a’b'c’d’
where
Mmdbcla,;a’ V= dc' csc(XC’)dﬁ'asA (XA)
Xdaa*?(Xp)dys'2(Xp) ; (18)

13T, L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).
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and the angles X are given by?

cosXa=(1/ 84pTac)[— (s+ma2—mp?) (t+ma2—mc?)
—2ma(me?—ma®+mp?—mp? ],

cosXp=(1/ 845T55)[ (s-+mp:—m42) ({+mp2—mp?)
_2mB2(m02__mA2+mB2__mD2)]’

cosXe=(1/ 8¢pTac)[(s+mc?—mp?) (t+me2—m4?)
— A (met—m At mpi—mpD)],

CosXp= (1/ SC’DTBI))I:_‘ (s+mp2—mc?) (t+mD2—mB2)
_szZ(mCZ_mA2_I_mB2_mD2):| ,

19)

or, in terms of ¢(s,?),

SinXA= 2mA\/¢(s,t)/ SABTZC,
SiIlXB= 2m3\/¢(s,t)/ 5ABT31') )
sinXe=2me\/¢(s,t)/ SepTac,
sinXp= 2mD\/¢(s,t)/ ScpTBH.
We shall be interested in the behavior of 8;, 6, and the
X; as t— 0. It is clear from the above equations that
this behavior will be a sensitive function of the masses
involved, and we shall therefore handle the analysis in

three distinct sections for the cases ma==mc, mp=mp;
ma=mg, mp=mp; and ma=me, mp=mp.

(20)

C. Reggeization

The Reggeization of arbitrary spin processes has
already been discussed in the literature.!*1®* We shall
essentially follow the method of Gell-Mann ef al.,
though we shall make some minor generalizations to
their formalism. To begin with, in order to classify the
Regge poles, we introduce a new operator

(21)

where P;; is the exchange operator of Jacob and Wick!?
and 7; is the intrinsic parity factor for particle 7, and
construct normalized eigenstates of angular momentum
J, parity P, R;;, and helicity:

| J; >‘5)‘f; P}p> = 2[(1 + 6)\:' ,)\j) (1 + 6)\; ,—-)\j)]—l 2
XALT s M)+ pp] T 5 = Nj— Ny pnamj(— 1) ss+si—

Rij=nim;Py;,

XL =M=+l TA00 T}, (22)
where
v=0 for J integral
=1 for J half-integral ,
and

p==1, p==£1.

These states are correctly normalized to one, and have
the property that

P|T;\Nj; poy=p(—1)7= T ; \iNj; p,p)

Rii| T3 Ndj; pp)=p(—1)7=2| T;MaNjs pop). (24)

14 M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, B145 (1964).

16 F. Calogero, J. Charap, and E. Squires, Ann. Phys. (N. Y.)
25, 325 (1963).

(23)
and
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TaBrE I. Allowed states |J; \\;; 2,0) for FF, BB, and FF systems. Note that (i) A\; means \;7\; and N7 —\;;
(i) states with A;=X\;=0 are shown separately.
o b FF BB FF
+ + NiNj G(—1)T=(—-1)7 AiNj T+4J even NiNj T+J even
NN AN A —N
N —N\; A —N\;
00
— NiNj NiN; NN
AN AiNg
- + NN G(—1)T=—(~1)7 AN T+7 odd AN T+7J odd
NN
- i AN NN
N —Ng N —Ni AiNi
N—N

Note that when m,;=m; we have

R;;=P;; for BB and FF systems
=—P; forF F systems.

Also we have that R;=G(—1)T or C(—1)T when
these are applicable. Thus R;; is a conserved operator.
Since J is conserved we see that the quantum numbers
p, and p are individually conserved.

(If C or G are not applicable, e.g., for fermionic poles,
or unequal-mass cases, we simply ignore p and deal with
states obtained from (22) by formally putting p=0).

The quantum numbers p, p together with baryon
number, isotopic spin and signature (r) provide a con-
venient labelling system for arbitrary Regge poles. In
Table I we list the allowed helicity states for various
values of p and p for the cases of FF, BB, and FF. The
situation for other systems, e.g., F1Fs, where F; and F,
are different fermions, is easily deduced. The restric-
tions arising from the generalized Pauli exclusion
principle would no longer apply.

We now introduce modified
amplitudes!*

Feas20® = (V2 coslf,)~14@0+ACD)]
X (V2 sindf,)—14@»=AGea) £ o 2,0 |

{-channel helicity

(25)

where A(c@)=c—a, etc., and take combinations of them

to form “parity symmetry conserving amplitudes.”

fcﬁ;ib(t)(j’yp)_: [(1+5«711)(1+642—b) (1+6cﬁ)(1+56—5)]_”2
X {fcﬁ;fib—}_PPf—-E-_—c;ab'i"PnC’nz_(— 1)SC+SA—D
X (“' 1) Awb)“""[f——c—ﬁ: at prﬁc: dE]} ;

An=max{|A(db)]; |A(ca)[}.

(26)
where

These amplitudes have a partial-wave expansion
involving the functions ¢/#(6) introduced in Ref. 13.

. ™/t .
Jea;av @ (p,p)=————— 22T+ 1)[{c@| T?(p,p) | db)
(poBpac)'? 7
Xea@n, acea’T(0)+{ca| TV (—p, —p)|db)

Xeram.aen’ (0], (27)

and are thus dominated by the Regge poles in 77(p,p)
as 2;=cosf; —.

Equation (27), because of its good analytic proper-
ties, is the most suitable starting point for the Sommer-
feld-Watson transform and the Reggeization procedure;
and this is carried out exactly as described in Ref. 14
so we shall not discuss it any further here.

However, it is sometimes more convenient to deal
directly with the unmodified #-channel helicity ampli-
tudes, and we shall note here a very useful formula for
the partial-wave expansion of certain linear combina-
tions of them. For arbitrary coefficients 4, B, C, D we
have

Afcﬁ;Jb(t)+Bf-c—E;312(‘)+Cf—ﬁ-—c;3b(t)+Dfﬁc;ab(t)
=—————X3[(1+6a:) (1+6a-.) (146as)
(pacpps)'’®
X(1+6a-0) ]2 XE ; 27+ 1)L(A+20C)
D

Xda@w sy (00)+ prena(—1)setea=r

X (B+ppD)da@v)—a(ca? (0:)]
X{ca|T7(p,p)|db).  (28)

The Reggeization of Eq. (28) then leads to the formula

Afct_z;Jb(t)_I_Bf—c—?i;Eb(l)—I_Cf—-ﬁ-—c;ab(t)_’_Dfﬁc;Eb(t)

T/t 1

= (—1)1Hoa@e) ~[(1463.)(146a—0)
(poappe)’?4

X (1408as) (14+62—p) 112X 22 [2a(pyp,7)+1]

P.pT
X & eman(p,p, ) (A4 ppC)dA @by 1~ ey PPV (—21)
+pnena(—1)scte4a*(B+ppD)
Xdraw aean* @ (—2)], (29)

where the sum runs over all Regge poles. Here {, is the
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usual signature factor
14 reinla@.p,r)—1]
$r=— .
2 Sln#[a(ﬁ,p, T) - 7”]

The residue functions 7(p,p,7;#) are the unmodified
residues of 7'7(p,p) at the relevant poles in the J plane.

(30)

III. PROCESSES WITH ms#*mc¢; me¥=mp

Here the i{-channel process is of the type (unequal-
mass pair) — (unequal-mass pair) and we shall thus
denote it as a UU process. We wish to investigate the
behavior of the modified ¢-channel amplitudes f® as
t— 0 in order to deduce properties of the Regge poles
in this region.

It is assumed that the f®(zs) are functions whose
analyticity in s is comparable with the Lehmann ellipse
analyticity of the spinless case. If we define analogous
modified helicity functions in the s channel as

Fedian® = (VZ cosk,)—IAan+ACcd)]

X(\/Z Sin%os)_lA(ab)—A(‘:d)‘Xfcd;ab(s) ) (31)

then the f®(s,f) will have a region of analyticity in ¢
comparable with the Lehmann ellipse.

Using (25), (31), and the inverse of (17) we can
relate the f® to the f® getting

Fezas® = (V2 coskf,)14@0)+ACDI (V] sinkf,)—IA@0)-AlD)]
XMc'd"a’b’ca Eb(\/z COS%BS)'A(a'b,)-FA(C'd')I
X (VZ $ing6,) 4@ =4 D oy 00 @ (32)

Now as { — 0 we see from (13) and (16) that

1) I ma>me; mp>mp or ma<mg; mp<mp then

6, f”2, (33)

so that

cosf, — 1 (34)
and

sinf, o 1172,

(1) If ma>mc; mp<mp or vice versa, then

0;—m o< 112 (35)
so that

Cos30, o {172
and

sin%@; — 1.

All the other functions occurring in (32) tend to un-
exceptional limits as £ — 0. We thus find that for case (i)

Fea;ap®@=0(HA@0—AGCD) | (36)
and for case (ii)
foamsap® =0t HA@OFACDI) 37

The behavior of the f® as {— 0 could of course be
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much less singular than
(—HA@B)—A(E)]|

or
[~ HA@b)+A(ed) |

since there could be subtle cancellations in the summa-
tion involved in (32). However, their behavior cannot
be more singular. We shall refer to this most singular
allowed behavior as the kinematically normal be-
havior (k.n.b.) of the amplitude.

From Eq. (26) we have for the parity-symmetry con-
serving amplitudes that

Jea,a @ (p)=Fit pnona(—1)sc+4—

X (—1)Aed+ g, (38)
and
fea;a6® (= p)=F1— pnena(—1)sctea—s
X (_ 1)A(ab)+)\mF2 , (39)
where for case (i)
Fy=0(H4@»=2ca))
_ (40)
Fa=0(t-HA@+aGa])
and for case (ii),
Fy=0(tHa@+acaly
- (41)
Fo=0(tHA@)~Aca1),
It is thus clear that unless
A(db)=A(ca)=0, (42)
we will always have
fcﬁ;(?b(')(P)=:!:f‘cﬁ:ab(”("'ﬁ) as t—0. (4:3)

The result can be stated more precisely as follows.
Define

sm=sgn[ (ma—mc)(mp—mp)],
sa=sgn(|A(db)—A(ca) | — |A(db)+A(ca) |),

A=| M@ M)~ la@+A@] | Y
=2min{|A(d0)]; [A(ca)|}.
Then
Jea:ao® (p) = smsafea,as® (= p)[1+0()],  (45)
and the k.n.b. is
Feaap®(p) o HIA@DHIACDD) | (46)

Let us now examine the effect of this behavior on the
parameters of the Regge poles. From (27) and the
known properties of the e¢/* functions, we deduce that
the k.n.b. for the residues of T7(p,p) is

7em av(p,p) & Pm—a @) HIA@D) A (@) 1)
as t—0.

7

['There is, of course, the well-known problem of how to
use Regge theory at =0 in UU-type processes, but all
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known methods, daughters or no daughters, lead to
Eq. (47).] i

Now suppose that as s =0, f®(p) is dominated by
some Regge pole with trajectory function a(p,p). Then
Eq. (45) demands either of the following:

(@) There is a conspiracy, i.e., there exists a second
Regge pole with quantum number —p (and therefore
with opposite 7P), whose trajectory is such that

a(p)=a(—p) at =0, (48)
and whose residues satisfy
Yeaan(P)=SmSarca.an(—p) at t=0. (49)

(8) A conspiracy is evaded, i.e., there is no need for
the second Regge pole, but in order to satisfy (45) the
residues have to behave less singularly than theirk n.b.
by a factor ##A. In this case the Regge pole effectively
decouples from all states with As£0. It thus remains
coupled to states which have

|A(dB)—A(ca)| = |A(dD)+-Alca@)]| ,

i.e., states for which A(db) and/or A(cd@)=0.

Hence if there are no states satisfying (50), then a
Regge pole seeking evasion would completely decouple
itself from the process at {=0. But this is precisely the
situation when the ¢ channel has odd fermion number,
e.g., is of the type F+ B — B+F. Thus fermionic poles,
i.e., poles with odd fermion number, must conspire if
they are to avoid total decoupling. This is just the
result of Gribov et al.2 in a more general guise.

Putting aside the extremely unpalatable alternative
of total decoupling, we thus conclude that (a) fermionic
poles must conspire and their residues can have k.n.b.;
(b) bosonic (and even-fermion number!®) poles have
the choice of conspiring or avoiding conspiracy at the
expense of decoupling partially from the process at
t=0.

However, this is not the final picture since we have up
to now ignored the consequences of the factorization
theorem. If we concentrate on a given process then
the factorization theorem imposes relationships amongst
the various residues of a single Regge pole, in the form

N

where ¢1, ¢s, ---, etc., refer to the different helicity
states of particles C, - - -, etc.

If we substitute into (51) the k.n.b. for the residues
at =0 we see that it is not satisfied in general. For we
would require, e.g.,

max{|A(dib1) ], |A(c1G1) | }+max{|A(deb2)| , |A(cade) |}
= max{ ‘A(C1a_1) l 5 |A(d2b2) l }
+max{|A(dib) ], |Alcda) |}, (52)

which is not true in general. Thus the k.n.b. as given
by Eq. (47) is not compatible with factorization.

(50)

Veyay; a7 cadp; daba ™ Ve1a1;d9bo7 cp@a; dy by

16In what follows, bosonic will also include even-fermion
number.
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To see what the most singular behavior is compatible
with factorization, we consider the simple case ¢1=d;,
ay= bl, Co= dz, Go= b2.
For the terms in (51) we now have

o 1t (53)

T eyay; e1@y? coiiy; oty
and

7’0151;02522“ 1= ([ ACe1@) [+[ A(e2@2) [+1) g2[max{| A(e1@1) | .| Ae2a2) |} —e] ;
and since this has to hold for all ¢:d, c.ds we see that
the simplest consistent solution is to take

Toa;ap « HUACDIHA@DI-1=20] for hosonic poles (54)
and
Toa;ap & HIACDIHIA@D =22} for fermionic poles. (55)

Let us now compare this behavior with the k.n.b.
given in (47). We have

7ea,ap < M2 Xk.n.b., for bosons (56a)
and

Tea;ap < PM%12Xknb., for fermions.  (56b)
But Eq. (56a) gives precisely the behavior specified in §
in order to evade a conspiracy. Thus for bosonic poles
the above simple choice of residue behavior guarantees
compatibility with evasion. We thus conclude that there
1s no need for conspiracy in the case of bosonic or even-
Sfermion number poles.

On the other hand, for fermion poles the behavior
demanded in (56b) is not strong enough to satisfy the
requirements for evasion. We thus reinforce our earlier
conclusion that fermion poles must conspire; or totally
decouple from the process at {=0.

The above behavior leads to interesting experimental
consequences.

To see these we consider what effect the behavior
(54) and (55) has on the s-channel amplitudes. We have
not been able to find any simple result for arbitrary s,

but if we keep only the leading term in s, then from (19)

cosXa=1Ft/ | med—ma?|,

57
cosXg= =1t/ |me—m4?| , S
according as m¢*—m4?=0; and
cosXp= 11/ |mp*—mp?|,
l l (58)

cosXp= 1F1/|mp?—mp?|,
according as mp*—mp?=0. Thus if mc>—m42=0,

Xa= (2t [mcP—my?|)12,

Xo= (—2t/|mc>—m 42| )V
or (59)
Xa=m— (21/‘7}'1«02”‘1%,;2[)1/2,

Xe~m— (—Zt/lmcL-mA?[ )Lz,
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and if mp?— mpi= 0,

Xp= (=24 | mg*—mp?|)12,
Xp= (2t/|mg*—mp?|)'*
or (60)
Xp=w—(—21/ |mp*—mp?| )2,
Xp=m— (21/'7”32—‘1%1)2[)1/2.

In what follows, it makes no difference whether the
X approach zero or m, so for simplicity, we shall con-
sider the case with all X*— 0 as t— 0.

Consider now dy,’(€¢) as e— 0. Expanding about
e=0, we have

2
ot (9= dns? O e, OO+, (61)

where

A7 (0)= p dru’ (€) | emo- (62)
eT
Now
dMJ(O) =0, (63)
and by the definition of the dy,” functions,
am dr
—dr T (&) =—(T,\|e~i¢v| J,u)
der Ap dér( ’ l | ’
=(\[(=iJy) e v |u).
So,
d’\u(r)J(O)z O‘l (—7:]1/)""">
=0 if [A—p|>7. (64)

Now substituting (54) into (29) we have, for t~0,
for bosonic poles

feasap® o fHUIACDIIAG@D] (65)

and putting this result into (17) and expanding each of
the d functions in the crossing matrix as in (61), and
using (64), we see that

Fea;ap'® o BUIAE@IHIAGDY (hosonic poles) (66a)

for no conspiracy.
For the fermionic poles we get

Sod;ap'® o 1A IHAGD -1} (fermionic poles). (66b)

[Equation (66) is true only for the leading term in s
as s—.]

Thus the Regge-pole theory leads to a highly re-
stricted spin structure as {— 0 in processes dominated
by bosonic or fermionic poles, and this results in many
interesting experimental consequences.!” The theory also
demands the existence of parity doublets for fermionic
poles and this too should manifest itself in remark-
able experimental consequences.

Although the simple solution (54) for the residue be-
havior eliminates the necessity for conspiracy in the
case of bosonic Regge poles, it is possible to find less

17 T. W. Rogers and G. C. Fox (to be published).
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simple factorizable behaviors for the residues which do
require conspiracy. For example, we could take for the
residues of each of two conspiring poles of opposite (p)

7 o5 ap o HUACD HIA@D) |—2M—1—2q)

for |A(ca)| and [A(dD)|>M,
Tea;ap & BUADII-200 for  |A(c@)| > M > |A(dD)],
Tegap o HUA@DI=1=2a)  for  |A(dD)| >M> |A(ca)],
Peasap o PHEM—1-2a)

for |A(dd)] and |A(cd)| <M, 67)

where M is a positive integer, and where the residues
must satisfy (49).

This leads to the following behavior for the leading
term as s—o of the contribution of a pair of con-
spiring Regge poles:

Let Amax=max{|A(ac)|; [A(db)|} and

Amin=min{|A(ac)|; |A(dD)]}.
Then

foa;ap® o AIAGIFAEDN HCuin—ID)  for N> M

for Amax=>M>Nmin
Fediap® o HIAGOTAED M3 0maxMmin) | fOr  Amax <M .

(68)

fcd;ab(s) o« t%lA(ac)+A(db)I+%)\m;n ,

This has the remarkable property that the non-spin-flip
amplitude is suppressed by a factor /¥, whereas the
amplitudes with Amin=M or 0 and Anax>M are allowed
to have their normal behavior.

This should be contrasted with (66a) where only the
non-spin-flip amplitude avoids suppression. The case
M =1 has been applied to several processes in Ref. 17.

IV. PROCESSES WITH mys=m¢; mg=mp

The {-channel process is now of the type (equal-mass
pair) — (equal-mass pair) and we denote it as an
EE process.

From Egs. (11) and (12) we note that as {— 0

sinf, o 1172, (69)
and it then follows from Eq. (31) that
fod;ap® o HIAGD=ACD] a5 §— (), (70)

The behavior implied by (69) is of fundamental
significance. It simply expresses the fact that in the
forward direction (8,=0 implies {=0 for EE processes)
no net helicity flip is allowed if angular momentum is to
be conserved. It therefore arises purely as a result of the
rotational invariance of the theory.

Since each amplitude f®) is expressed in terms of the
f® via the crossing relation (17) we see that for every
s-channel amplitude with nonzero net helicity flip
there will exist a linear combination of ¢-channel
amplitudes which has to vanish as {— 0 at a prescribed
rate. This will then imply constraints and relationships
among the {-channel amplitudes as ¢ — 0 and will, upon
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Reggeization, lead to relationships among the tra-
jectories and residues of the participating Regge poles.

In order to study these conditions quantitatively, it
will prove convenient to deal directly with the un-
modified helicity amplitudes f.q;4o® and fez;2,® and to
use Eq. (17) itself rather than its inverse which we have
been using up to now.

From (69) and (17) we thus have that whenever
| A(ab)—A(cd) | 0,

Z Mcabdc,a';d’b’fcrar-ar OFS {ilA(@b)—A(ed)]
a’'y ,c’d’

(71)

as (—0.

We shall refer to these as equations of constraint.

The equations of constraint are obviously not all in-
dependent since parity conservation, time-reversal
invariance, etc., reduce the number of independent
s-channel amplitudes, and constraint equations arising
from related s-channel amplitudes will clearly not
give independent information. Therefore, one would
conclude that there are as many constraint equations
as there are independent s-channel amplitudes. Strictly
speaking, in order to get the exact behavior of the
t-channel amplitudes one should then solve the whole
set of simultaneous equation (71) in the region {=0.
However, it will prove more convenient to introduce first
an approximate type of k.n.b. for the ¢-channel ampli-
tudes which gives their correct dependence on ¢ as
t— 0, but which does not guarantee that the Eq. (71)
are satisfied. It is thus a necessary but not sufficient
specification of the behavior as t— 0.

We obtain this behavior by studying the inverse of
(17) and picking out in the expression for feza,® the
most singular term as /— 0. We shall not go into the
details here since this is essentially the procedure
adopted by Wang!! in studying the behavior of f® at
t=0. However, it was not stressed by Wang that her
conditions, while necessary, are insufficient to guarantee
accord with the fundamental requirements of (70) and
(71). As before, we shall refer to this approximate, and
most singular behavior as the kinematically normal
behavior.

The k.n.b. may be specified as follows: Let

ncEJb= (nC"?D/T]A"]B)(_ 1)8A+SB+86'+8D(_ l)c—l-h'+c7+b. (72)
Then the k.n.b. is given by
ca;dp® — const  as{— 0, if p@¥=141,
Jomias ! (73)

feaap® e« tt? ast— 0, if y@db=—1,

In studying the constraint equation (71) it will some-
times happen that the k.n.b. specified in (73) is sufficient
to satisfy one or more of the constraint equations. If this
occurs, the relevant constraint equations do not carry
any further information.

There is another mechanism which complicates the
question as to which and how many of the equations
are information carrying, and this is connected with
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parity conservation. To see this we rewrite the left-
hand side of (71) as

157 ’
L= Mcadbc a%sa'y fc’d’;d'b' @

a’'b’,c'd’

% Z {Mcadbc,a,;a,b’fc/a/;a, ¥ (€2}

Il

a’y’,e’d
_I"Mmdb—c,—a’;—al—b,f—-c'—a/ s—d'—b’ (t)} . (74:)
Using parity conservation,
f—C’—E’;—E’—b‘: ’10(_ I)A(E'b’)—“c’a,)fc’ﬁ’ ;b (75)
where
nanc
Ng= (_ l)sc+sA~8D‘8B ,
NBMD
Eq. (74) becomes
Lo} 5 (MY AEIAC
XMcadb_u_a/;_a,_b’}fc’i';a' b’ Q) B (76)
Also since
A ' (X)=(—1)"#d),.*(r—X), (77)
we have from (18) that
Mcadb—c’—ﬁ’;~3'—b’ — (_ 1)sA+sB+sc+sD—a—b—c—d
Xdaro® 4(mr—X )y s*B(mr—Xp)dor *(m—Xc)
Xdaa*?(r—Xp). (78)

Now from (19) as ¢— 0 all the X — %x. More precisely
for small ¢ one has

X¢=%7r—7)ilf1/2, (79)
with
va=—vc=psp(1+vapl+--+)
and (80)
vp=—vp=—upa(l+vpat+---),
where
pas=(mp*—mas2—s)/2ims S 4p
and (81)
vap=15[ (1/m4s?)— 25/ S48H)].
Thus from (78) and (79)
lim Mcadb—c'—-i’;—d’—b'z (__ 1)3A+sB+sc+sn—a—b—c—d
t>0
i Maa ™5, (5

and depending on the helicities involved, the two terms
in the parentheses of (76) can either reinforce each
other or cancel out. If they cancel then the leading term
for small ¢ goes at least like £1/2 and this is sometimes
sufficient to satisfy the constraint equation. (See the
examples 7N — =N and NN — NN below.)
Expanding the terms in parentheses in (76) about
t=0, and collecting together the results of (76)-(82),
we arrive at the final form of the constraint equations:

5.7 R
Meaar®® b fc'ﬁ’;d’ b’(t)

@b’ <0 146a0
o fHAGD—ACD]

(83)
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with and where we have used the shortened notation
/—I;albl__ '_'d'b' CIE/;J/ ’
Meaar®® = o(ncadbc e ,_),]‘{ (,+)cadb ,b_, - d?\#sz)\uJ(ez%"r) (87)
_tlme(—"r]cadbc a’d’b )M(—)cadbc a’;d’b , (84_) and
where
Jm gy J .
M a3 Y =, 34d4,458d 1 ,5Cd 30 g5 D Anu dad“‘ (6)] omr o
+t7)A['UBAE’asAdc'csc(Ab’bsBda’dsD . . . .
L ) W W B Tables of these functions are given in the Appendix I
for several spin values.
=, 8D, , 8B — 13885, ,8D .
X (Aza*2dy 5*B— Ay p*Bda 5°P) Finally,
—04(Aara® 40 *Cdy 5°Bdar ¢°P
+ Ay 5802 4*Pdgro* Ad o 5€) ] 12042082 Neaat® &Y = (nanc/ns1b)
X Agra® 40y p5BA oA g P+ - - - ; (85) X (_ 1)2(sA+sB>—a—b-—c-d+A(dfw—A(cza/) . (88)
MO caay” @Y =v,4dy*Pd3: 4" (Agra® 4o € In practice, if we have ma=mc and mp=mp we in-
— Ay o*dg1* 4) +0pdar ot Ad y °C evitably have that A=C or A=C and B=D or B=D,
X (Ay 5°Bd 3 4*P— Az Pdy °5) and thus s4=s¢, sp=sp. In this case many terms in the
+avs[Ac "Dz a*P(Vahara* 45" sum in (83) are related to each other by parity conserva-

. \ . . tion, conservation of symmetry, or G-parity conserva-

Fo58y s dara’ 1)~ Aara* Ay ™7 tion. The result, although it looks extremely forbidding,

X (v4heodaa®P is much simpler to use in practical calculation than (83).
+0A74°2d ) 14+ - 5 (86) One gets

1 1 1 1
[ > L r rx a8 L0
@>e¢>0 v @>61-40z70 140z0 14+0p,a a>—c>0 o >0 14850

F Meaav™ "5 [z e D+ Meaas® Y farorary D+ Meaas @5V fgr_o gy D)

1 1
+5{ S EY Y AT T Y S HMan Y Sy ®

>0 b e'<0 &=0 146859 a'=0 b /<0 3'=0 )
- Meoaas™ =¥V o _zr.ap O} o HlAGE—4CD]  (80)

If the £ channel is elastic scattering, then the number of terms in the sum of (89) is further reduced by time-reversal
invariance, but the writing down of the summation is so complicated that it is not worth reproducing. It is simpler
just to remember the rule

Jeraray = (—1)ME=8@Y) f7,,, 0O (elastic ¢ channel only). (90)

Equations (89) or (83) give the constraints in terms of the full helicity amplitudes fya,a» . For the study of the
constraints on the Regge parameters it is convenient to rewrite (89) in terms of the parity-symmetry-conserving
partial-wave amplitudes 77 (p,p). Using (28) and (89), we get

> @QI+0X > 2 [(A+da0)(140a0)(1460a) T (W caas® @4 ¥+ pncaW eaas® 3 Y ) Torar,a 07 (H,p)

P b @>e'>0 d'>0
+ Z az [(1+63’0)(1+65'—0')]—1(I/I/cadbc,a,;a,b"l_PPWcadb_a’_cl;a’b,)Tc’a';a’ b’J(P,P)
@>—c'>0 ¥>0
S 5 (14000 W etV Tz ()}  BlIseD-36011 (o1

¢'<0 >0
where

W caas®'®'s 3""(cos€,) = [:(1+5,;: b') (1+ 53;_bz)(1—|— 63!01) (1+ 65:,"/)]1/2[:3“0“1;”'5';&' bldA(a' »),A(c' G’ )"(COS@;)

+ prcaMeaas™ Y dy @ vy —awan’ (cosfy)]  (92)
and

nea=ncena(—1)%4
=+1 for BBor FF (93)
=—1 for FF.
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There are two ways of studying the effect of (91) on the Regge parameters. The best method is to do an angular
integration with a suitably chosen projection function and to obtain constraint equations for the 7V(p,p) directly,
and these can then be analytically continued to complex J. However we have been unable to carry out this pro-
jection in the general case, although it has been possible for the examples below. The next best thing to do is to
effectively apply the Sommerfeld-Watson transformation to (91), which amounts to replacing the f® in (89) by
their asymptotic form for large s. In doing this one may lose a certain amount of information if too few terms are

taken in the asymptotic expansion. One gets then relations among the trajectories and residues of the form

2 [2a(pp,r)+1T0 2

P.p,T ¥ @'>e¢'>0 d’>0

X¥Terar,an ;@ v (P,P;TH‘ Z

@'>—c'>0 d'>0

+% Z Z (1+63’0)—Iwcadbc,o;alblrt’ﬁ;J'b'(P’p)T)} « ﬁ(lA(ab)—A(cd)I—l} )

e’<0 a>0
where

Weaast' @14V
=[(1+6ae)A+ba—p) (140 ) 1+ 0a—c) T
X[ Meaar® @ ¥ dy vy, —r(erary*® o™ (—cosh,)
+ pneaMeaas ™24 dy @ yya(eran®®? " (—coshy) ].
(95)
When only two of the particles have nonzero spin
(say B and D) the above equations simplify enormously.

Only the quantum numbers p=p=+1 are allowed, and
one gets for (88),

[A4+6a) (1+53'—b’)]1/2m
1+46ar0

Xdp@ v ,oJ(cos(h) o H{ld=bl-1} R

TR’
Ty

227+ ¥

J >0
(96)

and a similar simplification for (94).

In order to study the consequences of the constraint
equations for the Regge-pole parameters we first con-
sider the effect of the factorization theorem. If we focus
our attention on a given EE process, we see that the
kn.b. of the residues implied by (73) is not compatible
with the factorization theorem. For from (73) we would
conclude that

if nc&db= +1 ,

Tea;ap—> const if 5e@db=—1,

Yea;dh < 12

CD)

which is not generally compatible with the factorization
requirement (51).

We wish now to study what effect the factorization
requirement has on the residues, and to see how this
influences the behavior of the s-channel amplitudes.

It will be instructive to tackle this problem from two
different angles. Firstly we shall study the constraint
equations in the asympiotic limit and derive the neces-
sary and sufficient behavior of the residues and s-channel
amplitudes. We shall then approach the problem using a
partial-wave expansion and show that this behavior is
no longer sufficient to satisfy the constraint equations
if conspiracies and daughters are excluded. It will then

2 > [(+6a0)(A40a0)(1+8ea) T W oads® 5 ¥ +pnoaW eaas® ¢ 4%

Z (1+ O ._c,)—ltvw cadbclal i b,+?l)w cad b—a/»c’ i’ bl]'rc'ﬁ’ ;'Y (?rp: T)

(94)

be shown that there exists a purely evasive solution
satisfying the exact constraint equations in which the
behavior of the residues is drastically different from
the behavior arrived at by studying only the asymptotic
limit.
A. Existence of an Evasive Solution in the
Asymptotic Limit

Let foar,a0 @™ be the leading term as s (or 2;) = in
Sfeanaw® arising from the nth Regge pole. From (29)
and the properties of dy,” functions, one has that

— /1
4(pacpps)'?
XL[(A+8a o) (A+8a—o) (1482 5) (14 82r—p) ]2
X Qont+1)¢aroar,are ™

X @a@v)*™(z0) Cacean®™(z1)

fcraf;a/bl(t)"= ‘1)A(J(b,)

(98)
where

X4 Zt J
e I &

(2J)! 12
X - - ] (99)
(J+A(dD) DT — | A(d'D)])!

is the function introduced by Fox and Leader!® which
expresses the factorizability of the d),’ functions in the
asymptotic limit.

Since the residues satisfy the factorization theorem
we may put

Toarap ™ =bga ™ )by y ™) (100)
and then write
fea,ayOr=—goa Orha, O, (101)
where
.n.tlld
goa = [(A+68ae) (14 8ar—c) Lant1)En ]2

ic
Xbera ™ @y (erany*(ze) (102)

18 G. C. Fox and E. Leader, Phys. Rev. Letters 18, 628 (1967).
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and
it/
}l&'b'(‘)"= (— 1)A(alb,)[(1+681 b')(l—l—aal_bl)
2V/ppe
X Qant1)¢n]2a 5 @ Qa@ vyn(ze) . (103)
If we put
fcd;ab(s)':z fcd;ab(s)n; (104)

and make use of the fact that the crossing matrix is a
product of functions, e.g.,

Mcadbdal;a’b, =Mcac,E’Mdba’b, ) (105)
we can put
fcd;ab(s)n': _gca(s)nhdb(s)n, (106)
where
gca<s)n=Mca.c,E'gc’E’ @n
and (107)

kdb{s)n=Mdba’b,hJ’b’ (t)n.

In what follows we shall use g, and g, generically
for the g and % functions of (107). Now the minimum
modification we can make to the behavior (97) in order
to satisfy the factorization theorem, is to take!®

b a1t i pe=1,

bt i pe=—1, (108)
This then implies that
Tegap< 12 if g@=-41 and 9T=-1
—const if 9@h=—1 (109)
« 12 if palt=41 but 79=—1,

and, of course, factorization is satisfied. [We shall show
later that actually (109) applies only to poles of the
(+,+) variety.] Consider now the generic equation

(110)

Provided that # is a pole of the (4,4) variety, the
structure of (110) is identical with the constraint equa-
tions which would arise in the scattering process

L+7— L+,

where the L particles have spin sz and helicities A, g,
except that by ™ would be replaced by bo™ ™Mby, ™.
But

g)\u(s) (n) = M)\”X’u’gx,“, (OL

booww(n)b)\,“, (n) — If—1/4b)\l," (n)

(111)
by (108). Thus we may associate

g > frosuo@™(Lw — L)
and _
S O > foonrw O LL — ).
Moreover, the behavior
e BT S U |
if pMr=—1,

700;\ p
—> const

19T am indebted to G. C. Fox for enlightenment on this point.
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demanded by (97) is, in this process, consistent with
(109).
Thus by the original argument which led to (97) we
get that
gM(S)no: FHAGW)] ,

(112)

when the by, ™ are given by (108).
From (106) it now follows that

Fotiap®n e HIAGOHIAG@ON = (4 4)  (113)

when the residues 7.z.a5(+,+) have the behavior given
in (109). Equation (113) should be contrasted with the
original behavior (70):

fedap® (A —Aled) | = fRlA(ac)+AWD)] |

enforced by conservation of angular momentum. We
see, therefore, that the factorization theorem leads to
the existence of an evasive solution (at least in the
asymptotic limit) in which the spin dependence in the
forward direction is drastically modified whenever both
particles in the reaction have nonzero spin.

The above argument breaks down when the pole #
is not of the (+,+) type, since then the Eq. (110) is
analogous to fictitious processes, for example, like

L+7— L+,

where 7’ has the same mass as but opposite parity to
the . As listed in Table I, some helicity states are now
forbidden. Nevertheless the arguments leading to (97)
require only minor modification and lead to the follow-
ing results:

For poles of the (—,—) variety

,r’cEEb=+1 and 77”E=+1
b= —1 (114)
78db=41 but nC=-—1.

rca;ﬁb(_;_) oc f1/2 if
— const if
o t—1/2 lf

Equation (113) is again valid.
For poles of the (4,—) type
regas(+,—) = #2 i gP=+41 and 9F=+1
ot if 9= —1
i if
and (113) holds.
Finally for poles of the (—,+) variety

Tomap(—,+) M2 if 5=41 and »n=-1
«f if geAdt=—1 (116)
w2 if gElt=o1 but gi=—1,

(115)
p8d=41 but nI=-—1,

and again (113) holds. It is worth noting that the
leading term in the contributions to the s-channel
amplitudes coming from poles of a given fype possess
special symmetry properties in the asymptotic limit.
Thus,

f—cd;—ab(S} (p.p) = P”IC"’IK(_ 1)2SA+a_cfcd;ab(8) (p,p) ,

fad;cp® @0 = po(— 1) fog;qp® @0

(117)
(118)
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and

Jeadi—cp®@ @) = pnona(—1)204 1 g, 3O @) |

and similar results when b and d are manipulated.
Equation (118) is actually true also in the nonasymp-
totic region.

(119)

B. Existence of an Evasive Solution in the
Exact Case

We shall now show that the above behavior is quite
insufficient to satisfy the constraint equations in the
nonasymptotic limit. To do this we shall study several
examples, and we shall learn from these that an evasive
solution can still be found, but with a more drastic
behavior for the residues than (109), (114)-(116). We
shall then give a proof of the existence of an evasive
solution in the general case.

1. Examgples

The calculations are facilitated by having a list of the
independent amplitudes for an arbitrary process, and
this is provided in Appendix II.

(a) mr — 7. There is only one residue denoted by
r*™77(+ +4) and it has the behavior

rvnr;mr(_]_,_l_) o t—1/2.

There are, of course, no constraint equations.

(b) mp— mp. There are two constraint equations
arising from the amplitudes fo,1¢0 and f_;,1‘Y. The
former carries no information, and the latter leads,
using (96), to the equation

T QI+ D{[Tu —V2T o’ 1P 5(8:)
+T117ds0” (60} < 872,

(120)

(121)
where
Tyu? = (o | T | pp; \u)

Projecting with Ps.1(8:)—Ps_1(0:), we get after some
manipulation

T11J+1_V§T90J+1_[£lew 117t

J(J+1)

—_ { TuJ—l_\/jTooJ—l_[_(;I_:'M]IMTI__IJ—I}
J(J+1)

o:tllzl

(122)

We continue this equation to complex J and assume
that there is a pole at J=a. (It has of course, p=p=+.)
Taking J=a—1 in (122) we get for the residues

ri*miee(4, ) —V2rggmmiee(+,4)
[(a+1)(a+2)

1/2
_rmee(h ) w2, (123
ala—1) ] ettt (29

REGGE POLES 1611

Taking J=a+1, however, we get
rumiee(+,+) —V2rom i (+,+)
ale—1)
‘[m
Thus we must have, if we avoid daughterlike sequences,
711" (, ) 112
ro0™ "2 (4,+ ) = aoot 124 0(11/?)
71" (4,4 ) =V2a00t 24 0(117%) .

(c) #N*— aN* (N* with spin $). There are four
constraint equations arising from the amplitudes f3,3¢,
F-1®) f_139 and f_33®. Of these the first two do not
carry information. The others lead to the equations

@I+ D{B3(T 0 = Tw?)Ps(0)+ (/DT de” (6]
Xost 2+ (/DT +3T171du.a” (0)

1/2
] P () 12, (124)

and

(125)

—Ty37ds”(0:)} <t (126)
and
2 QI+ DLW6)(Ts3” —T3y”)Ps(6)
- Tg_yrdzo"(eg)] < t”z . (127)

Equation (127) has precisely the same structure as (121)
and leads to the requirements

1" VN (4 ) = eyt 24-0(1172)

™V () = a1 201
,g_%w;mﬁ*(_}_’_]_) o fl/2,

Using (127) and (128) we see that (126) requires

Z@THICWDT37+3T37 T’ (6))
— Ty 37ds”(6,)} < .

(128)

(129)
Projecting with

(J—2)(J—3)

1/2
AR R S (D)
(J+3)(J+4):| @

d30J+1(6‘) _|:
we get
[(J —D)JU+1)(+2)
(J+3)(T+4)

F3(Ty =Ty ")+ T3y =Ty y" Pt (130)

1/2
] [(/8) (T Ty

By similar methods to those used following (122)
we deduce that

rig VN (4 ) ot
r ™ N (4 ) =ayu+-0(0),

P VN (4 ) =3/6a3+0() -

In all the above examples, the ¢ channel involved
coupling to the 7= system so that only one type of
Regge pole, with p=p=+1, was allowed. Conspiracy

(131)
and
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is therefore not really a possibility, and the above ex-
ercise simply shows that an evasive solution as against
a daughterlike solution, exists.

We now look at more complicated examples, involv-
ing a mixture of Regge poles.

(d) NN — NN. There are two amplitudes f_33,33¢®
and f 11,33 which could give rise to constraint
equations. The first of these turns out not to carry in-
formation and the second leads to the requirement

QI {2 .7 (— )P0+ Tosz37 (++)
X[d117(0:)—du” (0) 1 T—ys;347 (— =)

X [daor? (0)+dar” (0) ]} < 1172, (132)

Note that the connection between our general nota-
tion and the more usual one for the NN problem is as
follows:
Ty’ (=, )=/,
Ty’ (——)=fr,
Ty’ (+,+)=fu’,
T’ ()= fo’,
Ty’ (+,4+)=fr’.

(133)

i
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Projecting with P r41(6:)— Ps—1(6:) yields
J+2 J—1
f221+1__ f22J-1__f0J+l+ng—1
J+1 J
2J+1
- filec gtz (134)
J(J+1)

For an evasive solution the terms belonging to each
type of Regge pole must separately satisfy (134). Thus
we get

gV VNN () e 12
gy VNN (= =) e 12 (133)
and
PV VN (— ) 12,

(e) pp— pp. In this example we shall see the vital
role played by the factorization theorem. The process
is described by seventeen independent amplitudes of
which ten give rise to constraint equations. Of these,
four yleld no information and we are left with the
constraints arising from fii,11, fo0;11%, fie;01¢?,
fm;_.m(s), f01;1_1(8), and f_11;1_.1(3). They are, in the
above order:

2 IFD{2T 1,107 (+,+) —4T 00,007 (+,+) 1P 5 (6) +4T 115117 (4,4 )d2,07 (6) — T'10;107 (+,+)
X[d17 (0:)+d117 (0) 14 T11;1-17 (4, ) [do—a” (00) +daa” (02) 1 — 5T 10,107 (—, — )[d117 (8:) — d1s7 (6) ]
2T 115117 (—,— ) [do—2” (8:) — das” (6:) 1— 2T 10,107 (—, + ) [d1? (1) — d1—17 (6:) ]

—3T10;107 (+,—) [ () +d1a7(6.) ]} < /25 (136)

> QIH1){T—11,117 (+,+)[dos? (8:) — do—2” (1) ]— T—11,1—17 (—,— Y227 (0:)+do—27 (6:)]

—[T10;107 (—,— )+ T10;107 (—,+) JLd11” (0)+ d1a? (0:) 14+ 2T 11,117 (—, ) Py (6) } < 1172

(137)

2 QI+ T 010" (+,+) = T10;107 (+,—) 117 (0.) — d11? (0) 14-[T'10;107 (—,+) — T10;107 (—,—) ]
X [d117 (8:)+d1a7(0) 1— T—11,1-17 (4, ) [ e’ (0:) — do—2” (0:) 14+ T—1153-17 (—,—)

X [da2” (0)+do—2” (0) J4+2T 11,117 (—,+) P s(00)} = 842

(138)

> I+1){2[ T, 17 (+,+) —V2T 11,007 (+,+) P 7(0) 4+ 2V2T 11, 00" (+,+ )d20” (8:) — T—11;1-17 (,+)

X [dag” (8)+Fdoo” (0,) 1+ T—11,1-17 (—,— )[d22” (6:) — do—27 (6:) ]} < #%/2;

(139)

S QT+ 1) {wat2[4V2(2T 00; 00" (+,+ ) — T11; 17 (+, )+ 2T 11, 11(—, + ) P 5 (0:) — 16 T—11; 007 (+, 4 ) d20” (6:)
+2V2(2T 105107 (+,4)+3T 10,107 (—,+))(d1—1” (0) — 117 (6:)) — 2V2(2T 10,107 (—, — ) +3T 10107 (,—))
X (di1? (0)+d1a? (0))+2V2T 115117 (4, ) daa? (0:) — 2V2T_11;1-17 (—,— )(da2? (0:) — da—27 (61)) ]
+2(V2T 11,107 (+,4+)+3T 115107 (— 4 ) — 2T 015007 (+,4))dar? () +V2 T 0,117 (4,4 ) (@217 (6) — d a7 (62))

and

—V2T o1;1-17 (—, = )(dar? (0)+d217(0:))} = £ 5 (140)

S @I+H1){2[2T 00;00” (+,4+)—2V2T11;00” (4, )+ T1a;117 (+,+) JP s (0) 44 Taa;1-17 (4, +) —V2T 00,117 (4+,+) ]
Kdoo” (0)4 T-11;1-17 (4, +)[d22? (00)+ do—27 (0:) ] — T—11;1-17 (—, — )[d22” (6¢) — da—27 (8:) ]— 510,107 (+,—)
X [d117 (0:)+d117(8:) ]— 6T 10,107 (—,+) [d117 (0:) — d11? (8:) ]— vt 2V2[ (2T 01,007 (+,+) — V2T 113,107 (+,+)
+2V2T 11107 (—, 4+ )Ddor? (0)+3V2Tor,117 (+,+)(do17 (0) — da? (0))+3V2 T 01,117 (—,—)

X(doa? (02)+d2n” (6:)) ]} = 22, (141)
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Since, for the moment, we are looking for an evasive
type solution, the above equations have to be satisfied
separately for each type of Regge pole.
Consider first the (+,—) type. From Eq. (141) we
see that

2 (2J4+1)T10;107 (,—)
X[d17 (00)+dia”? (0:) ] o< 1372,

Thus we must have

(142)

10,1077 (4, —) < 272, (143)
All the other equations are then automatically satisfied
or oversatisfied and this is the only (4,—) residue
appearing in the problem.

Let us turn now to the (—,+) type. From (138)
we have

T QI4+1){2T 11,17 (—,+) P (6 +T10;107 (—,+)

X I:dlll(ot)+d1—1J(0t):|} o f172, (144)
and from (137)
T QI+D{2T 11,107 (— )P s (00) — Tr0;107 (—,+)

X[du/ (0)+dia7(0) ]} = 1272, (145)

Adding and subtracting (144) and (145), we get that

1’11;11"””’"(—‘,+) o 112

and (146)
1’10;10”"“’"(— ’+) o« 172,
However, from (129),
> (2T +1){3T 10;10" (—,+)[d117 (8:) — d117 (6:) ]
+ 204872 11,107 (— 4 )do1? (0:) } = £312,  (147)

so that 711,107%°(—,+) can only go as constant or !
as t— 0. But by the factorization theorem

r111710;10= (711;10) %,

so that the above behavior for 719,10 is not acceptable
and we must have

710,10°P°P(— ) o< 372 (148)
and
7’11;10”;”(— ,+) <t (149)
All the other equations are now satisfied.
Consider now Regge poles of type (—,—). From
(138),
QT+ 1){T=11;007 (—,—)[das” (0:)+d2—27(8:) ]
— T10;107 (—,—)[dn/ (00)+dsa7(6:) ]} = 12, (150)
and from (137),
2 QI DT 11,107 (—,—)[dae” (0)+d2-27(8)) ]
—T10;10”(—,=)[du” (0)+dsra” (0] = 12, (151)
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from which we deduce that
710,107 PP(— ,—) o /2
and (152)
1’-11;1—1”"“’”("‘,"‘) o« 12,
However, from (141),
S @I+ D){T-11,117 (—,—)[de2” (8:) — da—27 (6:) ]
F 0482 01,117 (—,—)
X[do17(0)+do1? (8:) ]} < 8372, (153)

so that 71;1_1(—,—) must go as constant or ¢ as t— 0.
By the factorization theorem

710;107—11;1-1= — (710;1—1)2 )

so that the above behavior of 7_11;1-1 is not acceptable
and we get instead

(154)

7’_11;1._1”"“’"("' ,...) o 1312
and
(155)

It is easily seen that the other equations are now
satisfied.

Lastly, we look at the more involved case where the
Regge pole is of type (+4,+). Since the factorization
theorem connects the processes = — wm, mp — p, and
pp— pp we can use Egs. (120) and (125) to get im-
mediately that

710;1-1°77°(—,—) < £.

11,1177 (4,4 ) = 22002~V [14-0(1) ], (156)
700,003°2 (++,+ ) = 2o~ 2[14-0(1) ], (157)

and
71131177300 ( ) 1572, (158)

Equation (137) is now oversatisfied. Using (158) in
(138) leaves the requirement that

2 @I +1) T 10107 (+,+)
X[du(0)—dia? ()] 2, (159)
implying
r10;10°7770 (4, ) < /2. (160)
Looking at the role of 791,11 in (141), and using (158)
and the factorization theorem, we conclude that

7o1;1-177 PP (4, ) « 2. (161)
Similarly, we deduce that
701,007 (+,4) = @00+ 0(?) (162)
and
701,170 (++,4) =V2ag+0(F) . (163)

Moreover from (156), (157), and (158) we get that

7_11;00 22 (4, +) = aoot >+ O(#'%) (164)
and
711;1-1°702 (4,4 ) =V2aoot >4 O(£/2) . (165)

Using the results (156)-(165), we see that Egs. (136)
and (140) are satisfied.
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Finally, using (156) and (157) in the factorization
theorem we get that

1’11;00"p:p"(+,+)=\/2_doo2t_1/2+0(t1’2) y (166)

and now Eq. (139) is also satisfied. The cancellation in
(141) is a more subtle matter. All the terms automatic-
ally satisfy the equation except for the coefficient of
P;(8). We must therefore show that

2 @IT+1)[2T00;00” (4,4+)—2V2T11;00” (4,+)

+ T3, (4, 4+) 1P s (0) < £3/2. (167)

Using the factorization theorem without approximation,
the term in square brackets becomes

L7007 () T L2(T 11,007 (,4))?
_2ﬁT11;00"(+,+)T11;11J(+y+)
+ (T, 107 (+, )= [T 11,07 (,+) T
X[V2T 11,007 (4, 4) = Tua; 07 (4-,4+) T
o U f= 312

using (156) and (166). Thus all the constraint equations
are satisfied.

Looking at the results of these examples we see
emerging a definite pattern of behavior for the residues
in an evasive solution. Namely, that

Paz5o(P,p) o< (HIAGDIHAGDI=Y  for

po=—+1 (168)
and
”aa;zb(;b,p) o (314 (@) [+ AG D) [+1} for po=—1. (169)
This behavior is clearly compatible with the factori-
zation theorem.

2. General Case

We shall now show in the general case that there
exists an evasive solution with behavior given by (168)
and (169).

From (18), (78), and (80), we have that

My\2M¥ =dyy*(Gr—€)dw,*(3m+e), (170)
where
e=1112(¢) @171)
and
() =vot ot vt2+ - - - (172)

We shall need the following lemmas.
Lemma 1:

n

2 —M(eMY | emo=0 if

A\—p|>n.
G dé"

Proof: By definition
dan(0)=(s\ ] e‘Wﬂ[ SA).
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Therefore,
n d”"
> —M (NN =—3 (N |eir/=aTu|))
M det der W
XN |gmitr izt Ty| )
dar
=3 ()\ [ eti(riz—e)Jy | )\/)
de™ N
X ()\' ! e—z‘(r/Z-l—s)J,,lu)

=)

= (—20)"(\ | Jyme 2| ).
Thus Ty l

dn
T MO o= (=200 )
=\ (=T u),

which is clearly zero if |[\—u|>#.
Lemma 2: Let

A(S,)\)= [(S-i—)\-l— 1)(5_)\)]1/2 )

(173)

then
Z A(S’)‘,)A (S, >‘,+1) t 'A(S, N4n— 1)
x/
XM NN (e=0)=0 if |A—u|>n.

(We take #>0. If #<0 a similar result follows.)
Proof: Since

]+|S,>\>=A(S,)\)IS, >‘+1>7
we have

AN A(s, N1 - A(s, Ntn— 1) MM +nN (€)
xl

=3 A(N)A(s, N +1)-- - A(s, N+n—1)
A’
X()\le+i(nl2—e)J,,])\l+n><)\l l e—i(wl2+e)Jy['u>
=> A N)A(,N+1)---A(s, N +n—2)
)I

X()\Ie+i(1rlz—e)h_]'+!)\l+n_ 1><)‘I|e—i(ﬂ/2+‘)"”l/.l> ,
and repeating this process,

=X <)\le+i(1r/2—e).7y]+nl>\l><)\/lg_i(,,l2+e)Ju|#>
XI

= (\|eHiIz=0 Ty ] mg=itrizteaTy| ), (174)
Thus at e=0,

> AN A(s, N+1) - - - A (s, N+n—1) M\ Nt2N (e=0)
)\’

— <)\ l e+i(1rl2).fy]+ne—i(7r/2)]g, |“> .
Now,

eIy i Ty=J 4],
=]z+%(-]+_]—) .
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Thus

% AGN)A(s, N+1)- - - A(s, N+ n—1) M+ (e=0)
=[50 +—T) I w), (175)

which is clearly zero if [A—u|>n.

Lemma 3:

r

Z ;Z_—A (s’)‘I)A (S, N+ 1) -4 (S, N+n— 1)
ET

X/
XMtV (€) | emo=0 if  |[A—p|>n4r. (176)
From (174) the left-hand side of (176) at any e is

r

<)\ I ei(7rl2—e)Jy]+ne—i(1r/2+e)Jy l“>

de”
r 7
=X )(M (—iJmei@ =Ty n(—iJ )™
m==0
Xemi@lzrady| ),
Thus at e=0,
2 —AEN)A(s N+1)- -
G der
A(s, NHn—1) M2+ (€) | o
14 r
- £ ()l LT iy, am)
m=0 \.

which is clearly zero if |A—u|>n+7.
Lemma 4:

(W) AN A(s, N +1) - - - A(s, N +n—1)
XI

dr

der

XMN V()| eco=0 i [\—p|>n+r41. (178)
This follows by similar methods upon replacing \'4-4#n
by (J,—3n) when acting on the state |\ +n).
The contribution of a single Regge pole to f® is
given by (29) as
fc, o' +n; bim b,(t) (p,0,7)
2,

= (— 1)1+ I:(l_l_ 6n0)(1+3n —~2c’)(1+6m0)

4(pcapon)'?
X (14-8m —20r) ]V 2a(pyp,7)F1TE 7 et crn; brm v (D30,7)
X dmn® (p,p,r)(_zt)
=010 ornivim v (D,0,7)[(148n0) (1480 —2c')
X (148m0) (14+8m —20) V2 Lmaltys) ,  (179)

say, where Lna(l,s) is finite at i=0.

REGGE POLES 1615
Consider first the case pp=--1. We put
[(146,0) (148m0) (1485 —20)
X (1+5m —2b’)]1/27c' c+n; b +m b (pp=+1)
=B UR o PP=H1(E), (180)
with
R({)=RO+{RO4LR® ..., (181)

and we expand the crossing matrices about =0 in the
form
MaN# (€)= M, OV M ,(ONW
MOV (182)
where, clearly,
My ON¥ = (1/r)(d7/de) M\ () | emo.

Thus (176) becomes

(183)

2s4 2sB

2 X X Xedes”

n=—2s4 m=—23B ¢’,b" r,r’

XMca(r)c, c’+nMdb(r’)b’+m b,fc’ c'+n;b’+m b ®

fcd:ab(s)ppaH:

284 2sB

=2 X

n=—3284 m=—28B

AL (2 5)

X 2 By (Dopm(£)

r,r'=0

X Z Mm(r)c’ c’+nMdb(r’)b’+m b

¢\ b

X-Rc’ c'4n; b +m b,pp=+l(t) . (184)

If we now take
Roaay?=t(0)=A(s4;Y0a)
XA (545 y0a+1)- - A(54;%03—1)
X A(sz;yav)A(se; yary+1)- - - A(sp; X3y —1)

XC(; p,p; A('@))C(t; py0; (D)), (185)
where
year=min{c’;a’},
zez=max{c’;a’}, etc. (186)
and
lim C(; 4,05 AC@) = Clpp ACE))  (187)
exists and is finite, and where
C(P,P; A(d’cl)) = pnCZC(P,P; A(C,d,)) 3 (188)

and use the results of the Lemmas, we see that the sum
over b’ and ¢ in (184) is zero if |¢c—a|> |#| 4~ and/or
|d—b|> |m|+7.

Thus every term on the right-hand side of (184) of
order glinl+Imi+r+7} contributes only to s-channel ampli-
tudes with |c—a|+|d—b| <|n|+ |m|+r+7'. Alterna-
tively, fea;q»'® has in it only powers of ¢ greater than or
equal to |c—a|+|d—b], ie,

fcd'ab(S) (po=+1) o f3{1A(ca) |+ 1A (D))} (189)
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Thus we have the result that (185) and (180) provide
an evasive solution to the constraint equations, for
which the s-channel amplitudes possess a factorizable
t dependence, even though the amplitudes themselves
are not actually factorizable in the nonasymptotic limit.

From (177), (180), and (185) the behavior of the
actual residues is

roasay(pp=—+1) « AT HEI=VI[(14-5,5.)
X(A+d0—a) (1482 w)(1+0a—v) TV2EX C(p,p; Alc'd"))
XC(p,p; A W) A543 903) - A(sa; 80w —1)
XA(sp;yaw): - Alsp;vay—1).
For the case pp=—1, the above solution is unaccept-
able since one must have

fcﬁ;ab(t) (P:P) = PPf—E—C: FI (P;P) ’

which for pp=—1 is not satisfied by (185).
Using Lemma 4 we construct a solution with the
correct symmetry (191) by taking

[(1+8n0)(1+6m0)(1+ 6n—2c’)
X (1+6m—2b’):|1lzfo' c'+n;b'4m b’(PP= - 1)

(190)

(191)

=iinl+Hm+ R, s brm 5 PP=1(1) , (192)
and then choosing
Rear w1 ()= (c'+a')(d+b)
XA(Sa;Yea) - A(Sa; Xoar—1)
X A(ss; yav)- - A(sp; vay—1)
XC(t; p,p; AC'a))C(E; p,p;AdD")). (193)

Applying the same arguments as used in the pp=-1
case, we see that a term on the right-hand side of (184)
with given value of |%#|+ |m|-+7+#" can in this case
contribute to [c—a|+|d—b|<|n|+ |m|+r+r"+2.
Hence the necessity of the extra power of ¢ in (192).
Thus (192) and (193) provide an evasive solution for
which the s-channel helicity amplitudes have the
behavior

fcd;ab(s)pp*I o th{1ACea) [+ A(db) [} , (194)
with, as required by (118),
fad;ab(’)p"*IEO. (195)

The residues themselves then behave as

roasay(pp=—1) « AUV (14-5,5,)
X (148o—a)1+0a o) A+ da—p) 12
X C(p,p; A(c'a"))C(p,0; Ad'D)) (' +a')
X @+ A(sa5y0a) - - A(s4; %ea—1)

X A(sp;yae)---A(sp;xaw—1). (196)

Thus the behavior conjectured on the basis of the
examples is shown to be true in general, i.e., there does
exist an evasive solution and it has the remarkable
property that it leads to s-channel amplitudes whose
main # behavior, as t— 0, is factorizable.
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It is worth noting that the helicity dependence of the
residue behavior (186) deduced in the EE case by
satisfying the equal-mass constraint equations to all
orders in s, coincides with the behavior (54) obtained
by satisfying the unequal-unequal (UU) constraints
to leading order only in s. The reason for this is discussed
in Sec. VI

As was done in the UU case we can also consider
conspiratorial solutions involving poles of opposite p.
We then get for the leading term in s the same behavior
as given in Eq. (68). The residues behave as in (67)
but there is no longer a simple condition like (49) relat-
ing the residues of opposite p. Instead one has

f(s):f(s) (1)..|_.f(3)(2) s
say, with

fcd; ub(s) M= §f0d;ab(s) (2)[1+O(t)\min)] N
where §= —sgn(A(ac)A(db)) and

fcd;u,b(s) M) « 3 Omax—Amin) .

V. PROCESSES WITH mumc¢; mg=mp

The f-channel process is of the type (unequal-mass
pair) — (equal-mass pair) and we denote it as a UE
process.?

As in Sec. III, we study the behavior of f()(zs) as
t— 0 using Eq. (32).

It is seen from (13) and (16) that

cosf, = t1/2 sinf,— 1 as

(197)

so that the factors involving cosif;, and sinlf, are
innocuous in (32).

However, the rotation angles X4 and X¢ for the equal-
mass pair are very sensitive to the order in which the
limits s —o, {— 0 are taken. Thus

1

t—0,

cosXa=~ [i(s-+m—mp?)
8 a5l 2(1—dm 42)1/2
+2ma*(mp*—mp?)], (198)
and if we fix s and let £ — 0 we get
cosXq o 12 (199)
and, similarly,
cosXgo 12, (200)

The limits of the other angles are unexceptional, so
that using the property

dau? (X) « (cosx)’ (201)
as cosX — o, we are led in (32) to the result
fca;ab(‘) oc s atsc) , (202)

independently of the helicities. One then finds!! from

20 Much of the argument in this section is due to T. W. Rogers.
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(26) that

Feaap®(p,p) x t-3eat20)  for p=egu(—1)A72
« (e atsc—1) for p=—eca(—1)272, (203)
where
eca=-+n4/n¢ if A and C are bosons
=—n4/n¢ if 4 and C are fermions,

and therefore, naively, that the residues ought to have
k.n.b.
fca;ab(j),p) « i m—a (., f—1(s atsc+1)
or
o (i m—a(p,0)]f—3(s at+s0) (204)
for
p=ckeca(—1)2,
respectively.
But this behavior is totally at variance with the
behavior deduced for EE and UU processes, since if we
consider four processes, say

A+B— A+B,
G+G— H+H,
A+G—A+H,
G+B— H+B,

where mg7#my, so that the processes are, respectively,
of the type EE, UU, UE, and UE, then the residues
must satisfy the factorization requirement

(205)

Ta'a; b0 (206)

and (204) is quite incompatible with (206), (54), and
(109) or (185).

To get the correct behavior we consider only the
leading term for large s in (198) then

(EB)y,, - = ,(UU) =

gihg =rwaie "Prwgse TP,

cosXaxcfl’?2 as t—0, (207)

and, similarly,
(208)

In fact, the behavior of X4 and X¢ in this case is ex-
actly the same as in the EE case, (79) and (80), pro-
vided we take only the leading term in s in the latter
equation. Moreover, for the leading term in s in Xp
and Xp we have from (19) precisely the same behavior
as in the UU case (58).

Thus so long as we deal with only the leading term
in s, the equal-mass pair and the unequal-mass pair in
the UE process behave exactly as they would in EE-
and UU-type processes, respectively. It is now clear
that the behavior of the leading term in the s-channel
amplitude can be deduced directly from the result (106)
since in the proof of (106) no reference was made to the
mass relations and since (106) was deduced for arbi-
trary ¢; i.e., corresponding to taking limits in the order
s large then ¢ small.

Thus we have for the leading term, in the absence of
conspiracy,

COSXC o t1/2.

Fedsap'® & AUAGIHIAGD]Y (209)
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and the residues can be evaluated from
Yoa;ap U = D’aa;zia(EE)fba;ab(UU)]”z s (210)

using (54) with either (109), (114), (115), and (116) or
(190) and (196), according to whether the coupling to
the equal-mass pair is evasive or not.

It is well known that the limit {— 0 is subtle when
unequal masses are present.? The correct way to
approach /=0 is probably through a fixed-s dispersion
relation and this would correspond to the order of limits
used in deriving (209) and (210). Again in this case
there can be conspiratorial solutions involving poles of
opposite p and the behavior (209) is then replaced by
that given in (68).

VI. GROUP THEORY AT ¢=0
A. Group-Theory Approach

Consider the s-channel process

A+B— C+D
and let

K=pa—pe, Q=pas—pp (211)

be the momentum-transfer four-vectors, so that from
Eq. (4)

1=K2, (212)
Take an arbitrary Lorentz frame in which
pa=((p>+m4)172 p)
and (213)

pe=((0"*+mc?)l2, p').

Then if ma=me, it is easy to show that at t=0, in
every Lorentz frame, K is a null vector, i.e.,

K=(0,0,0,0). (214)

That is, £=0 implies forward scattering in all reference
systems.

However, if ms7m¢ and =0 is a physical point for
th.e process, then if we go to the s-channel c.m. frame
with the z axis along, or antiparallel, to p— p’, then
at t=0

m42—~m(rz+m1)2 —mp?
K= s (1,0,0,1),

ie, K is a lightlike four-vector. It follows that K
is a lightlike vector in all frames which can be reached
from the s-channel c.m. frame by arbitrary Lorentz
transformations.

Let us now go to the c.m. frame of the ¢ channel. Put

pa=(=(P*+ma?)'2 p),

pe= ((p2+m02)1/2, p) )

“D. Z. Freedman and J. M. W Phys. 5
1960, J ang, Phys. Rev. 153, 1596

(215)

and (216)
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so that

K= (— (p2+mA)1/2_ (p2+m02)1/2, 0: O: 0)
= (—'\/ty Oy 0) 0) .

Then in the limit {— 0, K becomes the null vector
K=(0,0,0,0) independently of any relation amongst the
masses.

Comparing (214), (215), and (217) it is clear that in
going to the limit =0 while in the ~channel c.m. frame
we must be doing something quite drastic. This is also
shown by the fact that at (=0, p=|p|=im in the
case ma=mc=m, whereas we need p=ico if ms=mc.

From (214) and (215) one would argue that at =0
the relevant symmetry groups of the physical scattering
amplitudes are O(3,1) in the case m4=m¢, mp=mp and
a group G isomorphic to T:XO(2) (the group of
translations and rotations in 2 dimensions) for the case
of unequal masses. On the other hand, from (217) it is
argued?® that the relevant group is 0(3,1) [or O(4) if s is
below threshold] in all cases, independently of the
masses; and this leads to a classification of Regge poles
in terms of ‘“Lorentz” poles. Since Regge poles pre-
sumably have an independent existence it seems most
unlikely that there is any fundamental preference for
0(3,1), since if one treats the general mass case, steering
clear of t=0 in the ¢-channel c.m. frame, one is simply
never led to 0(3,1) at finite s.

This difficulty at {=0 in the {-channel c.m. frame is
intimately bound up with the troubles which were dis-
covered even in the spinless case.!?! In the usual dis-
cussion of these difficulties one is always thinking of
s— . We wish to stress that the difficulties at (=0
have little to do with s— .

Consider for simplicity a spinless process. Let A4 (s,?)
be the invariant scattering amplitude. Let s lie in a
closed domain D.

Then certainly the limit £— 0 exists and

(217)

ltifé A(s,)=H(s), say. (218)
Also we have
A(s,)=f®(s,35)=fP(4,2) (219)
and, therefore,
lim f©(s,z,)=lim fO(t,2,)=H(s). (220)

However, we have, for the unequal-mass case, that

ltir%z,=1 forall s&€D,

and therefore, naively,

lim f®(z0)=f©(0,1) (221)

contradicting (220). The fallacy, of course, lies in the
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assumption that if

ORFICE)
lim f((x))= /(lim ¢(x)),

then

a result which is only true if the mapping & — ¢(x) is
nonsingular at =0, which is not true for the mapping

() = (1,2) at ¢=0.

Thus irrespective of whether s is large or not, one
cannot take the limit t— 0 if f regarded as a func-
tion of £ and ;. Or, if one does take the limit, it may have
nothing to do with the physics at {=0. Now we claim
that the fallacy which leads to the spurious results, that
0(3,1) holds independently of the masses, is precisely .
of this nature. For in order to deduce the symmetry it is
necessary to regard f,9(s,f) as a function of the
vectors K and p=pa+pc, p'=ps+pp, ie.,

HutP(s,0) =f>\n(K’P:P’) ’

and it is not true, in the unequal-mass case, that
lim £, ®(s,8) = fi(li i im 2’
im £, (5,8) = fru(lim K, lim p, lim '),

since the mapping

(5,) = (K,p,p")

is singular at = 0. Thus the group O(3,1) is not relevant
for the unequal-mass case in general. However, let us
now see what happens as s —. We assume that for
the unequal-mass case there exists an asymptotic ex-
pansion of the form

f#)\(S)(P’K’Q) ___sa(t)G“x(P,K’Q) ) (222)

where
lim Ga(P,K,Q)
exists and is equal to
Ga(lim P, lim K, 1im Q)

and
GM(PxK:Q)=G#>\(P’K:Q) 18=w

+l[~d—c (P,K,0)

- K, +- - 223
T laq e Lw (223)

Then the term lim,..G,(P,K,Q) has in it lim, K
=(0,0,0,0), and therefore, for the leading term, and only
for the leading term, the relevant symmetry group
becomes O(3,1). Thus, in summary, we expect that

@ ~Ba(®)s* O+ B(s,)- -, (224)

where Bya(s,t) = O(s*¥~1) and where the relevant groups
would be 0@3,1) for B,(f) and T2XO(2) for B,(s,t).
This result explains why we found the same residue
behavior when treating the EE case to all orders in s
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and the UU case only to leading order in s. (See end of
Sec. IV.) It also suggests that the role of daughters in
the UU case is simply to eliminate a spurious O(3,1)
symmetry from terms of order s*®~! and lower,
that develops as a result of our present methods of
Reggeization.

B. Uniqueness of the Lorentz-Pole Hypothesis

It has been claimed! that it is not possible for a
number of Lorentz poles to conspire in such a way as to
give a result equivalent to having one single non-
conspiring Regge pole. The proof given results from a
study of mp— mp. We wish to show that this claim is
not justified.

In the first place, our general evasive solution is a
counter-example to this claim. The evasive solution is
eliminated in Ref. 10 by the implicit assumption that
71,17 does not vanish at =0 [see Eq. (125)].

In the second place, even assuming that 7; ;50 at
{=0, a proof of the existence of an infinite sequence of
Regge poles using only the process mp — mp certainly
does not say anything about the question of conspiracy,
since in this process true conspiracy is in any case im-
possible since only one type of Regge pole can con-
tribute to it. If one assumes 7;,_;50 in the constraint
equation (122), then one is certainly forced into an
infinite sequence of Regge poles. On the other hand, in
the case NN — NN, we know that the constraint equa-
tion can be satisfied by a finife conspiring sequence of
Regge poles.? But, as we mentioned in Sec. I, this finite
sequence might well be incompatible in other processes.

Thus we believe that the question of group-theoretic
solutions to the constraint equations is still open. It
may turn out that only two extreme alternatives are
possible: evasion or O(3,1) conspiracy, but the proof is
lacking.

VII. DISCUSSION AND CONCLUSION

We have seen above that the constraint equations
impose very serious restrictions on the trajectories and
residues of Regge poles in the neighborhood of t=0. We
have analyzed sume possible methods of satisfying these
constraints in the general case of the scattering of
particles of arbitrary spin and in several examples, in
particular the construction of an evasive solution, and
have indicated the experimental consequences. It is
clear, however, that these conditions, fundamentally,
have little to do with the Regge model itself. Any model
which uses as input the helicity amplitudes in the
crossed channel will run into the same difficulties.?? The
reason for this can be seen group-theoretically. The
reduction of Poincaré group down to the little group
proceeds quite differently according to whether the
total four-momentum is a timelike, spacelike, or null

22 Tt is possible that Weinberg’s approach to Feynman diagrams
[Phys. Rev. 133, B1318 (1964) ] may also suffer from this difficulty.
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vector, i.e., according as t=0 or {=0. The crossing
matrix, which relates the regions >0 and <0, has a
simple structure because the “amount of symmetry”’ in
the two regions is the same and therefore the number of
independent helicity amplitudes needed in each region is
the same. On the other hand, at {=0 there is greater
symmetry, hence fewer independent amplitudes are
required to describe the s-matrix, and therefore the
constraints. The attempts to study the situation at
t=0 by group-theoretic methods are fraught with
difficulty. The relevant groups for processes with
equal-mass particles or unequal-mass particles are
quite different. The symmetries hold only at one point
t=0. The O(3,1) or O(4) partial-wave amplitudes are
diagonal only at {=0, so away from ¢=0 it might be
necessary to have new poles appearing in the non-
diagonal amplitudes.

It is instructive to consider the situation at {=0 in
some less complicated theories than the Regge model.
For example, in single elementary-particle exchange
models, one always describes the exchanged particle as a
representation of the Lorentz group. Thus a p meson is
treated as a four-vector, an 4; meson as an axial four-
vector, and so on. This is so in both the Feynman-
diagram approach and in dispersion theory. Alterna-
tively, one could imagine describing p or 4; meson
exchange by means of a Breit-Wigner resonance in the
relevant crossed-channel partial-wave helicity ampli-
tude, and these two methods are not at all equivalent,
except in special circumstances.

Consider, for example, nucleon-nucleon scattering. In
the latter approach the 4; would appear as a resonance
in the {-channel amplitude fi7() at J=1, {= ma’ It
would thus contribute only to the amphtude fs in the
notation of Ref. (3). On the other hand, 4; exchange
calculated using dispersion-theoretic methods leads to a
contribution to F4, the invariant function which is the
coefficient of the axial coupling (ysv.). (vsv.), and
from this one finds a contribution to both f; and f;. In

fact one gets ) )
Si=—(*/m)fs,

which is just right to satisfy (1) as {— 0 (which im-
plies p?— —m?). The reason for this discrepancy is
clear. The axial four-vector behaves like an axial
three-vector at, and only at the point t=my4,2 Every-
where else it behaves like a mixture of an axial three-
vector and a pseudoscalar. Only the axial three-vector
part resonates and, close to {=my4,2 one could neglect
the pseudoscalar part. However at =0 it is essential to
have both parts in precisely the right proportions.

For p-meson exchange there is no discrepancy. One
would expect contributions to fz, f1, and f; by the
partial-wave approach, and this is what one finds on
treating the p as a four-vector with just electric coupling.
Moreover, the contribution to f; has an explicit factor
of ¢in it guaranteeing that (1) is satisfied. The difference
between the p and A4, cases lies in the fact that the p

(225)
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is coupled to a conserved current whereas the 4; is
not.z

Another example is nucleon exchange in the direct
channel of 7N — wN. Naively one might have tried
to describe the nucleon as a pole in the p-wave ampli-
tude with zero contribution to the s-wave. It is well
known that nucleon exchange as normally treated con-
tributes to both s and p waves and it is essential to keep
both contributions as s — 0.

In all these cases, in which the elementary-particle
exchange is fed into the invariant amplitudes of the
problem, there is never any trouble at ¢=0. This is be-
cause the decomposition into invariants does not
utilize the little group and is therefore a global process.
Thus = 01is simply not a special point. Thus parametriz-
ing a theory which is to be useful globally, i.e., for all 4,
in terms of the amplitudes of a single channel, does not
seem to be a very transparent or logical scheme. In-
deed Regge theory seems to be the only case where this
is done, and this, presumably, because of too naive a
generalization of the potential-theory results to the
relativistic situation.

All this leads one to suspect, therefore, that it
ought to be possible to formulate Regge-pole theory in a
covariant form which would be a more natural ex-
tension of the potential situation to the relativistic one,
and in which the question of constraints at {=0 would
not arise. It would, of course, be possible to reexpress
the content of such a theory in terms of Regge poles as
presently used, presumably in a unique way, and this
would then be equivalent to giving a unique prescrip-
tion for the solution of the constraint equations .
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APPENDIX I

For convenience we list here some relevant values of

the functions
dyI=dy (0=7/2)
and

d
AT = gédxu’ (0| ors2-

I (0=7/2).

J=3%:
—

®
(N

I

— R

-

1 —
—X .
V2 - 1 1

23 These matters have been discussed in more detail by L.

Durand, ITI, (see Ref. 5) and J. C. Taylor, Clarendon Laboratory
Report, 1967 (unpublished).

[
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J=1:
I w1 0 —1
1 1 -2 1
X0 (vz 0 —v:'z).
=3 -1\t vz g
N b= 3 3 -3 —3
3 (1 =3 3 -1
—1~>< 3 v3i —1 -1 V3
02 -3 V3 1 -1 -3
s -3 U v ¥ 1
I u— 2 1 0 -1 -2
2 (1 =2 46 —2 1
1 2 -2 0 2 =2
IX 0 |46 0 —2 0 4/6
—1 2 2 0 -2 =2
-2 U1 246 2 1)
—odx,/ (0)] o=nra
J=%
I T | 3 -3 =3
% F -3 -3 3
1 3 M 5 -5 -3
I T R S S
71 -5 =3 -3 3 3
N 1t 0 -1
1 (-1 o0 1
3x 0 0 —2 0
—1 1 0 —1

APPENDIX II

We list here an enumeration of the independent
amplitudes for some processes with arbitrary spin.
(i) Elastic fermion-fermion scattering:

Fi+Fy— Fi+F,

with helicity transitions (f\'fy| fifs). Independent
elements:

>0 () =15 fi'>f,
(b) fi'=—fo; [AZ—=f/,
© f'>f>0; all f, f/,
d fi'>=f£>0; all f, fi'.
Number of elements=1M (M +2), where

M= (2s1+1)(255+1).
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(i) Elastic scattering of identical fermions:
F+F— F+F

vvl'ith helicity transitions (fi'fo’|fife). Independent

elements:

f2’> 0: (a) le= fe with — f'<(fi= fi)< f2 and with
fi'>—f1>0,

(b) fo'=—fewith — f'<(fi=— ) S,

(C) f2'> f2> 0 with f1= :l:fll and with f]'?f f1,
fi/ and fi of same sign, and — f2'< fy’
<f,

(d) fi'>—f>0;all f1, fi'.
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Number of elements=3}R[8(R34-1)— R(2R—1)], where
R=s+1%.
(i) Elastic fermion-boson scattering:

F4+B—F+B
with helicity transitions (5’ f’| 5 f). Independent elements
f>0: (a) ¥’=0;allband f,
(b) ¥,

b#0 and same elements as for

Fi+Fy— F1+F,.
Number of elements=1M (M +-2), where
M= (2sp+1)(2sp+1).
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Regge-Pole Couplings to Nucleons in a Field-Theory Model

ArTtHUR R. Swirtf*
Department of Physics, University of Wisconsin, Madison, Wisconsin
(Received 15 September 1967)

Perturbation theory is used to consider the coupling of both normal- and abnormal-parity Regge poles
to nucleons. The kinematic dependence of the residue functions on the trajectory function is obtained. All
spin-flip amplitudes have fixed poles in both the angular momentum and energy variables. One of the
abnormal parity trajectories satisfies a conspiracy condition corresponding to Freedman and Wang’s
class IT. The daughter pole in this case moves exactly parallel to the leading trajectory, unlike the daughter

arising from unequal-mass kinematics.

I. INTRODUCTION

ERTURBATION-THEORY models of Regge poles
have been useful as a technique for testing various
conjectured properties of Reggeized scattering ampli-
tudes.! On the other hand, all of the work on summing
infinite classes of perturbation-theory diagrams has
involved spinless particles ; while the results so obtained
are interesting, they are not particularly useful for the
phenomenologist who attempts to fit experimentally
observed high-energy cross sections with Regge poles.
Particles with spin are always involved. The problem
of summing diagrams with internal particles having
spin has not been solved.? The difficulties due to the
necessity of including more than just simple ladder
diagrams have made the analysis of eighth-order dia-

+ Present address: Physics Department, University of Massa-
chusetts, Amherst, Mass.

* Work supported in part by the University of Wisconsin Re-
search Committee with funds granted by the Wisconsin Alumni
Research Foundation, and in part by the U. S. Atomic Energy
Commission under Contract No, AT (11-1)-881, # COO-881-119.

1 For a complete discussion of the techniques and justification
of high-energy perturbation theory, as well as references to the
problems to which it has been applied, see R. Eden, P. Landshoff,
D. Olive, and J. C. Polkinghorne, The Analytic S Matrix (Cam-
bridge University Press, New York, 1966), Chap. 3.

2], C. Polkinghorne, J. Math. Phys. 5, 1491 (1964); J. V.
Greenman, ibid. 7, 1782 (1966); 8, 26 (1967).

grams prohibitive ; summation of higher-order diagrams
is out of the question. In this paper we consider the
more modest problem of coupling previously developed
Regge poles to external states involving particles with
spin. Only the external states and at most one internal
line involve spin. The motion of the Regge poles in the
complex / plane is assumed to be determined entirely
by the coupling to the lowest-mass intermediate states
which are composed of spinless scalar and pseudoscalar
particles. If real Regge trajectories are dominated by
nearby singularities, the model is a quite reasonable one
for determining the coupling to higher spin states.

We analyze the coupling of boson trajectories of
both parities to nucleon-antinucleon states. The method
is applicable to states containing particles of any spin,
but the nucleon system is the most interesting one from
the experimental point of view. We obtain expressions
for the asymptotic form of the ¢-channel invariant
helicity amplitudes for the processes MM’ — MM,
NN — MM’, and NN — NN; M denotes a spinless
meson whose parity depends on whether we are consider-
ing normal or abnormal parity trajectories. The kine-
matic dependence of the Regge residues on the trajectory
function a(f) is such that the coefficient of the leading
power of (—s/so) is I'(—ea) for every amplitude con-



