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With the aim of extracting maximum information on nuclear charge structure at large distances, we
improve the theory of muonic x rays in Bi"9by taking into account all known effects which could change
the binding energy by as much as 0.1% We give improved estimates of vacuum-polarization and Lamb-
shift effects, and incorporate Cole s recent estimate of nuclear polarization e6'ects. Using these corrections
to analyze recent experiments on muonic x rays, we obtain parameters for the charge distribution in Bi'0~

which, when compared with parameters from electron scattering, indicate a small discrepancy. We suggest
that this can be explained by a proton "halo, " by which we mean a small fraction of the charge ( 1oro)

spread over large distances ( 8 F); we show that such a "halo" is not inconsistent with electron-proton
scattering and brings the theory of the Lamb shift in atomic H and D into good agreement with experiments.
We Gnd no experiment with which such a model is inconsistent.

I. INTRODUCTION

"UONIC x rays and. electron scattering provide
- ~ alternative methods of investigating the electro-

magnetic structure of nuclei. Recently, measurements' '
have been made to high accuracy on heavy nuclei
using both methods. This affords the possibility that
careful analysis of muonic x rays may reveal structure at
small momentum transfer not apparent from electron
scattering results. To do this we must make sure that
all corrections to muonic x rays not resulting from
nuclear structure are properly taken into account. We
shall, in particular, try to understand corrections of
order 0.1% (a few keV) to the muonic x-ray spectrum
of a spherical nucleus, Bi"'.

In Sec. II, we give improved estimates of vacuum-
polarization and Lamb-shift corrections to muonic
energy levels. For the vacuum-polarization contribu-
tion, we extend the asymptotic formula and give a
careful estimate of its validity. For the Lamb shift, we
find that many previous estimates are not valid, and
we obtain results, to about 40% accuracy, which are
larger than Hill and Ford's order-of-magnitude esti-
mate of 1 keV or less.'

Of the other effects we discuss in Sec. II, the most
important is nuclear polarization, which has recently
been treated carefully by Pieper and Greiner' and by
Cole. Other energy shifts due to nuclear multipole
moments, electron screening, nuclear motion, and
"granularity" are discussed and estimated to be small.

In Sec. III, we give parameters for the charge dis-
tribution of Bi'" which we have calculated from recent
experiments on muonic x rays, and compare these with
similar parameters obtained by electron scattering. We
find a discrepancy larger than one standard deviation.

In Sec. IV, we suggest a tantalizing explanation for
this discrepancy in terms of a proton tail or "halo, "
by which we mean a small fraction of the charge
spread out over an anomalously large distance' of the
order of 10 F. We point out that such a halo could
also explain the present small discrepancy between
theory and experiment for the Lamb shifts in atomic
hydrogen and deuterium. We also show that such a
halo is not in disagreement with other experiments
which might be expected to detect it. In fact, the
electron-proton scattering data at low momentum
transfer apparently indicate the presence of such a

* Supported in part by the U. S. Atomic Energy Commission.
t Present address: University of Surrey, England.' T. T. Bardin, R. C. Cohen, S. Devons, D. Hitlin, K. Macagno,

J. Rainwater, K. Runge, C. S. Wu, and R. C. Barrett, Phys.
Rev. 160, 1043 (1967).

G. J. C. van Niftrik and R. Engfer, Phys. Letters 22, 490
(1966).' H. Anderson, in Proceedings of the International Conference
on Electromagnetic Sizes of Nuclei, Ottawa, 1967 (to be published).

4D. L. Hill and K. W. Ford, Phys. Rev. 94, 1617 (1954).
Frroneous estimates of the Lamb shift in muonic atoms have

been given by A. B. Michelwait and N. C. Corben, Phys. Rev.
96, 1145 (1954). Also, see references listed in footnote 1 of this
paper and Ref. 9.

~ W. Pieper and W. Greiner, Phys. Letters 24B, 377 (1967).
R. K. Cole, )Jr., Phys. Letters 25$, 178 (1967).
This possibility has also been considered by W. E. Lamb,

Ir. (private communication to G. W. E.). Our ideas evolved from
a suggestion by Professor T. D. Lee that aa anomalous behavior
of the proton form factors at small momentum transfer could be
responsible for the (then present) hyperfine splitting discrepancy
in hydrogen (private communication to S. J. B.).
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charge distribution; the usual assumption that the
proton charge form factor is essentially a linear func-
tion of momentum transfer squared (q') for q'(m ' has
not been demonstrated experimentally. A similar halo
model for the neutron can also account for the known
features of the neutron charge form factor.

II. THEORY AND CORRECTIONS TO
MUOMC X RAYS

—(Zn)4 m

8n4 3E
(2.1)

the contribution'0 for a point nucleus. The nuclear
motion must also be taken into account in the definition
of the nuclear charge form factor. These corrections are
less than 10 4 of the binding energy and are neglected.

(b) Nor4spheri cat compor4emts of the charge distribution
The Bi"' nucleus is very nearly spherical (consisting
of one proton added to a doubly-magic core). ~e
assume that the sects of nuclear deformation and the
discrete charge distribution of protons in the nucleus

4 R. C. Barrett (to be published) and S. Cohen, Phys. Rev.
118, 489 (1960).

1' G. E. Pustovalov, Zh. Eksperim. i Teor. Fiz. 32, 1519 (1957)
t English transl. : Soviet Phys. —JETP 5, 1234 (1957)].

'0 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and T'mo-Elect~on gfoms (Ac@de@pc Press Enc. , New York, 1957),
Eq. (42.7).

The basic theory of muonic energy levels for Bi"'
consists of the Dirac equation for a muon (with re-
duced mass) in the static spherical charge distribution
of the nucleus. Corrections to this theory are discussed.
below. The charge distribution parametrization is dis-
cussed in Sec. III. The Dirac Hamiltonian includes
the vacuum-polarization potential due to free electron-
positron pairs as given in Eq. (2.2). The results of this
paper are obtained by 6nding a best fit of the nuclear
parameters to the observed x-ray spectrum. ' The Dirac
equation was solved numerically. '

Before we can conMently compare the obtained
bismuth charge distribution with that given by the
analysis of electron scattering, we must make sure all
corrections to muonic x rays not resulting from nuclear
structure are correctly taken into account. Our dis-
cussion of neglected, contributions is meant to comple-
ment and bring up to date previous treatments of
Pustovalov, ' and Hill and Ford. We will attempt to
include all corrections which a6ect the energy levels to
01%%uo.

The differences between the above theory and an
exact treatment of bismuth muonic x rays as given by
quantum electrodynamics and nuclear physics are the
following.

(u) Fir4ite r4uclear mass The nu. clear motion is nearly
entirely taken into account by using the reduced. mass
in the Dirac equation. The residual contribution not
accounted for by this prescription is expected to be of
the order of

(granularity) contribute similarly to the charge dis-
tribution obtained from the unpolarized electron elastic
scattering differential cross section and to the charge
distribution obtained by htting muon x-ray fine
structure.

(c) 1Vuclear polurisatior4. There have been two recent
attempts to estimate the contribution of nuclear polari-
zation to muonic levels using speci6c models. Cole'
has calculated the effect of the giant dipole resonance
and finds the binding of the 15, 28~~2, 2E'3~~, and 3D
states to be increased by 4.6, 1.6, 1.4, and 0.1 keV,
respectively, in bismuth. Cole considers this to be a
lover bound; the actual nuclear polarization will proba-
bly be within a factor of 2 of these values when other
intermediate states are included. Pieper and Greiner'
have performed, a similar calculation, but which in-
cludes all multipole excitations, and obtain somewhat
smaller results for Bi"'.

To a certain extent, nuclear polarization is also con-
tained in the electron scattering form factors; detailed
calculations have not been made to our knowledge.

(d) E/ectror4 screer4ir4g The. effect of the atomic
electrons on the muon energy levels in Bi'" has been
calculated. The electron density was taken to be that
obtained, in a relativistic self-consistent calculation"
for Hg, modified by a factor (Z/80)'. The potential
due to the electrons is of the form a—br', where
o=(1—n'Z')'~' (a b)0). Thus the screening reduces
the transition energies. We ignore the constant term a
which has the effect of raising all the levels by a con-
stant amount (several keV in magnitude). The effect
of the second term is very nearly proportional to
(3u' —l' —/)'~ except for the lowest muon levels, and
varies from 4.6 eV for the 1S state to 190 eV for the
SG states. Thus the screening eBect can be ignored for
the transitions in which we are interested.

(e) Vacuum polarisatior4. For a spherically sym-
metric charge distribution p(r), the vacuum polariza-
tion potential due to virtual free electron-positron
pairs is"

H(r) =-,'K, ( 1)( 1)1/2—em( —2rr/) .)i 1+
y'

(2.3)
where K,= 1/m ~386 F is the reduced Cornpton wave-
length of the electron. The asymptotic expansion of

"S. Cohen, University of California Radiation Laboratory
Report No. UCRL-8389, 1958 (unpublished)."K.W. Ford and J. G. Wills, Nucl. Phys. 5S, 295 (1962).

4o, " r'
V~(r) =— dr' PH( l r r'

~ ) H(r—+r')gp(r') —(2.2)—
3% {)

with
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H(r) for r«K, is

Pry'l 1 3~ r 1tr '
m r)'

a(r)-a(0) =r ini —
i

6 8 l(s 25K. 12 Ks~

strength expansion'r is adequate (to 30% accuracy)
for the low-lying states because the muon does not
see a singular Coulomb potential. We may thus use the
usual lowest-order formula'~

+o
I

—
I
» —I, (24)

~.i
~+LS

cE ss 11 3 1
(V'V) ln + +

3xm2 2hc 24 8 5

where le=0.557+ is Euler's constant. We have carried
out calculations using both the exact form PEq. (2.3)j
and the asymptotic expansion. The 6rst two terms in
Eq. (2.4) which were used in previous calculations, ""
give H(r) to an accuracy of 2% for r(50 F; the terms
through order (r/K, )' are needed to yield the same
accuracy up to r& 180 F and have been included in our
analysis of the muon spectra. Higher-order iterations
of this second-order vacuum-polarization potential have
been taken into account by including V, in the Dirac
Hamiltonian. The effect of the vacuum-polarization po-
tential due to muon pairs has been included with the
Lamb shift as the —

s in Eq. (2.5), where we find the
contribution to be small. Vacuum polarization due to
hadron pairs is implicitly included in the nuclear form
factor.

We have not included the fourth-order vacuum-
polarization potential, " a correction of relative order
cr/s. —1/500. We have also ignored the influence of the
nuclear charge distribution on the virtual electron
pairs. Wichmann and Kroll" have shown that this
correction is negligible ( 2X10 ' times the muon
binding energy) even for uranium with a point charge
distribution.

(f) Other radiatine corrections of order rh Previous
estimates of the Lamb shift in muonic atoms have
used the invalid argument that this contribution is
a priori of order nz,s/m„' smaller than that of electron-
pair vacuum polarization. Actually the vacuum-polari-
zation poten. tial has the assumed 1/m, ' dependence only
for r))'A, ; the important region for muonic atoms is
instead r((X ~386 F in which case the m, dependence
in Kq. (2.4) is logarithmic. In fact, the Lamb shift
would be comparable" to the electron-pair vacuum-
polarization contribution in heavy muonic atoms if the
nucleus were a point charge, and turns out to be smaller

only because the potential is not singular at small
distances.

The usual Zn expansion of the Lamb-shift expression
might be expected to fail for muonic bismuth, with
Zn~0. 6, but we And in Appendix A that the Geld

"H. L. Acker, G. Backenstoss, C. Gaum, J. C. Sens, and S. A.
De Wit, Nncl. Phys. 87, 1 (19665.

'4 M. Baranger, F. J. Dyson, and E. E. Salpeter, Phys. Rev.
88, 680 (1952)."E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 843
(1956).' We find a Lamb shift of ~100 keV in the 1S state of muonic
bismuth with a point charge by using m ~ m„and 2=83 in the
point-charge results of D. F. Mayers, G. E. Brown, and E. A.
Sanderson, Phys. Rev. Letters 3, 90 (1959).

n 2dV
+ (— e L), (2.5)

8m'' r dr

~Br,s= 3.0 ~1.0 keV,
0.4 &0.3 keV,
0.7 &0.3 keV,

= —0.04&0.02 keV,

15
2-P1/2

2I 3/2

3D3/2 ~ (2.7)

The error limits here are due primarily to the un-
certainty in the value of the Bethe logarithm in Eq.
(2.5).

III. NUCLEAR CHARGE DISTRIBUTION

The most frequently used parametrization of the
radial distribution of nuclear charge is the Fermi shape

p(r) "1/51+c' "3, (3.1)

where c is the half-density radius and t= (2 1n9)a is the—
90-10% fall-off distance. We follow this somewhat arbi-
trary choice for convenience, although there are a wide
variety of two-parameter distributions which can be
adjusted to 6t experimental measurements. In the case
of muonic atoms, the E and I- x-ray transitions enable
us to determine only the lowest moments —J'd'r p(r)rs
and J'd'r p(r)r' —and little else. In principle, higher
moments of the charge distribution would be given by
higher transitions but these are very close to the point-
charge values and the volume shift is no more than one

» R. Karplus, A. Klein, and J. Schwinger, Phys. Rev. 86, 288
(1952); G. W. Erickson and D. R. Yennie, Ann. Phys. (N. Y.)
35, 271 (1965);35, 447 (1965).

where Ae is the average excitation energy defined by
the Bethe sum. As shown in Appendix A, it is su%.cient
to our accuracy to approximate Ae„by the binding
energy of the state. The (—s) term corresponds to the
vacuum polarization of muon pairs. The 8 and the spin-
orbit term correspond to the muon anomalous mag-
netic moment.

Here
(V'V) = 4rZn(p) (2.6)

is proportional to the probability of overlap of the
muon wave function with the nuclear charge distribu-
tion. We note that we now have a non-negligible Lamb
shift for the 2P states since the overlap is 10% in
contrast to the vanishing overlap with point nuclei.
The expectation values in Kq. (2.5) have been evaluated
numerically (and are tabulated. in Appendix A) and
we find.
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TABLE I. Muonic x-ray energies in Bi' ' (in keV). The experi-
mental energies are from Bardin et al. (Ref. 1). The next two
columns show the theoretical fit to the energies for c and t as
given in Sec. III. The corrected theory takes into account the
muonic Lamb shift and a nuclear polarization estimate. The last
column gives the energies predicted from the electron scattering
parameters of Ref. (19). LThese predictions may be misleading
since a change iri c of 0.02 F would bring the E x rays into agree-
ment with experiment. There would still be a discrepancy of
about 3 keV in the L x rays, however. j

Transition

Prediction
from

Theory Theory electron
Experiment (uncorrected) (corrected) scattering

2PIP—1S
2P@2-1S
3D3/2 —2PI/2
3D5/2 2P3/2
4Fggg 3D3/2
4F—3Dgp
5G-4F

5841.5+3.0
6032.4~3.0
2699.5&1.0
2552.8+1.0
996.6&1.0
961.8+1.0
444.5a1.0

5842.0
6032.2
2698.8
2553,5
996.6
961.1
444.9

5841.8
6032.3
2699.0
2553.3
996.7
961.2
445.0

5854.6
6046.0
2704.8
2558.2
996.8
961.2
445.0

order of magnitude larger than the experimental errors.
This restriction to lower moments can also be seen in
the expansion of the Fourier transform of the charge
distribution,

f(q') =

r2 r4 ("")
qs +q4 . . .+ ( 1)nqsn +

6 120 (2ts+ 1) I

18 The corresponding moments of the bismuth charge distribu-
tion are (r )" =5.52 F& (r4)'~ =5 87 F (y =1.5) for the "uncor-
rected" spectrum, and (r )r"=5 52 F, (r ) ~ =5.89 F (g =0.9) when
the muonic Lamb shift and nuclear polarization are included.

» G. J, C. van Niftrik (preliminary result, to be published)
(private communication from R. Engfer). The corresponding
nroments are (r )'~ =5.49 F, (r )v'=5 81 F. .

in which the expansion coefficients are the moments
divided by increasingly large numbers. Since the Gnite
nucleus, with (r'")—R'", restricts bound-state momenta
to q(1/g, it is apparent that the higher terms are seen
only in scattering experiments with q) 1/R or in precise
bound-state experiments.

'@le have carried out calculations of muonic x-ray
transition energies in order to compare our results with
those from low-energy electron scattering experiments.
The results of a recent measurement' of the muonic
spectrum of Bi"' are shown in Table I. If none of the
corrections discussed in Sec. II are included, the Fermi
shape parameters which correspond to this spectrum
are c=6.66&0.04 F, 3= 2.32&0.10 F. If we take into
account the Lamb shifts of Eq. (2.7) and Cole's lower
bound' of the polarization of the nucleus by the
muon, we obtain c=6.63~0.03 F, 3=2.40~0.08 F"
The t parameter is increased even further if the nuclear
polarization is increased further.

The analysis'9 of a recent 50-MeV electron scattering
experiment' on Bi' ' gives the results c=6.74&0.08 F,
t= 2.00&0.16 F.

We have also analyzed the charge distribution for
Pb" using recent accurate muon x-ray measurements'
and have compared the shape with that obtained from
electron scattering on natural lead. ' The muon results
again indicate a larger tail for the nucleus. "

The discrepancy between the muonic x ray and
electron scattering results may be due to the arbitrary
choice of the Fermi shape for the charge distribution.
The electron scattering results are insensitive to varia-
tions in the tail of the charge distribution, while
muonic levels are very sensitive to such changes. The
tail of the Fermi shape, t. "~, falls off more slowly than
the results of nuclear matter calculations or single-
particle shell-model calculations. ""However, if we
use a shape with a shorter tail, we find a larger dis-
crepancy. (If a parametrization yielding a larger (r')'"
and (r4)'14 should be used, this in itself might be a con-
sequence of the proton halo proposed in the next
section. )

It shouM be noted that the analysis of the electron
experiments, which are based on a partial wave ex-
pansion, have not yet taken nuclear polarization
(dispersion corrections) into account. At 300 Mev,
0=5', positron scattering on Bi"' shows a 2.2 standard
deviation discrepancy with the no-polarization partial-
wave predictions. "

IV. PROTON HALO

The disagreement between the nuclear charge dis-
tributions obtained from muonic x rays and electron
scattering may be a signilcant discrepancy and should
warrant a careful investigation of possible corrections
such as the effect of nuclear polarization and higher-
order radiative corrections in the electron scattering
analysis. On the other hand, the bound muon interacts
at small q' and may well be observing a long charge
tail on the nucleus; the results given in this section
show that satisfactory fits to the muon x rays are ob-
tained by combining a charge tail with the Fermi
charge distribution obtained from electron scattering.

~ Discrepancies between muonic x rays and electron scattering
in heavy nuclei have also been noted by L. R. B. Elton, in Pro-
ceedings of the International Conference on Electromagnetic
Sizes of Nuclei, Ottawa, 1967 (to be published); and D. G. Raven-
hall (unpublished). The electron scattering data and muonic
x rays can be reconciled by introducing an additional shape
parameter, perhaps in the form of a factor (1+or2) multiplying
Eq. (3.1), with a)0. This increases the tail of the charge dis-
tribution for a given c and t. We wish to thank Dr. D. G. Raven-
hall for informing us of his work with B.C. Clark and R. Hermann
concerning such three-parameter shapes. We shall suggest a
more radical modification of the charge distribution in Sec. IV.

"H. A. Bethe, in Proceedings of the International Conference on
nuclear Physics, Gatlinburg, 1966 (Academic Press Inc., New
York, 1967); Bull. Am. Phys. Soc. 12, 83 (1.967).

22 L. R. B.Elton, in Proceedings of the Williamsburg Conference
on Intermediate Energy Physics, 1966, p. 48 (unpublished).

~ J. Goldemberg, J. Pine, and D. Yount, Phys. Rev. 132, 406
(1963); A. Browman, B. Grossetete, and D. Yount, ibid. 143,
899 (1966).T. de Forest and J. D. Walecka t Advan. Phys. 15, 1
(1966)j review the theoretical treatment oi the dispersion
corrections.
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TABLE II. Lamb-shift comparisons (MHz).

H

D

He+
He+(m=5)
He+(I=4)
Lj++

Theory'

1057.56&0.08

1058.82&0.14

14 040.0 ~4.0
4182.7 ~1.2
1768.4 +0.5
62 743&43

Exp erimentb'

R 1057.86&0.10
L 1057.77+0.10
R 1059.19~0.10
L 1059.00~0.10
14 040.2 ~4.5

4182.5 ~14
1766.0 +7.5
63 031+327

Discrepancy

0.30+0.18
0.21+0.18
0.37+0.24
0.18+0.24
0.2 &8.5—0.2 +15—2.4 ~8.0
288&370

Increase of
theory for

tripled
(r')p.or

0.25
0.25
0.25
0.25
4.1
1.2
0.5

21
a See Ref. 27.
b In this column, the letters R and L refer to Refs. 24 and 25, respectively.
e The errors in this column are ~3 standard deviations.

It is interesting to speculate, however, that this
charge tail may be due to an anomalous charge dis-
tribution on the protoN which we call the proton halo
and shall now describe. 7

To motivate our introduction of this "halo" we turn
our attention to quite a diferent realm of atomic
structure: the Lamb shift, not in heavy muonic atoms,
but in ordinary atomic hydrogen and deuterium. The
most recent theoretical and experimental numbers are
given in Table II. These include the "e/Js" value of n
in the theory, and Robiscoe's corrected version'4 of his
and Cosens's measurements, which are now in essential
agreement with the results of Lamb et al.~5 As shown
in the third column, there remains a discrepancy larger
than the sum of the estimated limits of error of both
theory and experiment (more than three staldurd depia

fioes); this discrepancy is about the same for both H
and D":theory is about ~ MHz below experiment.

Now, the effect of the finite nuclear size on the
Lamb shift is given by'7

~&LS=
4Z4Ry (r')

7

3R 80
(4 1)

where r is the charge radius of the proton and ap is the
Bohr radius of the atom. If we assume, as usual, that
the proton has a root-mean-square (rms) charge radius
of 0.8 F—=Rp we find that this term contributes 0.12
MHz to the Lamb shift in H. W could explain the
discrepancy if, instead of taking the usual value, we
assumed that (r') were much larger. This would be the
case if the proton had a "halo, "by which we mean that
a small fraction ~ of its charge would be distributed
over a distance much larger than Rp. For a proton
having a halo with rms radius RH»R0 and a reduced
body with rms radius Rb—Rp, the mean square radius is

(r') . = (1 e)Rp'+eRgP. — (4.2)
~ R. T. Robiscoe, Phys. Rev. (to be nblished); S. J. Brodsky

and R. G. Parsons, iNd. 163, 134 (1967 .
2~ S. Triebwasser, E. S. DayhoG, and W. E. Lamb, Jr., Phys.

Rev. 89, 98 (1953).
'6The discrepancy is further increased by 0.06 MHz if the

value of n from the fine-structure measurements is used.
"Equation (4.10b), Erickson and Yennie, Ref. 17.

The Lamb-shift contribution of Eq. (4.1) would be
tripled (yielding the desired increase of s MHz in H
and D) if (r')„,„=3Rp' or

eR~' 3Rp' ——(1—p—)R '~2R ' (4.3)

This can be achieved with any value of ~ and an ap-
appropriate choice of RH. Figure 2 will show ~ as a
function of RH for R~= Rp and for Rb=0.9R0.

On the other hand, the eGect of the finite nuclear
size on the hyperGne splitting of the 1S state is approxi-
mately given by"

()
~~hf = 2 +hfs ~

Cp
(4.4)

eR~/Rp (4.6)

By combining this with Eq. (4.3), and assuming for
simplicity RH&R& and ~&&j., we find the approximate
restrictions

e&1/18 6% and Rrr&6Rp~5 F, (4.7)

if we are to have the desired Lamb-shift increase with-
out disturbing the hfs agreement. Taking 8~&F0 and

~ Because the hfs contribution is not found to be an important
limitation on a proton halo, we have only used the simple co-
ordinate-space form (4.4) given by A. C. Zemach, Phys. Rev.
104, 1771 (1956), Eq. (2.10). See also F. Gnerin, Ph. D. thesis,
University of Paris (Orsay), 1966 (unpublished); D. R. Yennie
and W. Grotch; (to be published); and Ref. 29 for recent treat-
ments of the proton corrections to the hyperfine structure. The
radiative corrections are summarized in S. J. Brodsky and G. W.
Erickson, Phys. Rev. 148, 26 (1966).

~ S. D. Drell and J. D. Sullivan, Phys. Rev. 154, 1477 (1967).

For the usual proton charge distribution this is —30
parts per million (ppm) of the total splitting (Es~,) in
hydrogen. If the proton halo has the same shape as
(but larger size than) the usual distribution, then the
hfs contribution is changed by the factor

mew r b rH
= (1—e) +s 1+«RIr/R p, (4.5)

0 r 0 r 0

assuming the reduced body also has the same shape as
the usual distribution. Since there is room only for
about 10 ppm error in the hfs theory, " then we must
have
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0.3

2—=3x —pR R

6 fa ) RH= 6F, 6'=3.7%
(b ) RH=IOF, 6'=1.3%

(C ) RH""16F, 6'=0,5%
(cI ) USUAL FIT: 6 = 0

1-G
Ep

q2 02

~it

d)
0, 1

R ~ ll

Rp=0. 8 F

2 R

]

Fxo.'1.&The slope function of
the proton charge form factor
(1—GE„)/gs (in F'). The three
upper curves show the effect of
a proton halo of charge s) e ( and
rms radius R~. The total pro-
ton rms radius is taken to be
tripled in order to fit the Lamb
shift in H. The usual fit to GE„
for small q~ corresponds to a =0.
The data are taken from Ref.
30.

I

2

q(F )

treating Eqs. (4.3) and (4.6) exactly would somewhat
weaken the restrictions, but would overcomplicate the
analysis at this point; these refinements are included
in Fig. 2, where it will be seen that the hfs is not an
important limitation.

For different restrictions on a proton halo let us
next consider the elastic scattering of electrons from
protons, which more or less directly measures the
electric form factor of the proton, G~„(qs), the Fourier
transform of the proton charge distribution. The deriva-
tive at the origin, G'(0) = —(rs)/6, is proportional to the
mean square radius of the charge distribution, so the
measurements at small q' may be expected to limit
severely the size of the proton halo. A glance at a plot
of G versus q', with the points all approaching G(0) = 1
in an apparently straight line near q2=0, would seem
to rule out the existence of a halo. However, the ap-
proach to G(0)=1 only verifies the charge of the
proton, and the slope of the straight line only gives the
approximate radius of the body. If the halo has XII
large enough that its form factor is negligible at the
observed values of q', then we could obtain a bound
on e by Gtting a smooth form factor to the data and
extrapolating back to Gs(0) =1—e. For a smaller EIr,
however, the halo and the body both contribute, and
the curvature of the form factor must be taken into
account.

To see more clearly the behavior of the form factors
at small q', let us plot (1—G)/q' versus q', as in Fig. 1,
using the data given by Wilson and Levinger a d

30

er an
others. The usual analysis fits a straight line

1—G (r')s (r')s

q2 6 120
(4 g)

3'D. Frerejacque, D. Benaksas, and D. Drickey, Phys. Rev.
141, 1308 (1966); T. Janssens, R. Hofstadter, E. B. Hughes,

to these data at small q'. A halo raises the q'~0 end
of the curve, and the value at q'=0 gives the total
mean square radius, (rs)/6. For very large Ezz (and
small e), the curve drops sharply from (r')/6 and the
halo contribution is negligible at the smallest observed
values of q'; the linear fit to the data then gives the
size of the corresponding reduced body of the proton.
For smaller E~, the halo will start raising the curve at
observed values of q'; such a trend is actually present
in the data if we ignore data at q2=0.3 F '. The curves
show (1—G)/q' for halos of various sizes which give
a ss MHz Lamb-shift increase; the (approximately)
straight line is for no halo.

In Appendix 3 we discuss the quantitative limits of
the halo due to electron-proton scattering. The findings
are summarized in Fig. 2. It is found that for XII&8 F,
halos are allowed which are consistent with the hfs
agreement and an increase in the Lamb shift of &0.15
MHz.z. At the least, one can conclude that the usual
assumption that the proton form factor is a linear
unction of q' for q'(m„' has not been experimentally

demonstrated.
Smce the e-p scattering does not restrict the Lamb-

shift contribution of a halo with XII&10 F, we now
seek a halo effect that will provide a stronger limit at
large XII than a bound on eRII'. Here we return to

and M. R. Yearian, sbsd 142, 922 (1966.); R. R. Wilson and J. S.
Levinger, Ann. Rev. Nucl. Sci. 14, 135 (1964), and previous
work cited therein, excluding the values from D. Yount and J.
to G(0) =1. The data have not been corrected for second Born

Pine we
contributions. From the positron-proton results of Y d

e estimate that the correction of this omission would raise
the data points in Fig. 1 by 0.008 for the lowest values of q' and
less than this for the other points. These changes would enhance

e indication of a halo, but in any event, are smaller than the
error limits given. Ke wish to thank Dr. F. Von Hip el for dis-
cussions on this point.
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IO

Fxo. 2. Restrictions on the~pro-
ton halo: allowed percentage ver-
sus rms radius. Upper limits are
given by the hyperfine structure
(hfs) in the ground state of H and
elastic electron-proton (e-P) scat-
tering using Eqs. (B1—B3). The
curves labeled LS show the halo
required to 6t the 0.25-MHz
Lamb-shift discrepancy in hydro-
gen. In each case the lower curve
corresponds to E.q=E0 0.8 F and
the upper curve to Rq =0.980

0.7 F. The Bi curves give the
range of halo parameters needed
to reconcile the Bi~' charge dis-
tributions obtained in electron-
bismuth scattering with our re-
sults from muonic I rays.
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muonic x rays, which have some dependence on the
fourth moment of the nuclear charge distribution and
thus will eventually provide a bound on &8~4 for large
enough XII. As seen in Fig. 2, the muonic x rays in Bi
indeed provide such a bound (and provide a stronger
restriction than e-p scattering for halos with Rrr) 8 F),
and moreover are found to give results consistent with
e-Bi scattering if we include a halo with e between the
two Bi curves in Fig. 2.

In Sec. III we have given the Fermi shape parameters
c and t resulting from a least-squares adjustment to the
experimental muon x-ray spectrum of Bi"'. We now
consider the eBect of introducing a proton halo as
described above. Folding protons with mean square
radius

into a nucleus with proton centers distributed with
mean square radius (r'&c yields a nuclear charge dis-
tribution with mean square radius

(3//3) '/' R/r
(F)

5
7

10
14
20

('%%uo)

7.0+2.8
2.9&1.2
1.1&0.5
0.5&0.2
0.2a0.1

(F)

6.68~0.03
6.67~0.02
6.68&0.01
6.69~0.01
6.70&0.01

(r2)1/2 (r4)1/4

(F) (F) x'

5.524 5.891 0.90
5.525 5.903 0.92
5.528 5.926 0.94
5.531 5.964 1.00
5.539 6.058 1.21

p7 —f Q

=(1—)H') +(') j+ L('& +('& j (49)
We obtain the total nuclear charge density by adding
a Fermi shape of reduced charge (1—c)Ze to a tail of
charge eze with a shape obtained by folding a uniform

TmLE III. Parameters of bismuth charge distribution with halo.

Proton halo of radius (5/3)'/sRrr into a uniform sPhere
of radius c. The fits to the x-ray data were obtained
for fixed values of XII and t by varying ~ and c. The
values of t were taken to be the upper and lower limits
given by e—Bi"' scattering. ' The results for both
limits are shown in Fig. 2. Table III lists the average
of these two limits, with an error interval given by
the rms sum of half this di6erence and the additional
difference that would double the value of &'. The
results take into account the corrections for the Lamb
shift and Cole's estimate of the nuclear polarization.
It might be noted that the values of X2 increase as XII
increases, indicating that larger halos should be re-
stricted more than the indicated trend of the Bi
curves in Fig. 2, probably more like a bound on ~R&4.

The above modiication of nuclear charge distribu-
tion may be expected to have eGects only of relative
order e 1% in e-Bi scattering. A more precise analysis
would determine the various scattering corrections to
this accuracy and simultaneously 6t p,-Bi x rays and
e-Bi scattering, but we expect the 6nal result to agree
with the present analysis.

Our conclusions on the presence of a halo on the
bismuth nucleus would be changed if nuclear polariza-
tion or other corrections turn out to be important in
the analysis of electron-bismuth scattering.

Let us note in passing that the measured neutron
form factor could also be easily interpreted in terms
of a halo of the same size and shape as the proton halo.
For zero charge we write

Gz (q') = —e Gs(q')+ e„Grr(qs) . (4.10)

The slope at q'=0,"
——',(r')„=Ga„'(0)=0.021 F' —,

' (Rp'/6), (4.11)
"V. E. Krohn and G. R. Ringo, Phys. Rev. 148, 1303 (1966),

and references contained therein.
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measured in the scattering of thermal neutrons by
electrons, then gives a mean square neutron radius

—-'Rs' (r')„=—e„Rss+ e Roars (4.12)

which may be obtained by adjusting e . For E&——Eo
and Rrl ——8 F, we find e„=——,'% of the proton's charge,
aI1d

Gz =(1/500)G~„(4.13)

for g'&0.3 F ', which is consistent with the G~„o
values obtained from electron-deuteron scattering. "

In any event, we note tha, t the neutron, with (r')„~
—~80' is smaller than the usual proton and is negligible
compared with the proton halos we have been con-
sidering. Hence even a large neutron excess in heavy
nuclei will not have a significant effect.

What are other consequences of a proton halo? We
have calculated the contribution of the halo to other
accurately measured level shifts. Since the mean square
radius is additive, as in Eq. (4.9), we see that (except
for a negligible contribution from the neutron) the
Lamb shift in deuterium is increased by the same
amount as in hydrogen. For other cases, we scale by

Z(2/n) sand obtain the results listed in Table II.
YVe note that in all cases except hydrogen and deuter-
ium, the effect is smaller than the error limits and thus
does not confhct with experiment.

We have also checked that the presence of a halo in
the phosphorous nucleus does not disturb the precise
determination of the muon mass from the 3D-2I' muon
x-ray transitions. "

The presence of nucleon halos also has negligible
effect on the Coulomb contribution to the nucleon-
nucleon scattering length and effective range. "

V. CONCLUSION

Although there are many theoretical objections to a
proton charge distribution with a long tail, ~ the relevant
experimental data do not rule out this possibility. On
the contrary, the low momentum transfer electron-
proton scattering data do seem to hint at such an
effect. Our analysis of the muonic x rays of Bi"' gives
a nuclear charge distribution with Fermi parameters
at variance with that obtained from electron scatter-
ing; a nuclear halo resolves this discrepancy. A halo
charge distribution on the neutron can 6t the known
features of the neutron charge form factor. Finally we
note that a proton halo numerically consistent with

"A. Petermann and Y. Yamaguchi, Phys. Rev. Letters 2, 359
(1959); G. Feinberg and L. Lederman, Ann. Rev. Nucl. Sci. 13,
441 (1963}.

» We wish to thank H. Lipinski for the computer programs
used for this analysis.

34In analogy with the usual explanation of nucleon form
factors, a halo radius of 8 F would seem to imply the existence
of low-mass (&100 MeV) particles which probably would interact
with known particles suKciently strongly to have been detected
heretofore. On the other hand, the smallness of & 1j0 could
indicate anomalous two-photon interactions with the proton.

the above data implies a doubling of the proton mean
square radius and brings the theory of the Lamb shift
in H and D into good agreement with experiment.
Thus in a number of different physical situations, dis-
crepancies between theory and experiment of more
than one standard deviation can each be interpreted
in terms of a proton halo of radius 8~8 F, and
positive charge ~0.01 e.

It should be noted that the above evidence (except
for the electron-neutron interactions) could be inter-
preted alternatively in terms of a long charge tail on
electrons and muons. '5

We feel that the basic theory and analysis of the
muon x rays given here is especially accurate due to
our treatment of nuclear polarization, vacuum polariza-
tion, and the muonic Lamb shift, which we hand to be
as important as the dispersion contribution. The theory
of electron-bismuth scattering, however, may need
further refinement, especially in the treatment of the
dispersion corrections. "Accurate low-energy scattering
experiments on isotopically pure lead would be desirable.

Finally, we should emphasize that our interpretation
of both the neutron and proton form factors depends
on the acceptance of the data usually quoted. Data
reduction for these quantities at low q' may have
introduced additional syst'ematic errors from radiative
corrections, etc." In the last analysis, however, the
most direct determination of the existence of a nucleon
halo would be given by the accurate measurement of
the proton and neutron form factors at lower values
of momentum transfer and better accuracy than here-
tofore obtained.

APPENDIX A: LAMB SHIFT IN HEAVY
MUONIC ATOMS

For the second-order Lamb shift in light hydrogenic
(i.e., one-lepton) atoms, the usual expansions" in
powers of the field strength h=Zn/r' work well be-
cause Zo. is very small. The expansion parameter is
effectively mZn for point nuclei for which integrals of
singular operators such as bs= (Zrr)'/r' obtain their
predominant contribution at distances r of the order
of the Compton wavelength of the lepton. Such an
expansion is thus questionable for determining the
energy shift of the E shell in atomic mercury" or
bismuth where xZo. 2. In heavy esmonic atoms, how-
ever, the Compton wavelength of the muon, X„2F,
is smaller than the nuclear radius E 7 F, so the field
strength becomes finite (owing to the finite extent of
the nuclear charge distribution) somewhat before the
relativistic region r A„ is reached. The relevant ex-
pansion parameter is thus not mZo. , but, say,

p 1/R ==30%%u
Sly E.

3' S. D. Drell (private communication).
3' See Sec. III."L.N. Hand (private communication).
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Evaluation of the leading higher-order term

(A1)

0 0 0 80 0 0|" 7 7

XXXXXXXX
OO

XXXXXXX

where p 1/R, yields results 25'po of the lowest-order
contribution for the 15 state. These may be good
estimates of the higher-order contributions, but we
shall not include them because our estimates of the
lowest-order contributions are only good to 30%%uo.

To evaluate the lowest-order contribution Eq. (2.5),
we need to evaluate or approximate the average exci-
tation energy Ae„ in the sum-over-states definition of
the Bethe logarithm, "

I
1'

XXXX
Ph

I0
XXX XXXXX

I0
X
OO

XX
O 4

XXX XXXXX

cu I0 O
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W~ 0
OOC C
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XX~ O OO
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ln
2Ae„

P ~ (n~ y~n') (n'~ LV, p]~n) 1n(m/2(E„—E ~ ()

—;(nl~'V(n)
(A2)

For a point Coulomb potential, the sum contains many
continuum states ~n') with momenta of the order of
Znnz, and for the 15 state one Gnds a value of Ae—8(Za)'m which is large compared with E„.However,
for a finite charge distribution of extent R))1/Znm,
the electric Geld in the matrix element

(A3)

or
I
&.—&i I

&~pi&
I
&i I+ (&- )-.-

6 MeV&keq&14 MeV;

will limit the contributing continuum states to those
with momenta

k'& 1/R

and energies

8 = 0"/2m & 1/2mR'= —', (K/R)'m/2.

For muonic bismuth, E &4 MeV, Ej~———10 MeV,
and the smallest excitation energy for the ground state
is E2I —E~B=6 MeV, so the mean value theorem gives
the range
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106 MeV
ln ~ ln 1.7a0.4. (A4a)

2hp& 2(10+4) MeV

Assuming that the average excitation energy level
might also be at E 0 for the other states, we will take
5&„—E„ to within a factor of 2. Since we are taking
a logarithm, this sort of uncertainty does not introduce
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O 0
XX
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Ctl g ~ I

I0 0 0
XXX
OO ~ Ch0

38 H. A. Bethe, Phys. I&ev. 72, 339 (1947).
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large errors. Thus

and

ln- ln(53/4) + ln2 2.5+0.7
2he2p

(A4b)

ln ~ ln (53/1.6) 3.5.
26esg)

(A4c)

The error limits in Eq. (2.'7) include these uncertainties
plus roughly 20%%uo for higher-order terms.

In Table IV, we have tabulated the average values

same bound as would be obtained in a 6 versus q' plot
by lowering the usual straight line parallel to itself
until it was 3 standard deviations from the Drickey
and Hand datum at q'=0.3 F ' and passed through
1—e ~ at q'=0. %e might note here that present
c-p scattering will not yield a smaller bound on e than
about 1% since this is the best accuracy (to date) of
the form factor measurements.

For smaller Rtr, we will (as we did in the hfs dis-
cussion) take the halo to be the same shape as the
usual proton 6t,

(X)-= dr(f'+ g') X «(f'+g')
G (q') = (1+q'Re'/12) '

(A5) but larger in spatial extent:

(82)

of various quantities X, where f/r and g/r are the
large and small components of the numerical Dirac
wave functions for the muon in the charge distribution
Eq. (3.1), with c=6.68 F and t = 2.25 F for 8i"'.

APPENDIX B: RESTRICTIONS FROM
ELECTRON-PROTON SCATTERING

In order to provide a rough quantitative limitation
on the halo from electron-proton scattering, let us
restrict the value of the total form factor

G(q) =(1- )G (q)+ G-(q)

to lie within 3 standard deviations of Drickey and
Hand' s" value 0.9731&0.0054 at q~=0.300 F ', since
this is the data point farthest from a smooth curve
which passes through the other data and rises to a
large value of (1—G)/qs at q'= 0. The 10 F halo shown

in Fig. 1 is at the limit of this restriction.
For very large R~, we have G~O, and the restric-

tion reduces to e&1.1%, taking Rt Rs. This is the

ee D. J. Drickey and L. N. Hand, Phys. Rev. Letters 9, 521
(1962)

Grr(q') = (1+q'Rrt'/12) ' (83)
this corresponds to a charge density proportional to
e &'~')")'~~. The maximum value of e allowed by the
restriction is given as a function of XII in Fig. 2. This
upper bound is found to be decreased for halo shapes
with more charge at large distances (such as a charge
shell at r=RIr) and increased for halo shapes with
more charge at small distances (such as a charge
density proportional to r 'e ~s"'~"). We will take the
upper curve as the weakest bound since it lies above
the curves for all the other halo shapes considered.

As we have noted before, taking the reduced body
smaller than the usual proton will weaken the halo
restrictions, raising the curves in Fig. 2. In order to
limit the body size, let us consider the form factor Eq.
(81) at large q', where eGrr will be negligible. The form
factor Eq. (82) is within 15% of the data4s and e(5%,
so Gs should agree with Gs within 20%. For very large
q', G scales roughly as 1/q4R', so we want Rs=Rs to
within 5%. Therefore, we can safely state that the
reduced body will raise the curves in Fig. 2 by less than
half the amount shown for Eg ——0.9 Ep.

e M. Goitein et al , Phys. Rev. L. etters 18, 1016 (1967), 1V.
Albrecht et at. , ibid. 18, 1014 (1967).


