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We explore possible realizations of chiral symmetry, based on isotopic multiplets of fields whose trans-
formation rules involve only isotopic-spin matrices and the pion Geld. The transformation rules are unique,
up to possible redefinitions of the pion field. Chiral-invariant Lagrangians can be constructed by forming
isotopic-spin-conserving functions of a covariant pion derivative, plus other fields and their covariant
derivatives. The resulting models are essentially equivalent to those that have been derived by treating
chirality as an ordinary linear symmetry brok. en by the vacuum, except that we do not have to commit
ourselves as to the grouping of hadrons into chiral multiplets; as a result, the unrenormalized value of gg/gv
need not be unity. We classify the possible choices of the chiral-symmetry-breaking term in the Lagrangian
according to their chiral transformation properties, and give the values of the pion-pion scattering lengths
for each choice. If the symmetry-breaking term has the simplest possible transformation properties, then the
scattering lengths are those previously derived from current algebra. An alternative method of constructing
chiral-invariant Lagrangians, using p mesons to form covariant derivatives, is also presented. In this formal-
ism, p dominance is automatic, and the current-algebra result from the p-meson coupling constant arises
from the independent assumption that p mesons couple universally to pions and other particles. Including
p mesons in the Lagrangian has no efkct on the ~-~ scattering lengths, because chiral invariance requires
that we also include direct pion self-couplings which cancel the p-exchange diagrams for pion energies near
threshold.

I. INTRODUCTION

~CURRENT algebra is useful because it allows us to~ obtain physical predictions from chiral sym-
metry. We have recently noted' that for soft-pion
processes the same predictions can also be derived
by a different method: Just use the lowest-order
graphs generated by any chiral-invariant Lagrangian.
The Lagrangian method has since been applied to pion
production, '

p decay, ' E interactions and decay, 4 and,
in various extended versions, to meson mass ratios
and decay amplitudes, ' and to the pion electromagnetic
mass diGerence. ' Opinions differ~ as to whether any
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fundamental signi6cance resides in the Lagrangians
that have been used, but there is no doubt that they
provide both a convenient method of calculation and
a valuable heuristic guide to theorems that can be
proved with current algebra.

There are two ways of constructing our chiral-
invariant Lagrangians, which mirror two diGerent views
of the meaning of chiral symmetry. The erst, coevee-
fiomal method' is to construct 2 to be manifestly chiral-
invariant, as if chirality were an ordinary linear sym-
metry like isospin. For example, in the o. model' the
~ and 0- fields form a four-vector coupled to nucleons
in the combination o+s~ ppyp, and the nucleon mass
arises from the nonvanishing vacuum expectation value
(0)p= trtIV/G. In a closely—related model" the Lagrang-
ian takes the same form, but with 0- replaced every-
where with $(rnsI/O)' —pp']'". Such models suffer from
a fundamental disadvantage: They hide the fact that
soft pions are emitted in clusters by derivative cou-

of symmetries remains obscure, the phenomenological Lagrangian
provides a suitable arena for their study. LJ. Schwinger, Phys.
Rev. 152, 1219 (1966);also Refs. 5 and 6, and private communica-
tion. g Others like myself remain uneasy at using a symmetry on
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remains obscure. Time will tell.
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plings from external lines. " For this reason, it proves
necessary to perform a chiral field-dependent rotation
which eliminates the nonderivative coupling of o. and
m and replaces it with a nonlinear derivative coupling
of the chiral rotation vector, identiGed as a new pion
Geld.

In the second, eomlimeur method, " one recognizes
from the beginning that chirality is not like other
symmetries, because it relates processes involving dif-
ferent numbers of soft pions. Therefore, the Lagrangian
is constructed so that it is invariant under chiral
transformations expressed, not in terms of isospin
matrices and y5 s, but in terms of isospin matrices and
the pion Geld. In this way we work from the beginning
with the nonlinear derivative couplings which emerged
only at the end of the Grst method.

The conventional method has the advantage of ex-
pressing the Lagrangian in a manifestly renormalizable
form. ' The nonlinear method has the advantage of
putting the Lagrangian in a useful form without our
having to work our way through a chiral rotation. One
other difference between the two methods is that the
second yields owly those results which can be obtained
from current algebra, while the Grst mixes up these
results with others which reAect our prejudices as to
how hadrons are grouped into chiral multiplets. For
instance, in the 0- model one assumes that the nucleon
is in a (s,0)+(0,—',) linear representation of SU(2)
XSU(2), and one finds that the unrenormalized value
of the weak-coupling-constant ratio g~/gv is unity; in
the nonlinear method we never have to ask to what
kind of chiral multiplet the nucleon belongs, and the
unrenormalized gz/gv can be anything we like. It is
not clear whether this should be counted as an ad-
vantage for the conventional or the nonlinear method.

This article will present a systematic development
of the nonlinear approach to chiral invariance. In Sec.
II we show that the most general possible nonlinear
pion transformation rule is equivalent to

P&,rrb j= —iX 'f-,'(1—X'm')8 s+X's s.sg (1.1)

where X. is the chiral generator (u, 5= 1, 2, 3) and X is
a constant. By "equivalent" we mean that any other
possible transformation law can be converted to (1.1)
by a suitable redefinition of the pion Geld."In Sec. III
we show that the corresponding transformation for a
general field f is

Lx,gg=) (tx ~)p, (1 2)

where t is the isospin matrix for P. (We do not limit
ourselves to the nucleon 6eld here; P could be the
field of a E meson, a baryon resonance, etc.) In Sec.
IV we show that a chiral-invariant Lagrangian can be

"S.Weinberg, Phys. Rev. Letters 16, 879 (1966).
~ See particularly, J. Schwinger, Ref. 5."It perhaps should be emphasized that we are free to use any

pseudoscalar isovector object as the pion neld; different choices
give different matrix elements off the mass shell, but they all
give the same 5 matrix.

Transformation of
symmetry-breaking

term

Four-vector (g= 1)
Tensor (iV =2)
Tensor (S=3)

~ ~ ~

er'; see Eq. (2.18)
er', see Eq. (2.21)

a0

0.20
0.35
0.55

~ ~ ~

0.06
0.12

—0.06
0
0.08

~ ~ ~

—0.11—0.09

C0/Cg

—7/2

95/14
~ ~ ~

-1/2—3/2

constructed simply by forming an arbitrary isospin-
invariant Lagrangian out of the P, their "covariant
derivatives, "

D„Q= c)„Q+2ih'(1+)'~') 't (~)&B ~)f (1 3)

and a pion covariant derivative,

D„~=(1+X'a') 'ci„~.

By studying the axial-vector current, we Gnd that

~=~.o ',
where Ii o is the unrenormalized value of the pion decay
amplitude. %e show in Sec. V that the linearly trans-
forming fields of the conventional approach can be
constructed from the er and P. In Sec. VI we explain
what differences may arise among current-algebra re-
sults for the pion-pion scattering lengths' "by show-

ing their value is entirely determined by the chiral
transformation properties of the symmetry-breaking
terms in 2 (see Table I). In Sec. VII we discuss the
possible role of the p meson, and show that the covariant
derivative (1.3) can be replaced with

sgot' pqf, (1.6)

provided we use the Yang-Mills Lagrangian for y, and

~4 The pion-pion scattering lengths were calculated using
current algebra by S. Weinberg )Phys. Rev. Letters 17, 616
(1966)g under the assumption that the symmetry-breaking term
in the Lagrangian is the 0 component of a chiral four-vector.

"We are not concerned here with the validity of the expansion
technique used in Ref. 14. It was clear from the beginning that
the low-energy m-2I. interaction might be so strong that current
algebra simply could not be used. However, the consensus of
those who have studied this problem is that the expansion tech-
nique used in Ref. 14 is at least self-consistent; i.e., it yields
scattering lengths small enough so that the unitarity corrections
are even smaller. See N. N. Khuri, Phys. Rev. 153, 1477 (1967);
F. J. Meiere, ibid 159, 1462 (196.7); J. Sucher and C. H. Woo,
Phys. Rev. Letters 18, 723 (1967); K. Kang and J. Akiba, Phys.
Rev. 164, 1836 (1967).J. Iliopoulos (to be published). In addition,
the successful application of current algebra to a wide variety of
multipion processes (discussed at the end of Sec. VI) provides
empirical evidence that the scattering lengths are small.

TAnr. z I. Values of the pion-pion scattering lengths (in pion
Compton wavelengths) under various assumptions about the
chiral transformation properties of the term in the Lagrangian
which breaks chiral symmetry. The rows labelled with a value
of E' represent the cases where this term transforms according
to the representation (iV/2, cV/2), i.e., like a traceless symmetric
tensor of rank S.The last two rows represent the possibility that
the symmetry-breaking term is simply —$m sos', with ss de6ned
to transform according to Eqs. (2.18) or (2.21). (The arst,
second, and last rows present the results of Refs. 14, 18, and 12,
respectively. )
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II. TRANSFORMATION OF THE PION FIELD

We will first show that the nonlinear transformation
indgced by chiral SU(Z)&&SU(Z) on the Piorb field is
Naive, up to possible redefinition of the fields.

The operators of chiral SU(2)&&SU(2) will be de-
noted T, X„with a= 1, 2, 3; they satisfy the familiar
commutation relations

[T~,Tb) begb~Te i

[T.,Xb) = ie.b,X.,

[X„Xb]= ie, b,T,

(2.1)

(2.2)

(2.3)

We will allow the transformation induced by X on
the pion field m. b to be completely general in form, i.e.,

[X.Pbj = —-if.b(22), (2.4)

where f b(22) is as yet an arbitrary function. On the
other hand, isotopic spin is an ordinary symmetry, and
its action on ~ will be required to take the usual form:

[Tag b) =«a bc&c ~ (2.5)

The restrictions imposed by the commutation rela-
tions (2.1)—(2.3) on the transformation function f,b(22)

can be most easily determined by using the various
Jacobi identities of 22 with pairs of generators. First we

use

[T.,[Xb,7r,]]=[Xb,[T.,~,]]+[[T.,xb],~.].
With Eqs. (2.2)—(2.4), and (2.5), this gives

[Taqfbc(22)) = «acdfbd(22)+«ebefec(22) I

provided that for the p mass term we use

——',m 2[tb„+2gb
—92(1+X2222)—'(22&& 8„22))2 (1.7)

As a consequence, the contribution of p exchange to
m. -m scattering is effectively cancelled near threshold by
a direct (22&&8„22) interaction. Perhaps, by taking this
cancellation into account, it will be possible to con-
struct a model of ~-m scattering which applies from
threshold up to the p mass.

It would be interesting to see what kind of nonlinear
realizations are possible for a general symmetry group.

Now we solve Eqs. (2.7) and (2.9). As already re-
marked, Eq. (2.7) is merely the statement that fb, (2b)

is an isotopic tensor. Further, fb. (22) has even parity,
so it must be even in ~, and hence takes the form

fb, (22) = bb,f(222)+ ir bir.g (222), (2.10)

with f and g arbitrary functions of 222. Direct calcula-
tion gives

8fb. (22) 8f., (22)
ad ~ bd

= (fg 2ff' 2—~'gf') —(b-~b ~b ~.),
so our other differential equation, Eq. (2.9), imposes
one further relation on f and g:

1+2f(222) f'(222)
g (22') =

f(222) —2222f'(222)
(2.11)

[A prime denotes differentiation with respect to the
argument 222.) Our conclusion is that the most general
pion transformation law is given by Eqs. (2.4) and
(2.5), where fb, (22) has the form (2.10), with g(2b2)

specified in terms of f(222) by Eq. (2.11).
We promised to show that the pion transformation

law is essentially unique. I.et us consider the effect on
the transformation function f,b(22) of a redefinition
~ —& ~* of the pion held. "Since the new pion field ~*
must be an isovector satisfying Eq. (2.5), the most
general redefinition is of the form

(2.12)

We can easily calculate that 22" has a chiral trans-
formation law of the same form as ~; i.e.,

[x.,~b*]=—i(b.bf*(n* )y~ *~b*g*(n*)) (2.13)

where

or, more explicitly,

8fb, (22) 8f.,(22)
f.,(n) — fbi(n) = b..~b b—b.~.. (2.9)

or in other words, f*(n*')= f(n')C'(n') (2.14)
alld8f ( b)22

&ade~e bd ~ &acd dc ~ &abd ~

81I d

This just says that fb, (2r) is an isotopic tensor —not a
surprising result.

The other useful Jacobi identity is for 22 with a pair
of X's:

We see that by redefining 22 we can make the fgnction f*
anything we like; Eq. (2.15) then determines the corre-
sponding function g2' in such a way that Eq. (2.11)
will still hold.

In particular, we may define the pion field 22 (now
dropping superscripts) so that

[X.,[Xb, ,]]—[Xb,[x.,ir,]]=[[X.,Xb],2r.]. (2.8)

With Eqs. (2.3)—(2.5) this gives

[Xarfbc(22)] [Xb| fee(22)) = &&abe&dce2re i f(22') = (1/2X) (1—X'22') (2.16)

(2.7)
gw (~82) —[g(n2)P) (n2)+ 2f(n2)Z)& (n2)

+222'g(22')C'(22'))C 2(22') . (2.15)
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with l1 an arbitrary constant. Then Eq. (2.11) gives (2.8):
g(222) =X,

and the pion transformation law is

(2.17) [2'. [XbA]]=[X»[2'.A]]+[[2'.»b]A']
[X.,[X„P]]—[Xb,[X„P]]=[[X.,Xb],P].

[X„2rb]=—(i/'A){-,'(1—X'222)8 b+l1'2r 2rb}. (2.18) The first identity just tells us that v, b(22) is an isotopic
tensor, i.e.,It is easy to show that this is precisely the transforma-

tion law (with l1=G/2m&) satisfied by the "new pion
6eld" ~'=—Xs defined in our previous work, ' and is also
the rule adopted by Schwinger. ' Alternatively, we could
also dehne ~ so that

BVb.(22)
&ade~e &bd & &acd &dc ~ &abd ~

The second identity gives

(3.3)

f(~2) = X-1,

in which case Eq. (2.11) would again give

(2.19) [X.,vb, (22)]t,—[Xb,v„,(22)]t,
+V bd (22) Vac(22) $fd&tc] = 2Ca befe ~

g(222) =X,

and the pion transformation law would be

[X,,irb]= —iX '{B,b+l122r, irb}.

(2.20)

(2.21)

It is to be stressed that (2.18) and (2.21) do not repre-
sent inequivalent realizations of SU(2) &&SU(2); these
transformation laws, and all other possible pion trans-
formation laws, can be derived from one another by
suitable redehnitions of the pion field.

We use the pion transformation law (2.4) and the
isospin commutation rule [td, t,]=iud„t, to put this in
the form of a differential equation for v, b(22):

BV.,(22)

fbd (22)

Vac(—22)Vbd(22)&ada+babe (3 4)

The function eb, carries negative parity, so it must be
odd in 22; with (3.3), this restricts its form to

III. TRANSFORMATION OF OTHER FIELDS
Vab % = Cabell cV (3 5)

[T,,P]= tbP. —(3.2)

Then any isospin-invariant function of P (not its
derivatives) will also be chiral-invariant; for instance
f/' conunutes with T, and hence with X„and chirality
will 2bot tell us that the mass of p vanishes. What it
does tell us is explored in Sec. IV. In this section we
will answer some necessary preliminary questions: Does
there exist a function v b(22) for which (3.1) and (3.2)
are a self-consistent realization of SU(2) &&SU(2)?
And if so, what is it?

The consistency requirements that must be satis6ed
by the transformation rules (3.1), (3.2) are embodied
in the Jacobi identities analogous to Eqs, (2.6) and,

Now that we have at hand a ~ field which trans-
forms nonlinearly under chiral SU(2)&&SU(2), what
can we do with it? The lesson taught by current
algebra is that a symmetry like chirality does not
manifest itself in linear yb invariance relations (which
for instance would require the vanishing of the nucleon
mass), but rather it determines relations between an
arbitrary process ti. —e p and the related processes cx ~ p
+n2r. The attractive feature of a nonlinear-field trans-
formation law is that it allows us to build this interpre-
tation of chiral symmetry into the Lagrangian from
the beginning. Suppose an arbitrary field f has a chiral
transformation law of the form

(3.1)

where tb is the Hermitian isospin matrix appropriate
to f, i.e.,

7t d 6bed7l a 6aed~b

{v (222)g (222) +2v~ (222)[f(222) +222g (222)]}
+2&abev(22 )f(22 ) =2r„.il d&badv (22 )+&abc.

It is convenient to rewrite this using the identity

2
22 &abc= &abc2rc2re+ &bec7rcira+ &eac2rcirb ~

We then find

~d 6bedKa 6aedKb

&&{ ( ')g( ')+2 "( ')Lf( ')+ 'g( ')]—'( ')}
+2.b,[—2v(222) f(222) —222v2(222)+1]=0. (3.6)

For this to be possible, both functions in brackets
must vanish; i.e.,

vg+2v'(f+222g) v'=0, —
—2vf—222v2+1=0.

(3.7)

(& 8)

The solution of the second equation is

v(~2) {f(~2)+ [f2(~2)+~2]1/2}—1 (3 9)

We leave it to the reader's pertinacity to show that
(3.7) is also satisfied when v(222) and g(222) are given
by (3.9) and (2.11), respectively. Thus (3.1) is indeed
a possible chiral transformation law, with v, b(22) given
Nmiqge/y by

Vab(22) = Cab„irc{f(222)+[f2(222)+222]'12} ', (3.10)

Inserting (3.5) and (2.10) in (3.4), we obtain a non-
linear differential equation for v(222):
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For this reason, this particular choice of the pion trans-
formation rule is somewhat more convenient than
other, equivalent choices.

IV. COVARIANT DERIVATIVES

We are now going to see how it is possible to con-
struct a chiral-invariant Lagrangian out of pion 6elds
22 and other 6elds p which transform according to the
rules (2.4) and (3.1). As already remarked, there is no
problem in coupling P's with each other as long as
Geld derivatives or pion 6elds do not enter; any iso-
scalar function of the f s alone will be chiral-invariant.
LThis corresponds to the fact that chiral symmetry
tells us nothing about baryon masses, baryon-baryon
scattering, etc.) Our task is to learn what to do with
the pion 6elds' derivatives.

First, the pions. It would be possible to treat ~ like
any other fMld f if its transformation law had the
same form, i.e., if

2fab (22) = 1/ac(22) (tc) bdord ~

But this is not tru. e, so it is not possible to make chiral-
invariant interaction~ by merely coupling ~'s with each
other and with f's to find form isoscalars. However,
we do not run into this difhculty with 8„~. That is,
we can de6ne a covariant derivative

D aora =ria b (JO) r/ aor b )

which transforms like an ordinary P field; i.e.,

pXb, D„or,)= i2/, b(oo) eb—,eD„ore,

PTa)D„2rcj= i eaceD„ore. —

(4.1)

(4.2)

(4.3)

LWe are using the appropriate isospin matrix for pions,
(tb)„= ieb„)—It is p.erfectly straightforward, though
rather tedious, to show that the function d, b(22) for
which (4.2) and (4.3) are satisfied is uniquely given

(up to a multiplicative constant) by

d, b(oo) Lfo( 2)+
+Lf'(oo')+22'j-'L2 f'(222) —2/(222)$2r. orb, (4.4)

where f(222) is the function appearing in the pion trans-
formation equations and 2 (222) is the function appearing
in the transformation law of other 6elds;

2/(~2) (f(~2)+t f2(~2)+~2)1/2}—1

The covariant derivative is therefore

D„oo ~ Lfo(222)+222) '/2e/„22

+Lf'( ')+ 'j 'Lf'(~') —2~( ')j &. '. (4.5)

where f(222) is the function appearing in the pion
transformation equations.

It may be noted that a pion 6eld de6ned to transform
according to Eq. (2.18) will have 1/(222) equal to a
constant X, so here (3.1) takes the particularly simple
form

By virtue of Eqs. (4.2) and (4.3), any isoscalar func-
tion of D„oo and p's will automatically be chiral-
invariant. In particular, chirality allows a gradient-
coupling pion-nucleon interaction proportional to

Xzy5y„~ED„~. (4.6)

Also, the free-pion part of the Lagrangian is contained
in the self-coupling

——D m DI'm. (4 7)

For a pion 6eld de6ned to transform according to
Eq. (2.18) the covariant pion derivative (4.1) is given

by
D„oo= (1+F2222) 'ej„oo, (4.8)

so the pion-nucleon interaction is

(Go/2m/r)Niger„~N(1+h'222) 'B„oo,

and the pion kinematic Lagrangian is contained in

(4.9)

', (1—+—l12222) 28„228aoo (4.10)

These agree precisely with our previous results, '
obtained by regarding chirality as a broken linear

symmetry. We note once again that chirality forces
the interaction of nucleons with single pions to be
accompanied by interactions with three pions, 6ve
pions, etc. , and correspondingly that the kinematic
pion term must be accompanied with self-interaction
terms representing pion-pion scattering, 2m~ kr, etc.

We will now pause to consider what value should be
given to the constant X. (Had we reserved our full
freedom to rede6ne the pion Geld, X would be arbitrary,
but in choosing the pion kinematic term to be given
by Eq. (4.10) we have committed ourselves to a par-
ticular conventional normalization of x, and the value
of X thus has a meaning. ) The axial-vector current
de6ned by Noether's theorem is

BZ BZ
f.b(22) —2i Q V.b(22)tbsp. (4.11)

8(e/„orb) e e/(el„&)

A~i"=——2

Referring back to (4.7) and (2.16), we see that this
contains a term 8&x, with coefficient X '. Hence, if A &

is to be identi6ed with the axial-vector current of weak.
interactions, we must take

) =I"„p ', (4.12)

where Ii p is the unrenormalized value of the usual
pion decay amplitude. Note also that if the Lagrangian
contains a pion-nucleon interaction (4.9), then A, a

will contain a term

(Go/2m/rz)iViybya—r.N,

so the unrenormalized weak coupling constants satisfy
the Goldberger-Treiman relation:

(g~/gv)o=Go/2m/rX=GoF o/2mnr ~ (4.13)
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Therefore, we will try to construct a covariant derivative

such that
D„f=B„p+—iM, (22) (8„7r.)f, (4.1s)

&&»A j="b(~)t~A (4 16)

Here M, (22) is a matrix like t, which acts on. the sup-
pressed isospin indices of f. Our problem is to find an
M, (22) for which (4.16) is satisfied; once this is ac-
complished, we can build a chiral-invariant Lagrangian
by coupling D„f with P and D„m in any isospin-
invariant way.

Comparing (4.16) with (4.14), we see that the con-
dition to be satisfied by M, (2r) is

ii).b(22)Ltb, M, (22)j

It is noteworthy that nothing in this formalism forces
the unrenormalized ratio (gzigr)2 to be unity.

There remains the problem of incorporating deriva-
tives of the 1)t s into a chiral-invariant Lagrangian. We
note that B„fdoes not transform like P; i.e.,

82&.b(22)
pX„B„Qj= 2&, b(22)tba„p+ tb8„1r.p (4..14)

~m'c

We recognize here the multipion interactions derived
earlier from the broken-symmetry approach, ' and in
particular we observe that the term 2—i&Py)'tf
(22&(8„22), with &), given by (4.13), yields the universal
pion scattering lengths" derived originally from current
algebra.

To summarize what we have learned: a Lagrangian
will be chiral-invariant if it is isospin-invariant and
constructed out of the pion covariant derivative D„~,
any general fields f )transforming according to Eq.
(3.1)j, and their covariant derivatives D„P.

V. CONVENTIONAL FIELDS

We were originally led to introduce 6elds with non-
linear transformation rules as a substitute for larger
chiral multiplets which transform linearly. We will now
show how this process may be reversed. That is, we
will use the nonlinearly transforming fields 22, p dis-
cussed in the last two sections to construct fields, for
pions and for other particles of arbitrary isospin, with
conventional linear-transformation properties.

Our construction is based on the following:
I.emma: Let x„ t, be an arbitrary /PE matrix

representation of the SU(2) &&SU(2) algebra; i.e.,

82.b(22)
tb+

~wc

BM, (22) Bf.g(22)
f,g( 2)2+ Md( 2)2

871 d ~are

One particular solution of Eq. (4.17) is

(4.17)
$t, )tbj=i 2))b,t, )

[~a)&bj—2&ah):&)'c )

LX)))Xbj—2C)) b);tg ~

(5 1)

(5 2)

(s.3)

M, (22) = b,g terr Lf2(22') —22'j '~'2)(222) (4 18)

where f(222) is the function appearing in the pion
transformation law; and as before,

2) (222) =(f(~2)+(f2(~2)+~2)1/2j—1

To (4.18) we can add any solution M, ( & of the homo-
geneous equation

BM, i'& 8f.d
i2),bLtb, M, &'&j= f,P+MP&'&

87l d ~X'c

but this just corresponds to introducing the covariant
derivative D„~ of the pion Geld into interactions, and
need not be considered as a separate possibility. Using
(4.18) in (4.15), the covariant derivative of a general
field P is

D„y=a„y+ie(+2)Lf2(m2)+m2j '"t (~&&a„m)P (4.19).

For a pion Geld de6ned to transform according to Eq.
(2.18) this is

D„y=a„f+2i& (1+X'&2) 't (&Xa„&)P. (4.20)

The kinematic Lagrangian for f must be constructed
out of D„f. Using (4.20) with»t for a Dirac field of
arbitrary isospin, this gives the terms

—1)ty)'8„)&t —2i&)2(1+&12222) ' y"tP (22X8„22). (4.21)

Then there exists an 1V &&X matrix function A()r) such
that

LX.,A(22) j= —X.t& (22) —h (22)1).b(22) tb, (5.4)

where 2),b(22) is the function (3.10). (We reinind the
reader that X, is not a matrix, but a Hilbert-space
operator which does not commute with 22.)

Proof: Using the pion transformation rule (2.4) let
us write (5.4) as a Lie differential equation

Bi& (22)—if.,(~) =—~.~(~)—x(~)...(~)t, . (s.s)
BX'b

This is soluble if and only if it satis6es an integrability
condition:

8 BA) 8 BA)
cd ab ah cd

a~, a~b) a~, 8~.&

Bf . Bf„)BA
cd — —ab

81I )1 8 lb I282I ))

It is easy to show that (5.5) does satisfy (5.6) because

f,b and 2), b satisfy (2.9) and (3.4).
' Y. Tomozawa, Nuovo Cimento 46A, 707 (1966); S. Wein-

berg, Ref. 14; B. Hamprecht (to be published); K. Raman and
E. C. G. Sudarshan, Phys. Rev. 154, 1499 (1967);A. P. Balachad-
ran, M. Gundzik, and F. Nicodemi, Nuovo Cimento 44, 1257
(1966).
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Now, let us use A(pp) to construct a conventional
chiral quadruplet II of fields representing the pion and
a 0+ meson. Here o, is an index running over the values
1, 2, 3, 0, and for t, and x, we use the (io, io)

representation:

(ta) bc &pa bc y

(t )bo=(t )ob=(t )oo=0,

(Xa)bo= (Xa)pb= Zhab
&

(x.)b,
——(x.)pp ——0,

(5.7)

(5.g)

(5 9)

(5.10)

the indices a, b, c running over 1, 2, 3. We can define
a unit four-vector e which points in the 0 direction,
and construct the four-vector II as

II.= A.p(op)coo, (5.11)

In close analogy with (5.11), define a conventional
chiral multiplet 4' as

where a is either a constant or a 0+ chiral-invariant
field. [There is no distinction if the mass of the o. field
is sufficiently large. ' If o is a constant, then (5.11)
really defines only three independent fields II„ the
fourth being given" by Iip ——(o'—II')'i'. If o is a field, '
then (5.11) defines four independent fields II„ in terms
of the four fields pp, a.] The chiral transformation law
for II can be determined from (5.4). Since N~ is an-
nihilated by (t ) o, the last term in (5.4) does not
contribute here, and we find that

[X.,II.]=—(x.).pII p, (5.12)

so II is indeed a chiral four-vector. This is hardly
surprising, for we already knew that a linearly trans-
forming four-vector II can be used to define a non-
linearly transforming triplet ~, and we have shown in
Sec. II that such a pion triplet is essentially unique.

Next, consider a field P which transforms according
to the nonlinear rule (3.1):

x= too".o'"', (6 1)

where t p. ..~(~) is a traceless symmetric tensor of rank
X. The ordinary rules of tensor analysis then give

[X.,&x]= »tao. o'"'—
and

[X,[X„Z ]]=—iE{—i(1V—1)t bo" o

+i~.btpp-. p'~'} .

we have seen in Sec. IV that pion fields can only ente~
the Lagrangian accompanied with at least one deriva
tive. The question is, when we add a term ——',m '~' to
the Lagrangian, should we stop there or should we also
add terms proportional to m '(pp')' m '(pp')', etc. ? We
must beware of rejecting such terms on grounds of
simplicity alone, for any such hypothesis has meaning
only for a particular definition of the pion field. That is,
if the only term in the Lagrangian which breaks SU(2)
&(SU(2) is the pion-mass term ——,'m 'pp', and we define
a new pion field op+ so that op=op+(1+mop~'+. ), then
the symmetry-breaking term will be expressed in terms
of ~* as

—orna'op*'(1+2upp*'+ .)
and the z-z scattering lengths will be different from
what they would be if the symmetry-breaking term
were —~m 'm*'. For this reason, chiral symmetry alone
can only predict one linear combination 2up —Sa2 of the
scattering lengths; the ratio ap/ao cannot be determined
without a more definite statement of how chirality is
broken. "

It is natural to characterize the chiral-symmetry-
breaking term in the Lagrangian in terms of its chiral
transformation properties; in this way we at least
avoid making hypotheses which depend on how we
define the pion field. Suppose that the symmetry-
breaking term is a function Z~(pp') which transforms
according to the (E/2, lV/2) representation of SU(2)
XSU(2), or equivalently, using the isomorphism of
SU(2) &&SU(2) with O(4), suppose that

4= A(ppg .
From (3.1) and (5.4) we find immediately that

(5.13)
But since t(N' is traceless, we have

p p
(+) tpp p

(+)
[X.P]=—x.@, and so

so + indeed transforms linearly under chiral SU(2)
XSU(2).

The reader can easily verify that the convent. ional
chiral-invariant Lagrangians constructed from II,
B„II, +, and 8„+ may always be re-expressed as
functions of Da7r, P, and D„P.

VI. SYMMETRY BREAKING

We will now return to the nonlinear formalism
sketched in Secs. II—IV, and use it to discuss the problem
of chiral syillinetry breaking by the pion mass. There
&s no doubt that the pion mass does break chirality, for

[X„[X„Z~]]=E(%+2)Z~. (6.2)

We will use (6.2) to distinguish the different possible

Let us now construct an Z~ which transforms ac-
cording to Eq. (6.1), i.e., which satisfies (6.2). For
convenience, we will adopt a pion field which is defined
to transform according to Eq. (2.18); i.e.,

[X,,s.b]= —iX '{—,
' (1—X'pp') 8,b+ li'n-,

orb�}

.

We then have

[X.pp'] = —iX '(I+)Pop') n-,
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where

2ap —Sa2= 6L,

m X' G'm (gv)'
~

—
I
—0.115 m.—'.

2~ 8~m~'(gg&

(6.6)

Higher terms in Eq. (6.4) contribute to more compli-
cated processes, like 2m —&4m, etc. In the previously
considered'4 case, 1V=1, where Z~ and B„A,& form a
chiral four-vector, it is possible to sum up all these
terms by finding a solution of Eq. (6.3) in closed form:

Zi(ss') = —-'nz '(1+) 'er') 'es'+ const. , (6.7)

in agreement (what else?) with our previous results. '
It is easy to derive the same scattering lengths by

the methods of current algebra. Apart from the com-
mutators of current components, what is needed in
general in current-algebra calculations'~ is a knowledge
of the "0. terms"; e.g.,

o.s= [X.,B„As ],
o.s,=—[X.,o.s,], (6.8)

so for an arbitrary function of ~'

P(sss)] — Q—r(1+Press)& P (sss)

[X.[X r(~ )]]=—,'X- (1+)'~') (3+) '~')S'(+)
)t
—2(1+)2~2)2~25:&&(~2)

Thus Eq. (6.2) just amounts to a second-order differ-
ential equation for Z(sss):

(1+$2ss2)ssssg &l(ss2)+ 1 (1+)2~2) (3+)2~2)g &(~2)

+N(N+2)) sZsr(es') =0. (6.3)

Since this diGerential equation is singular at ~'=0, its
regular solution is unique up to an over-all constant,
which we can fix by requiring that the term linear in

have coeKcient —2m,2. The solution may then be
expressed as a power series in X'~"

Ziv(se') = —-,'m~'{ —3[2N(N+2)X'] '
+ers —-'[N (N+ 2)+2]Xs(es')'

+ (1/105)[2N'(N+ 2)'+ 20N (N+ 2)+27]
XX4(sr')s+. ). (6.4)

The constant term is of course without physical sig-
nificance. The quartic term contributes to the x-x
scattering lengths; in conjunction with the kinematic
term (4.10), it gives

2ap+as ———ssL[N(N+2)+2], (6.5)

gabe 0 bac ~bc~iffAa ~ac~pA b" ~ (6.10}

Equations (6.9) and (6.10) provide enough information
to compute the m.-x scattering matrix with three pions
o6 the mass shell.

The numerical values of up and a2 obtained from Eqs.
(6.5) and (6.6) are presented in Table I. The values
for X=1 are those derived previously by myself, '
while those for X=2 were derived by Meire and
Sugawara. "The last two rows give the values obtained
by assuming that the symmetry-breaking term in 2
is just —-,'m '~', with ~ defined to transform according
to Eqs. (2.18) or (2.21), respectively. The last row
corresponds to Schwinger's model. ' (Schwinger uses a
pion field that transforms according to Eq. (2.18), but
gets as/as ———ss because he assumes that the pion Geld
so defied is proportional to the divergence of the axial-
vector current.

Evidently chiral symmetry alone does not suflice to
fix ap and u2 separately, without a specific hypothesis
as to how the symmetry is broken. Since some such
hypothesis is needed, it seems most reasonable to as-
sume that chirality is broken by a term in the Lagrang-
ian whose chiral transformation properties are as simple
as possible" (rather than by a term which looks like a
simple function of some arbitrary defined field). This
leads to the choice X=1; the symmetry-breaking term
2» then forms a chiral four-vector with B„A„», and. the
scattering lengths have the previously derived values
Gp= 0.20 g2= —0.06.

Only experiment can decide whether this is right.
Unfortunately, the m-m scattering lengths are not so
easy to measure. The high-energy —pion-production ex-
periments which purport to measure x-m scattering
can really only do so if the peripheral graph dominates
over the other "absorption" graphs. This is true at
small momentum transfer if the two pions are produced
at a relative velocity at which they can interact
strongly (as in p production), but if the rr-s. scattering
lengths are as small as we think they are then peripheral
production does not dominate when the pions are pro-
duced at low relative velocities. For similar reasons,

Since the divergence of the axial current is given by

B„A,~= —s[X,)Zsr] )

we learn from Eq. (6.2) that

a, ss N(——N+2) B„A,~. (6.9)

Also, applying the Jacobi identity and the chiral
commutation relations to Eq. (6.8), we find

"See, e.g., H. Abarbanel and S. Nussinov, Ann. Phys. (N. Y.)
42, 467 (1967); also Refs. 2 and 14. It has been suggested by
L. S. Kissingler LPhys. Rev. Letters 18, 861 (1967)j that o terms
might be responsible for the I=2 amplitude in X& decay. How-
ever, the usual current-algebra calculation neglects "gradient
coupling" terms which are probably just as large as the r terms,
and can easily account for the observed rate of J+ —+m.++M. In
fact, the real puzzle is why AI = ~ works so mell in the nonleptonic
X decays.

"F.T. Meiere and M. Sugawara, Phys. Rev. 153, 1702 (1967).
They did not make any explicit assumption about 0 terms or the
transformation of symmetry-breaking terms in the Lagrangian,
but instead arbitrarily set c&=0.

"This assumption is analogous to the assumption that SU(3)
is broken by an octet term in the Lagrangian, made by M. Gell-
Mann /California Institute of Technology Synchrotron Labora-
tory Report CTSL-20, 1961 (unpublished)g, and by S. Okubo
t Progr. Theoret. Phys. (Kyoto) 27, 949 (1962)g.
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experiments on p decay and 7- decay can verify that
the m-m scattering lengths are small; but they cannot
provide numerical values. The only hope appears to
lie in a comparison of data on E,4 decay with the
Watson-theorem calculations of Cabibbo and Maksymo-
vich, s' or in a comparison of data on 7r+E —v 2z.+X
at low energy with the current-algebra calculation of
Chang. ' In both cases a tremendous improvement in
statistics will be needed before accurate values of the
x-x scattering lengths can be obtained. However, the
success of current algebra'" in accounting for the
existing data on these processes, as well as r decay"
and x-E scattering, "provides ample evidence that the
scattering lengths are small.

LX.4 j=&. (b~)&b4

We may define a covariant derivative

Sag= Balt zget' gap v

and require that X)„f transform like f; i.e.,

(7.1)

[X.,n„Pf=z.b (rb) tb X)„P (7.2)

This imposes on y the transformation law

[Xa&pba5= s'4d('7)ebdbcpca sgo r)&'4b(eb) . (7.3)

The last term looks like what we would expect from
a gauge transformation of the second kind, and it has
similar consequences. In particular, the covariant
derivative X)„pb„does not transform like p or S„f,but
we can nevertheless define a covariant curl:

such that
+bav= r)ap bv r)vP ha+ gee bcdPcaPdv 1

[XagbSv j= &&ad(Z )«bc+cav ~

(7 4)

(7.5)

The kinematic p-meson part of the Lagrangian is thus

contained in

1 . pp

just as in the Yang-Mills theory.

(7.6)

~N. Cabibbo and A. Maksymovich, Phys. Rev. 137, B438
(1965)."S.Weinberg, Phys. Rev. Letters 17, 336 (1966).

~ M. Suzuki, Phys. Rev. 144, 1154 (1966); Y. Hara and Y.
Nambu, Phys. Rev. Letters 16, 865 (1966);D. K. Elias and J. C.
Taylor, Nuovo Cimento 44, 518 (1966); S. K. Bose and S. N.
Biswas, Phys. Rev. Letters 16, 340 (1966); B. M. K. Nefkens,
Phys. Letters 22, 94 (1966); H. D. I. Abarbanel, Phys. Rev,
153, 1547 (1967); C. Bouchiat and P. Meyer, Phys. Letters 22,
198 (1966);L. J. Clavelli, Phys. Rev. 160, 1384 (1967).

w C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

VII. p MESONS

Our introduction of covariant differentiation in Sec.
IV was reminiscent of the Yang-Mills theory of gauge
fields. "We can make the analogy even closer by intro-
ducing p mesons to take the place of the direct vector
interaction of pion pairs. Consider a general field ib

whose chiral transformation properties are given by
Eq. (3.1):

[X.,@,„]= —iz.d(~) «„y,„. (7.8)

[Note that g» has to transform this way because the
difference between S„Pand D„P is just —igt P„P.]The
mass term then is

srrbc'4—'. (7.9)

If we define the pion field so that it transforms accord-
ing to Eq. (2.18), then this is'4

yg 2[9 +2g —1)2(1+$2~2)—1(~y d ~) js (7 1())

The complete Lagrangian then may be supposed to
consist of (7.6) plus (7.9), or (7.10) plus the pion terms
(4.7), or (4.10) and (6.4), or (6.7) plus an unknown
function of ib, S„P, and D„~.

The pz.z. coupling (for soft pious, not necessarily in

p decay) is given by (7.10) as

—2rrbc gv h Pa (N)( 8"rr) . (7.11)

Thus p exchange automatically accounts for the values
of the m-X scattering lengths given current algebra. "It
may be surprising that the pmz coupling constant does
not automatically come out equal to the pe% coupling
constant gp, but it should be kept in mind that p„ is
not coupled to ~ like an ordinary gauge field. If we

require as a separate condition that the p couples
universally to pions and nucleons, "then we obtain for

gp the familiar value"

gp' ——2m 9'=2m 'F p '.
We can also now answer a question that has raised
some doubts" about the validity of the current-algebra
calculation'4 of the ~-z scattering length: How is it
that we are able to get an answer without any explicit
reference to the contribution of p exchangeP We see
from (7.11) that at low energy, where the p propagator

' Observe that if we let mo —+0 the pion decouples from the
p meson, and hence from all other hadrons. This corresponds to
the remark of Higgs, that Goldstone bosons are not required by
a "broken" symmetry like chirality when the theory contains a
gauge particle of zero mass; see P. W. Higgs, Phys. Letters 12,
132 (1964); Phys. Rev. Letters 13, 508 (1964); Phys. Rev. 145,
1156 (1966).Also see F. Englert and R. Brout, Phys. Rev. Letters
13, 321 (1964);G. S. Guralnik, C. R. Hagen, and J. W. B.Hibble,
ibad. 13, 585 (1964);J.W. B.Hibble, Phys. Rev. 155, 1554 (1967).
It should be noted that our „ is the y'„of W'ess and Zumino
(Ref. 5) while their yc is our"J.J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).

~6 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966); F. J. Gilman and H. J. Schnitzer, ibid. 150, 1362 (1966);
J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966); M. Ademollo,
Nuovo Cimento 46, 156 (1966).

s' D. F. Greenberg (private communication).

Of course, we do not want to follow the gauge theory
so far that we leave out the p-meson mass. The mass
term can be introduced without violating chiral in-
variance if we note that the transformation (7.3)
allows the construction of a field

ctvb„= pb„+g p 'z(r—b') [f'(ec')+ ec'j 'i'e.—b,7r,r)„z. (7.7)

which transforms like the ib's; i.e.,
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can be taken as m, ', the three p-exchange graphs
contribute an effective 4m interaction

4mo'go 94(er)& iteer)'

But this is exactly cancelled by the (sr&&B„sr)' term
arising directly from (7.10). Thus, if we wish to add
p-exchange terms to the results of current algebra for
low-energy z-z. scattering, we Inust also add compensat-
ing terms whose effect is to convert the propagator
(q'+m, ') ' into —(q'/m, )(q'+m„') '. The total con-

tribution made by p exchange plus compensating terms
to low-energy ~-m scattering is of fourth order in nz,
and hence negligible.
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Test of Time-Reversal Invariance in the Decay Process
K+ ~ p++ v+e++e f
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C& violation occurring in the EJ.-+ 2w decay is assumed to take place when the electromagnetic and

weak interactions occur simultaneously. An analysis of the E+~p++v+e++e decay is presented which

shows that the measurement of the muon polarization in this decay is a practical way of determining this

effect. The reduction of the principal background from E» is discussed. Such an experiment would also

provide valuable information on structure radiation.

I. INTRODUCTION

A MONG the many theories and models that have
been proposed since the discovery of the decay

mode El.' —+ x+x,' those that invoke the electromag-
netic interaction' are of particular interest. These hy-
potheses that the electromagnetic interaction is related
to CI' violation, can explain "naturally" the factor

lrt+-I = LI'(Er.'~ sr+sr )/F(Es'~ sr+sr )g'ts=cr/n

and the large admixture of the hI= ~3 amplitude in the
process El. ~ xx.' The results of the recent experiments
on weak decay processes Kr,'~srttv, A~ psr, ' and

f Supported in part by the U. S. Atomic Energy Commission.* On leave of absence from Institute for Nuclear Study, Uni-
versity of Tokyo, Tokyo, Japan. Present address: Physics De-
partment, Iowa State University, Ames, Ia.

'Are —& n++n was 6rst observed by J. H. Christenson, J. W.
Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Letters 13, 138
(1964). For a summary of the experimental situation, see V. L.
Fitch, Rapporteur's Talk, in Proceedings of Eke Thirteenth Anngel
International Conference on High Energy Physics, Be-rkeley, Calif
1966 (University of California Press, Berkeley, 1967), p. 63.' Possibility of the connection between CP violation and electro-
magnetic interaction is discussed by many authors; see, for ex-
ample, J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,
81650 (1965).' J. M. Gaillard, F. Krienen, W. Galbraith, A. Hussri, M. R.
Jane, ¹ H. Lipman, G. Manning, T. RutcliBe, P. Day, A. G.
Parham, B. T. Payne, A. C. Sherwood, H. Faissner, and H.
Reithler, Phys. Rev. Letters 18, 20 (1967); J. W. Cronin, P. F.
Kunz, W. S. Risk, and P. C. Wheeler, ibad. 18, 25 (1967).' For the most recent experimental result, see K. K. Young, M.
J. Longo, and J. A. Helland, Phys. Rev. Letters 1&, 806 {1967).

'O. E. Overseth and R. F. Rath, Phys. Rev. Letters 19, 391
(1~67).

Ne" P decay' showing no evidence of CI' violation for
these decay modes may serve as indirect support for
these hypotheses.

On the other hand, the experiments with relatively
high statistics, such as the upper limit' for g —& x e+e

and the charge asymmetry' between the two charged
pions in g —+ z+z zo, show that the present experimental
status is at least consistent with the conventional C-
and P-conserving electromagnetic theory. Thus, even

though a definite conclusion should not be drawn until
further experimental information on Compton scatter-
ing' and other processes becomes available, we are
tempted to think that the ordinary C- and E-conserving
electromagnetic interaction can describe nature fairly
well to the order of g,&e, where g,& is the strong-interac-
tion coupling constant.

However, we are aware that there is no experiment
which checks definitely the possibility of CE'-violating
electromagnetic interaction accompanied by weak inter-

F. P. Calaprice, E. D. Commins, H. M. Gibbs, and G. L.
Wick, Phys. Rev. Letters 18, 918 (1967).

D. Berley, K. L. Hart, D. C. Rahm, D. L. StonehiO, B.Theve-
net, W. J.Willis, and S. S.Yamamoto, Phys. Rev. 142, 893 (1966);
see also C. Baglin, A. Bezaguet, B. Degrange, F. Jacquet, P.
Musset, U. Nguyen-Khac, and G. Nihoul-Boutang, Phys. Letters
22, 219 (1966).

A. M. Cnops, G. Finocchiaro, J. C. Lassale, P. Mittner, P.
Zanella, J. P. Dufey, B. Gobbi, M. A. Pouchon, and A. Muller,
Phys. Letters 22, 546 (1966).' Generally it is dificult to detect C- and T-violating but P-con-
serving electromagnetic e8ects among hadrons. See, for example,
K. Hiida and T. Ebata, Phys. Rev. 154, 1337 (1967).


