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In the case of nucleon Compton scattering, theory and experiment disagree at the photoproduction
threshold and at the peak of the first pion-nucleon resonance (1236 MeV) at 90' c.m. scattering angle. Dis-
persion relations are used to calculate the scattering amplitudes of this process in the low-energy region
in terms of the nucleon Born pole, photoproduction, mo, and 2x exchange. Several currently accepted models
for I=J=0 7i-2f- scattering are considered, Using a nonresonating or a resonating 2f-7f- phase shift with resonance
width &100 MeV and position &600 MeV, we are able to account for the discrepancy between theory
and experiment around the photoproduction threshold. At the 90' c.m. resonance peak, the situation
remains essentially unchanged.

I. INTRODUCTION

~)ISPERSION relations combined with the uni-

tarity of the 5 matrix have had considerable
success in their application to nucleon Compton scat-
tering. It has been shown that, in the region including
the first pion-nucleon resonance, the main contribution
to the absorptive part of the process comes from single-

pion photoproduction, the pion-nucleon system being
in relative s and p states. Yet some systematic dis-

crepancy seemed to exist around the photoproduction
threshoM and at the resonance peak at 90' c.m. angle,
where the experimental cross section was consistently
lower than the theoretical one. ' This showed up in
dispersion-theoretic and isobar-model calculations, al-

though the latter could not be expected to explain the
details of the energy dependence. It has been suggested
that the two-pion exchange contribution may account
for the disagreement,

' although no reliable estimate has
been given.

The aim of the present paper is to include several
details and to try to account for discrepancies between

theory and experiment below 400 MeV photon labora-
tory energies. To this end, a fixed-angle dispersion re-

lation obtained from the Mandelstam representation4 is
used for the photon-nucleon scattering amplitudes. By
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means of unitarity the discontinuities across the cuts
are expressed in terms of the possible intermediate states
in the process y.'V —+ yg and 2VE —+ 2y. On the right-
hand cut, we include the one-nucleon and the pion-
nucleon intermediate state, the former leading to the
Born poles and the latter requiring a knowledge of
photoproduction. Since we are neglecting processes of
second order in e', our formulas do not lead to integral
equations. On the left-hand cut, we retain mo and 2m.

exchange, so that we need to know the amplitudes for
2' —+ 2y and 2VX —+ 2x.

These discontinuities are fed in the dispersion re-
lations, whose subtractions are estimated by appealing
to the low-energy theorem. '

In Sec. II the kinematics is written and some com-
ments are made on the selection of suitable amplitudes
for a numerical calculation. Section III contains the
Mandelstam representation and the fixed-angle disper-
sion relation. The unitarity condition for the direct and
crossed channels is exploited in Secs. IV and V and the
contributions of the diBerent intermediate states is dis-
cussed, including several models for I=J=O m.m scat-
tering. In Sec. VI we compare our results with experi-
ment and state the conclusions.

u= —(pr —ks)'= —(ps —kr)', (2.2)

t = —(pr —ps)'= —(kt —ks)') (2.3)

which satisfy s+u+t=2rrt', where nt is the nucleon
mass. s is the square of the s-channel c.m. energy, while

' F. E. Low, Phys. Rev. 96, 1428 (1954); M, Gell-Mann and
M. L. Goldberger, ibid. 96, 1433 (1954).
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II. KINEMATICS

Consider the process

ps+Sr ~Vs+ iVs (s channel),

where the incoming momenta of y1 and E1 are k~ and
pt and the outgoing momenta of ys and 1Vs are ks and
p&, respectively.

Define the following scalars:

(p&+kr) (ps+ks) ~ (2 I)
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s—[(p2+m2) 1~2+p j2 (2.4)

2p2(1+cos8)+[(p2+mz)1/2 p]2 (2 5)

t = —2p'(1 —cos8) . (2 6)

It is useful to define the following' orthogonal vectors:

K„=—,'(k1+kz) „,
Q.= (k1—kz).= (pz —p1).,
P.= 2(pz+ pz).
P„'=P„PKK—„/K',
lV„=is„„p,P„'KpQ, .

Normalize the T matrix as

(2.7)

I and t are the energies squared of the following
channels:

yz+N1~ yz+N2 (u channel),

Nz+N2 —z yz+ys (t channel).

In terms of s-channel c.m. momentum p and angle 8,
we have

The decomposition (2.11) is free of kinematical singu-
larities and rather convenient for theoretical calcula-
tions. It can easily be seen though, for example, in the
Born approximation, that the differential cross section
do./dQ, given by

do/dQ= (1/642rzs) ([2m2+2pz(1 —cos8)j
x ( I Az I

'+
I
A 2 I

')+2p'(1 —cos8)
I
A 2 I

'—2p'w
x[p(1—cos8) —wj(IA4I'+ IAzl')y2p'w
X (1+cos8)

I
A 4

I
+m[2m' —2W'+2p'(1 —cos8)g

XRe(A 1A 4*+A 2A 2*)}, (2.14)

where H/ =s'", is a very sensitive function of 2;
and as such not suited for numerical calculations.
For this purpose, we introduce helicity amplitudes~
(r2,4ITlrz, )11), where lr;,);) represents a state with
nucleon helicity r; and photon helicity P;. Six independ-
ent amplitudes and their partial-wave expansion may
be defined as follows:

i
C,—= &-,', 1ITI-'„1)=-P(Z+-', )C .„., d; ., (8),

J'

(fl5'I z) = 4.'+(2 )'z~'"(p +k —p —k )

X(16pzopzskzskzo) 'tz(fITli) (2.8). 4'2=& —
2

—1ITI2 1)=-2 (1+2)c'-:, d-:, (8),
J

In the s channel, we have

(f I
Tlz)= 4 "'*u2(P2)T"»(Pz)s, "', (2 9)

where c&'& are the photon polarization vectors and the
I, satisfy

(iq p,+m)u, (p;) =0, i =1, 2. (2.10)

Requiring I orentz, gauge, parity, and charge-con-
jugation invariance, the six independent amplitudes of
T„„may be written4

T„„=Az(s, t,u)(P„'P„'/P")+A2(s, t,u')(N„N„/1P)

+A 2(s,t,u) [(P„'N„P„'N„)/(P"N')—'"jzps

+A4(s, t,u) (P„'P„'/P")iy K+A z(s, t,u)N„N„/N2

P„'N„+P„'N„
Xiy K+A s(s, t,u). zyziy K

(PI2 V2) I I2

C;,=—(-;, —1I Tl-'„1)=-P (J+-,', )c;, ;&d;„~(8),
J

=—Q (/+2)4& i, ;~d;, ;~(8), (2.15)
p J

i=—Q (J+-,')e;, d;, (8),
J

=-Z (J+-')~;, ;~d;, ,~(8).
J

We may relate the C to the 3
=Q T„„~oA, (s,t,u), (2.11)

with (P"N')' '=-'(m —su).
The isospin decomposition of each amplitude is

A;=A I+A z"22, (2.12)

I and r3 referring to the nucleon isospin space. Crossing
symmetry states that

C'1= cos,'8[m(A2 A1) W-P(A, A—,)+2—pWA 4), —
C'2 = —»n2 8[+(A2+A 1)—m p(A, —A 4) —2pA 2),

C 2 ——cos-,'8[m(A. +A1)—Wp(A, +A 4)$,
C 4

———sin-', 8[8(A2—A 1)—mp(A, —A4) j,
C 4 ——cos-', 8[m(A 2—A 1)—Wp(A 5

—A 4) —2pWA 4],
4 4

= sin28[E(A 2+A, )—mp(A 2+A,)+2pA 2).

(2.16)

with
A, (s,t, )=u; ztA( tu, s),

1Z;=+1 for i=1, 2, 3, 6,
q;= —1 for i=4 5.

The differential cross section is given by

do/dQ=-'2(1/642r's)[IC I'+ ICsl'+2ICzl'
(2.13) +2 IC'4I'+ IC'zl'+ l~sl'j. (2.17)

'R. E. Prange, Phys. Rev. 110, 240 (1958). ' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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The following expansion of the scattering amplitude
between Pauli spinors is often useful:

(V2P 2 I
T jul %&= 31 32 f1+ (plX ~1) ' (p2X e2 )f2

+«' &1X &2 f3+«' (p2X 32*)X (plX el) f4
+2[43 ' pl(p2X &2 ) &1—& ' p2(pl X &1) ' 32 5fo

+Z[P'P2(P2X &2 ) ' &1 P 'Pl(PlX &1) ' &2 )fo, (2.1g)

where p» and p2 are the initial and 6nal c.m. nucleon
momenta.

The f, are related to the A; as

(sin'8) fl = Cl(A1 cos0+A 2)+C2(A 4 cos01A 3),

(sin'0) f2———[Cl(A1+A2 cos0)+C2(A4+Ao cos8)],

f,= —[(m—E)A,y p(m —W)A4],

f,= (m —E)A,+p(m —W)A „
(2.19)

(sin'0) f,= (m —E)(A1 cos0+A2)+p(m —W)
X (A 4 cos0+A 3)—PA 3(1+cos8)

—PWA 3(1—cos0),

(sin'0) fo= —(m —E)(A1+A2 cos0) —P(m —W)
X (A 4+A 3 cos0)+ PA 3(1+cos0)

—PWA 3(1—cos0),
where

Cl ——(E+m) —cos0(E—m),

C = —p[(W+m)+cos0(W —m) j,
and E= (p2+m2)'/2 is the c.m. nucleon energy.

A helicity expansion can also be made in the t channel.
Six amplitudes (Xl,) 2~T~rl, r2) and their partial-wave
expansions can be defined as

G,=—(1,112 I-;,—;

r, V+l)Goo'doo'V),
(poko)'/2 s

G,—= (1, —1~ r~-;,—;)

Z V+!)G.,"d,. V),
(p k)"' ~

G3—= (1, —1j2'(2, —
2&

P (&+2)Go, o'do, o'(4),
(p k )1/2

(2.20)
G,= (1, —1—(2'(-;, ——;&

Z (~+2)G2,1'd2, 1'5) ~

(poko)'" '
Go=( 1 1I2 l2~

—
2&

where po and ko are t-channel nucleon and photon c.m.
3-momenta and lp is the t-channel c.m. scattering angle.
Their relations with s, t, and I are

s = —2k 3'—m' —2k 3 coslf (k3'+m') "'
u= —2k32—m'1 2ko cosl)t (ko +m )"'
t =4ko'= 4(p32+m2).

The G s are related to the 2 s as follows:

Gl p3(A 1+A2) —kom Cosf(A 4+A 3)+2k3A 3,

G2 p3( A 1+A 2) kom COSQ( —A 4+A 3)

G3 p3(A 1+A 2) kom Cosf(A 4+A 3) 2k3A 3&

G4 k3 sin/(A4 —A 3)
—2poko sin/A 3,

Go= —k32 sinlp(A4 —Ao)+2poko sin&A 3,

Go ——ko' sing(A 4+A 3).

(2.21)

(2.22)

III. ANALYTICITY PROPERTIES

We assume that the six functions A, (s,t,u) satisfy
the Mandelstam representation

00

A;(s, t,u) =I'~+ ds'—
(m+ p)

x,(s',u') 1+- ds'
(s —s) (u —u) 7I

+ /+
Es—m' u—m2) t u2—(3.2)

The absorptive parts in the various channels are given
by

A, '(s,t,24) =—ImA;(s, t,u) for s& (m+/4)2

)t,(s,u') 1 " p;(s,t')
du' +— dt' (3.3)I —I ~ 4„

A (s,t,u) =—ImA;(s, t,u) for t& 4/42

1 1
ds'p'(s'») —, +, I

(3 4)
7l (~+@)3 s —s s —u/

p, (s', t')
/ 1

X i +, (3.1)
t' t (s'—s s—'—u

where p is the pion mass and P, represents the nucleon
and pion pole terms:

Following Hearn and Leader, 4 we dehne the functions

y, (x,u') 1 " p(x, t')
du' +— dt'

(~+3)3 u~ —u($)
A,'(x,y) =—

Z (~+-'.)G..l'd. ,"(~),
(p k )1/2 for x&~(m+/4)2, (3.5)

Q 9+2)G 2, lsd-o, is/), -
(p k )1/2

Go=(1,1i 2"
i-o, , —-,')
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1
A '(xyy) =

(m+P&

f(x',y(*'))

g —g

z z 1+cosH)jy)=x i[m 2(*
(3 7)z)z/2xj(1 —co 8)

and (3.6) are corn'definitions(35 '

relstjonin whichto obtan a "x' "'
arated. » ord" "'an(I l ft-hand cuts are separate .

where

E . (3.1). After identifying
Dt

minators in Kq. 3.
the various contri utions, we

4;,4s', y)l, , „(,)J
ff(» »''

4, —
for yr»)4 z (3.6) x' —x—zz

A;(s,cos8) =P,+—
A (s', t(s') 2yt;

I

u+(u' —u

s
Q

I

Q

u (u')

1+cosH ss(1+COSH) u ( )

L(t'

t') 1—cosH s —co~t' —t (t') s(1 cosH) —t+(t — — st+(t') t— (3.8)

gives
Res= m —y'—4 '/(1 —cosH),

I/2Ims == & (m' —Res)
(3.13)

On the other hand, lf

4 '(2m'(1 —cosH),p

—~ (s&0.
t w p

— ' ' then t is given byt we put s=nz'e',If pn the circle cut w p

(3.14)t = 4m' sin'(-'8) sin'(-,'n).

from theral only contributions
(o ) illb k

e in the interval —00 saccount, since in e
would nee(I d the function

and
0(s& 1L).(COSH) y

where
tz 'j/(1+cos8). (3.11~ (cosH) =up[(m p,

'

sical cut. nisca e11 d "crossed phys'The cut 0&s
the third integral, ite ' ' alif

4 z) 2m'(1 —cosH),p

f u cosHi
A u', ti-

41+COSHj

where

ug(x) =m'(1+ cosH) —x
&{[mz(1+ cosH) —x

&{[m'(1 —cosH — '— —c

real alongit structure osee the singulari yWe can easily see

(3.8). Th de erst integral inf o the s
s(1+cosH) —ug(u ) = g

(3.10)—~ &s('ll (cosH)

the cuts are rea,al since

m — t' '—m4(1 —cos8—)')0[m'(1 —cos8) —t —m — ') 0

an(I run along
—~ &s& V' (cosH)

an(I
V~(COSH) &s&0,

where
K~(COSH) = t~(4tz')/(1 —cos8 .

If
4p &'(t'(2m'(1 —cosH),

m lex at is( =m', namely,the cuts are complex a s — ', 1

(Res z ms'I s)(1—COSH)=t+ t

(3.12)

an le, so that
'

al values p ef the scattering ang'
ndoesnotg p

ot ti hast nz e
account, i.e.,

hat the convergence
'

dp npt&9p', we see t a

I s 38),

'
us limitations.

q. (It is
'

n has to satis y a
ener y

hthe scattering o p o
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T=X2*{—2e'F 1'et 22*—(e'/m)F 1'Pi4r et. 22*

—(e'/m) (F1+F2)'pi42 (p2X 62 )X (pi X et)
(—e'/m) pF1(F1+F2)Xi/rr p2.(p2X e2 ) et

p,.* ({l X.)7}&„(3.15)
where

F1—=F1(0)=-'2(I+vs),
Fs(0) 2 ( n+I+)I+ 2(un PN) rsvp

where F1 and F2 are defined in Eq. (4.4) and e' =42r/137.
Using Eqs. (2.18) and (2.19), we get for fixed cos8 and

—+0 and p„, p„are the proton and neutron anomalous mag-
netic moments,

A 1 ~ (e'/m) F12(cos8—1),
A2 ~ (e'/m)F2(2F1+F2),

A 3 ~ (e'/2m)F2(2F1+F2)+ (e'/2m)(1 —cos8)(F1+F2),
A 4

—& —(e'/m) I 1'/P (3.16)

As~ (e'/m)(F1+F2)'p ',

As —+ (e'/2m)F2'+(e'/2m)F1(F1+F2)(1 cos—8)

p~= 1.79,
p, = —1.91.

Substituting Eq. (4.4) into Eq. (4.3) and using the
identities

u(ps)y A'y E24(pt) = —(S'P")'"24(ps)ysl(p, ),
24(ps)y IVI(pt) = 22E't4(ps)qsq E&(p,), (4.5)

only on the static charge and magnetic form factors. In the s channel, the sum over a will be limited to the
The result is nucleon and pion-nucleon terms.

The matrix element (ys, iV2I T
I 1V1) can be written as

(&2 Psl T
I Pi) =2~(P2) LV.F1((pt—Ps)') —~,.(ps —Pi).

XF2((P1 p2) )/2m7N(pi) es (4 4)

Comparing with Eq. (4.7), we see that Ai, A4, and A6
have the correct low-energy behavior, but that A2, A3,
and A6 need a subtraction. '

we And

where
A IN = rrb(m. s s)e'B—

Bg= —2mFg',
82=0,
Bs= —mF 1(F1+F2),
84——J,2,

B.-= —(Pi+F2)',
Bs F1(F1+F2)~

IV. s-CHANNEL UNITARITY

From the unitarity condition of the S matrix

(4.1)SSt=StS=I,
and the definition (2.8), we obtain

(fl &T Tt)/2ili)=2(—22r)4 g X,2

(4.6)

It follows that the contribution of the s and I channels
to the P; of Eq. (3.2) is

(1—cos8)e'B.X8"&(Ps »)(flTI~)(—~IT'li), (4»
for i=1, 2, 3, 6,I f

where the sum extends over all intermediate states
I a)

with permissible quantum numbers and
2m'+ (s—m') (1+cos8)

2 cosg —1
P,= e'B, +

s—m' 2m'+ (s—m') (1+cos8)

for i=4, 5. (4.7)

~V.= (2E.)-'12.

Introducing Eq. (2.11) into Eq. (4.2) we get

6

Q ImA;(s, &,N)(Ã2, ys I T„,"I Et,yt)
The pion-nucleon intermediate state in Eq. (4.3) re-
quires the knowledge of pion photoproduction. The uni-
tarity equation (4.3) may be integrated trivially if we
expand both sides in terms of helicity amplitudes. For
the process yt+Nt ~ 2r+E2 define the following' in-
dependent helicity amplitudes (ssl T lst, p), where s;, p,

X(N2&sl TI43)(43ITtlÃ1&t). (43) are the nucleon and photon helicities, respectively:

&1=—(2 I
T

I 2 1)= (PV) '"2 (1+2)0 ., i'&;, l'(8), -
&2=—(——.'ITI2 1)=&pa) "'Z (~+2)a-l. —.d-:.-i'(8),

J

lis—= (ll Tl —-' 1)=(prI) '"2 ( +J) spit, l'd l, f'(8),
(4 g)

4=—(—2 I Tl —
2 1)=&PV)'" 2 (I+-')0- "d ~ "(8)J

3 One could, of course, also leave Zgs. (3.8) as they are and impose the limits (3.7) on A2, A3, and A6.
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where q is the ~A c.m. momentum. The unitarity condition now becomes

(8irW)1m'. ..~=-,'
s~ +1/2

For each photoproduction amplitude, the following isospin decomposition can be made:

p, —p, (+&y& (+&+y,( &ps(
—&+/—, (s&g& (s&

where

(4.9)

(4.10)

Sp&+&= Spy, dp' &=i~p3~v-~,

Introducing Eq. (4.10) into Eq. (4.9), we get

y p
(o) —7-p

&-A" ~*=L&-~"&&" ~"&*+2&- ' &&" N' &*+3&-~"&&"~"&*3
+ [li'ss~ +Vs'sN *+les&r '4e'N&r '+ 24'se&r Ve'sir

*
24eaN '4'e'e&r *)rs (4 11)

The relation of the partial helicity amplitudes to the multipoles E&~, M&~ as defined by CGLN' is

0-,. ; =-A, -: =(:p~) & [I-(~. Ii«;&-)+(i+2)(~.+~«,. &)l,
= (sPV) '"[i(~i++&(i+i&-)+(t+2)(«+—~ it+i&-) l,

~ =(sPg)' '[i(i+1)$ [ I i+—+~i+ &t—&+i&=~«+i&
= —4;, i'= (-,Pv)"'[f(i+1)j"'L—@++~i++&«+i&-+iaaf «+»-»

with
J=l+

For g&~, M&+ the results of Donnachie and Shaw"
were used. They started from fixed-t dispersion relations
for the invariant amplitudes A, (s,t,g), from which in-

tegral equations for the multipoles were projected out. '
Only multipoles leading to final s, P, and d waves were
retained. Knowledge of the pion-nucleon phase shifts
allows the coupled integral equations for the dominant

Mi+ and Eo+ transitions to be solved by iteration. The
other multipoles were evaluated in the (Born+Mt+i'&)
approximation. A more recent solution of these equa-
tions by conformal mapping techniques, " which im-

proves the evaluation of the Ei+('& and Mi ("& multi-

poles, gives the same results as far as Compton scattering
with the present experimental accuracy is concerned.
Equations (4.11) and (4.12) are then introduced in Eq.
(4.9), which allows one to evaluate the contribution
from the cut 0&s&(cutoff) in Eq. (3.8). The integrals
were cut off smoothly, going to zero at about s=3m'
and it was checked that the result was essentially in-

dependent of the cutoff.

( 'l2'l»(P )8'(P )&=sp(P )& N(P ) (5.2)

' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

'0 A sign error should be noted in Ref. 4, Eq. (4.18)."A. Donnachie and G. Shaw, Ann. Phys. (N.Y.) 37, 333 (1966).
'~F. A. Serends, A. Donnachie, and D. L. Weaver, Nuclear

Phys. C,
'to be published).

"The p pole may be included trivially, but its contribution
is negligible.

V. t-CHANNEL UNITARITY

For this channel we retain the x and 2~ exchange. "
The relevant matrix elements for ~' exchange are

(y,(k),ps(k') l
T

l
ir'& = i(G/&i') e„„.e„e,'k,k, (5.1)

with G=+8(ir/rp)'~', where r=0.89X10 " sec is the
m' ~ 2p lifetime '
Introducing Eqs. (5.1) and (5.2) into Eq. (4.2), we get

A (s,t,u) =0 for iW3,

A s'(s, t,u) = 7r( ', gG) pb(y, ' -t). —(5 3)

The sign in Eq. (5.3) is chosen in agreement with
Lapidus and Kuang —Chao i5 i.e., KG&0.

In order to calculate the 2ir contribution to Eq. (4.2),
the isospin I=0 s-wave i' ~ 2x and 2m —+ 2y partial-
wave amplitudes will be needed. To this end, a disper-
sion relation following from the Mandelstam represen-
tation" will be written. On the right-hand cut we will
restrict ourselves again to the 2x s wave, i.e., we con-
sider )VX —+ 2m ~ 2m and 2x ~ 2x ~ 2y. Since no reli-
able information on I=0 xm scattering exists, this ampli-
tude will be parametrized by an iV/D decomposition
This determines the discontinuity across the right-hand
cut. %e then solve in the usual fashion"" for the
kg —+ 2s. and 2ir -+ 2y amplitudes in terms of the left-
hand cut discontinuities of these amplitudes. The left-
hand cuts will be approximated by the respective Born
poles.

Since in this channel we are dealing with the annihi-
lation EN ~ 2y, the unitarity condition becomes

6

g ImA;(s, 1~~)h'its l
2's ' & l&i&s&

i=i

= s(2~)' P — S"&u'&—P~)
a

X&~,~slrla&(elrtlx, ~,&. (5.4&

"A. H. Rosenfeld e$ a/. , Rev. Mod. Phys. 39, 1 (1967)."L.I. Lapidus and Chou Kuang-Chao, Zh. Eksperim. i Teor.
Fiz. 41, 294 (1961) LEnglish transl. : Soviet Phys. —JFTP 14, 21O
(1962)j."W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960)."R.Omnes, Nuovo Cimento 8, 316 (1958).
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Retaining only the 2ir state in Eq. (5.4), we obta, in The partial-wave expansion of (5.12) is

8i= {kq)-"'Z (J+',)8+'(t)P.(cos~'),

A p=A&+)tI p+A&—)-,'Lr, rp]. (5.7)

The relation of A, 8 to the helicity amplitudes
(s,s~ T~2~) is

x(yiy2(T(iri7r2)(7ri~2(Tt)NiN2), (55)

where the integration is over the solid angle of q, the
2ir c.m. momentum. Equation (5.5) will be integrated
with the aid of the helicity expansion (2.20), so we

write down the relevant formulas.
For 2' —+ EX, we have the usual decomposition into

invariant amplitudes;

(N(pi)~(P2) I TI~(qi) ~(q~))
=8 (P2) $ A+—-,'i(q, q2)

—pB)u(pi), (5.6)

where each amplitude has the isospin decomposition

g+'(t) = (qk) '"(kq) '8+'(t) (5.15)

Substituting now Eqs. (5.7), (5.8), (5.12), and (5.13)
into Eq. (5.5), we see that only the I=O part con-
tributes. Hence, if we neglect d and higher waves, we
obtain

ImGi™G2=—-'(q'/kP)"'f '*(t)g+'(t), (5.16)

all other G, 's being zero. From Eq. (2.22) finally follows

A i (s)t,g) =A (s)t)Q)

82= {kq) '"Z (J+s)
P~"(cos)P) sin)P'

X8 '(t)
&(J—1)J(jy1)(v+2))'&

'

where k is the photon c.m. momentum and ip' is the
scattering angle. As in Eq. (5.9) we define

Pi= (2)—,
'

j
T

~
2') = 2(pA+mq cos)PB),

F2—= (-', , —-',
~
T~2ir)= 2qE sin—)PB,

(5.S) 4~')'"f (-t)), '(t)'*

t t—4m'
(5.17)

where q, p, E, and )P are the pion momentum, the
nucleon momentum and energy, and the scattering angle
in the c.rn. system, respectively.

The partial-wave expansion of (5.7) is

&i= (Pq)-"' 2 (~+I)&+'(t)P.(cost),

'f2=(Pq) '"2 (~+2) f-'(t)»nfPZ'

P+~(t) is related to f+s(t) as defined in Ref. 16 by

~+'(t) = 16~(q/P)'"(P—q)'f+'(t) (5.1o)

At this stage, we assume the usual analyticity prop-
erties for f+0(t) and g+0(t)." f+0(t) has cuts along—~ &t&a and 4ti2(t& &e, where a=4ti'(1 —ti'/4m')
Similarly, g+o(t) has cuts along —m (t&0 and 4p, '&t(~ . From unitarity it follows that both have the
phase expLit)0(t)1 when 4ti'&t&16p, ', where 8o(t) is the
I=J=0 mr phase shift. Ke decompose this mx partial-
wave amplitude according to

A (t) = Lt/(t —4p, ')$'"p'"&" sintIO(t) =N(t)/D(t), (5.]8)

such that

Similarly, for 2p ~ 2x we have

(s.(qi), m (q2) ~
T

~ y(ki), y(ki))
=e "«. ' $8 P 'P'/P'+B N N/N'j (5.11)

ImN(t) =D(t) ImA(t) for t(0
=0 for t)0,

ImD(t) =—N(t)L(t —4)Li')/t$'" for t&4'
=0 for t(4p, '.

(5.19)

where

K= 2 (k2—ki), P= 2 (qi —q2), P'= P PKK/K'—
Q= —(qi+q2), N„=ir:„„p.P„'KpQ. .

Since D(t) has the phase exp[—it)0{t)] for 4p'&t&16ti',
D(t) f+0(t) and D{t)g~'(t) are real in this interval and
we have the approximate solution

The isospin decomposition is

B,=B;&0)28 p+B;&')(tI p
—38 gapa). (5.12)

f+'{t)=
~D(t)

(5.20)

The helicity amplitudes (2m
~

T
~
Xi,4) are

8 =—(2 I TI1,»= —l(B+B),
8g=—(2~i T i1,—1)=-,'(Bi—B2).

g~'(t) =
~D{'t)

o D(t') Img+'(t')
dt' (5.21)

(5.13)
Two subtractions will be made in Eq. (5.20) at t=0,
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corresponding to forward x—X scattering, giving

f+'(t) =D-'(t) D(t=o)Ref+'(0) 7r

FIG. 1. (a) Pion pole terms contributing to pion Compton scat-
tering; (b) Seagull graph in pion Compton scattering.

+t [D(t")Ref,s(t")],"=,+-
Bt 7l Bt

D(h') Imf+o(t')
Ck' — . (5.22)

(t'—t") (h' —t),",
The subtraction constants have been determined by
Menotti, "Morgan "and Vick" from forward mE scat-
tering by the method of Ball and Kong. "They obtain

Ref+'(0) =—2.7&0.5,

Ref+"(0)= 2.9&0.9. (5.23)

with g'/4s =14.6. In (5.21), Img+'(t) will be approxi-
mated by the pion poles [see Fig. 1(a)]. In order to
satisfy gauge invariance, the seagull graph [see Fig. 1(b)]
must also be included. Accordingly, we make one sub-
traction in Eq. (5.21) at t=4p', the subtraction con-
stant containing the seagull graph,

g+ (h) = sses[D(t=41J—, )+4hrs(t 4hjs)—

In the remaining integral, the Born approximation" will
be used for Imf+'(t)

2p
Im f~'(t) = —gsrg'm—,(5.24)

[(4m' —t) (4p' —t) ]'h'

A. Nonresonating Phase Shift Ss(t) from rrN Data

In this approach, dispersion relations for partial-
wave amplitudes are used, which are of the form

00

Ref, (s) = I',(r)+
Im f((s')

dS

1 '"-sl' Imf, (s')
+— ds' +A)(s) . (5.26)

p S —S

Ima(t) = —r3(t—t,),

where I" is a constant. Equation (5.19) gives

(5.27)

As in Eq. (3.8) Ei(s) stands for the nucleon Born pole,
the first integral is due to rescattering and comes from
the right-hand cut, and the second integral comes from
the crossed physical cut. These three terms can be
evaluated in terms of the mlV coupling constant and
known ~1V phase shifts. Di(s) contains the contributions
from the circle cut isi =I' p' a—nd —~ &s&0. The
distant singularities, i.e., —~ &s&0 are approximated
by a constant plus pole term, somewhere on the cut
—~ &s&0, and the discontinuity across the circle cut
is supposed to be dominated by the ~z contribution.

In the spirit of the eRective-range formula, the dis-
continuity in ImA(t) [Eq. (5.19)] is replaced by a 3

function at t=ti, ti(0. Thus

D(t')
t' . (5 25) D(t) 1

(t' —t) (t' —4p, ') [h'(t' —4p, ') ]'i'
t ts-

Ch' i, , (5.28)
4,' t & (t' —ts) (h' —t)

The t-channel contribution to yF —& yE can now be
calculated, once a model is used to evaluate bs(t) in
Eq. (5.18).

There have been several attempts ot obtain infor-
mation on I=O mw scattering from mE scattering, ' "
E,4 decays, "Ep mass diRerences, "'4 etc.

%e consider three models in order to provide the
necessary information in Eq. (5.18).

'8 P. Menotti, Nuovo Cimento 23, 931 (1962).
"See J. Hamilton, in Strong Interactions and High Energy

Physics, Scottish Universities Summer School, 1963, edited by R.
G. Moorhouse (Oliver and Boyd, Edinburgh, 1964), p. 334;
J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick, Phys.
Rev. 128, 1881 (1962).

'0 J. S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961)."G. Lovelace, R. M. Heinz, and A. Donnachie, Phys. Letters
22, 332 (1966)."See, e.g., C. Kacser, P. Singer, and T. N. Truong, Phys. Rev.
137, B&605 (i965).

"T.N. Truong, Phys. Rev. Letters 17, 1102 (1966); K. Kang
and D. J. Land, ibid. 18, 503 (1967).

s4 R. Rockmore and T. Yao, Phys. Rev. Letters 18, 501 (1967).

Il

D(h) =1--(h-h, )

~ ~

4~2) r/2

X i . (5.29)
(h' —t,)'(h' —«)

Integrating (5.29) gives

where

r F(t)-P(t,)
ReD(t) = 1+— —F'(tr) i, (5.30)

t—tt

Fih)=win for t&4p,2,'and"t &0

= (2/y)arctany for 0&t &4+', (5.31)

where one subtraction has been made at t=tp and we
have chosen D(ts) = 1. Substituting Eq. (5.27) into Eq.
(5.19) and the result in (5.28), we obtain
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gives for D(t)

D(t) =D(to)+ [(t-to)/(to-t t)]I.D(to) —D(it)]

Ãp cd t~ 4+/ 1/2

(t—t,)(t—tr) dt'
4„ t' //

X[(t'—t) (t'—tp) (t'—tr)]—'. (5.34)

This integral can be done trivially as in Eq. (5.29), and
the arbitrary parameters can be expressed in terms of
t~ and the scattering length ap. Using

IOO

I

200
I

300
I

400 [(t—4/4')/t]' ' cotfIo(t) =N(t)/ReD(t), (5.35)
PHOTON ENERGY (MeV)

Fro. 2. Differential cross sections at 90' in the c.m. system. All
cross sections are given in units of r„'= (e'/4rrm)', the square of
the classical proton electromagnetic radius. Curve labeled (a)
correspond to older calculations, without including the mm inter-
action. Our results correspond to (b), without ~~ interaction, and
to (c), where this contribution is included, using the v7r phase
shift of Hamilton et at. (Ref. 19).

with

we obtain

(t 4/bsYl—
'" 1 ( t 4/4' )—

cotbp(t) =
t ap ( trr 4p, 'J—

1 t—4p'
+—F(t)— F(t ), (5.36)

m — tg —4@2

[(t 4~s)/t] t/s and y [ t/(t 4 Q) ]t /s (5 32)
where F(t) has been defined in Eq. (5.31) .

Since the right side of Eq. (5.26) can also be evaluated
in terms of xE phase shifts, a 6t to the discrepancies
D~(s) can now be made, and the parameters I' and tt
determined. The phase shifts obtained are positive, rise
to a maximum of about 30, and fall off to about 15
by t= 50''. The scattering length obtained is

C. ~~ Phase Shift from Io Exchange

In this model, the s-wave x~ interaction is supposed
to be driven by p exchange in the crossed s and I
channels. The crossing-symmetric Born amplitude for
p exchange is'-4

up& &.3 (5.33)
32~Ts.,„(s,—t, r4) = b.btt, df,'

-Q—m s—mp p

B. Resonating ~~ Phase Shift

A resonance in the I=J=O channel has been sug-
gested for several reasons. ""We will make two sub-
tractions in the D function of Eq. (5.28) and require
the condition ReD(tg) =0, where t= ter is the resonance
position. With a, constantly function, E=XO, Eq. (5.19)

Clo

dQ,

u —s u —t
+tt.dtfb.fv' +

t—mp s—mp

s—t
+~.Abd +, (5.37)

t—m' n —m'

where the prrrr coupling constant is f,'/4Tr=2. 16. Pro-
jecting out the s wave, we get

fR' (2v+/4-'+m, 'l4)
/

m, ')
X(v)n--= — ()pl 1+

4m 2v)
(5.38)

where
P=4t P . (5.39)

IOO 200 300

PHOTON ENERGY (MeV)

400

The left-hand cut in (5.19) is now replaced by a pole, "
so that the X function becomes

X(v) =—5X+(v vp)Bp(CIrp+vp)/(tpp+v) (5.40)

where X is the value of A(v) at the symmetry point
s =op= 3y Gpp gives the position of the pole, and Bp is
proportional to the residue. For )L=O, Eq. (5.39) is the

Fro. 3. Differential cross sections at 135' in the c.m. system,
in unitS Of rv'= (e'/4drm)'. ~6 B. R. Desai, Phys. Rev. Letters 6, 497 (1961).
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one-pole approximation to Eq. (5.38). Substituting Eq.
(5.39), into Eq. (5.28) we obtain

D(v) = 1+LB0(coo+vp) —5XjLF(v)—F(vo) j/n', (5.41)

where F(v) is obtained from F(t) by inserting Eq. (5.39)
into Eq. (5.31).Rockmore and Yao obtain as their best
fit a scattering length of ao&0.8, )~—0.1 and no res-
onance is required.

d+
dQ20-

16—

BIO MeV

CORNELL

VI. SUMMARY AND CONCLUSIONS

A dispersion-theoretic analysis of low-energy Comp-
ton scattering has been given assuming that singulari-
ties far away from the physical region have a negligible
eGect. In this spirit the absorptive parts of the scattering
amplitude have been calculated in terms of the nucleon
and m' pole, photoproduction, and the I=1=0ex inter-
action. The latter has been estimated using some cur-
rently accepted models.

Our theoretical results are compared with experiment
at 90 and 135 c.m. angle (see Figs. 2 and 3). Curves
labeled (a) correspond to older calculations, without
including the xx interaction, e.g., Contogouris. Our
results correspond to (b), without m~ interaction and to
(c), where this contribution is included, using the 7'
phase shift of Hamilton et al."We conclude that the
discrepancy around the photoproduction threshold,
where the experimental data were lower than the theo-
retical ones, can be accounted for once the xm contribu-
tion is included. With the nonresonating mm phase shift
of Hamilton et ul." and the resonating one discussed
under model 3, Sec. V., the agreement is essentially the
same, if a resonance of width 7&100 MeV at an energy
Eg&600 MeV is excluded. The xm scattering amplitude
from p exchange gives too small a contribution to
yp —& yp due to the increasing value of the X function
for f&4p, 2.

20
I t I 'I

60 IOO I40

8 DEGREES

I80

Fn. 4. Angular distribution at 310 MeV as a function of the
angle in the c.m. system in units of r„~.
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At 90' c.m. and resonance energy our values, as
those of all other theoretical calculations, are higher
than the results of Ref. 2. This can also be seen in Fig. 4,
where the angular distribution is plotted at 310-MeV
photon laboratory energy.

In conclusion it can be said that theory and experi-
ment are in agreement at low energy except at 90 c.m.
and resonance energy, but the experimental uncertain-
ties should be reduced before a definite conclusion can
be drawn.


