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Condensation of the Ideal Bose Gas as a Cooperative Transition
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The thermodynamic properties of the noninteracting Bose gas in the neighborhood of its transition are
examined in detail. The order parameter is a complex extensive variable, but the thermodynamic properties
depend only on its amplitude under simple boundary conditions. As the dimensionality or the single-particle
energy spectrum is varied, the critical singularity displays a variety of forms. The equation of state has a
simple structure, different from the homogeneous form often discussed for critical systems but asymptotically
reducing to the latter except when logarithmic singularities are involved. The correlation function in the
critical region is a homogeneous function of the distance and a correlation length. Only for a quadratic
energy spectrum is the Ornstein —Zernike theory result valid at the critical temperature. A precise cor-
respondence is noted between the asymptotic properties of the ideal Bose gas transition and those of the
spherical model of ferromagnetism.

I. INTRODUCTION

I
'HE ideal Bose gas is one of the few systems which

possess a thermodynamic transition and whose
properties can be calculated exactly. While in many
ways unphysical, particularly in the low-temperature
region, it has nevertheless proved a useful model system
for studies of the superQuid state. In this paper we
examine the neighborhood of the transition itself as a
model of a cooperative transition. To do this, we intro-
duce expbcitly the dynamical variable which achieves
a long-range order in the condensed state. The thermal
average of this variable we call the Bose moment; its
properties are in complete analogy with those of the
magnetic moment for a system which undergoes a
ferromagnetic transition. The Bose 6eld is the intensive
variable thermodynamically conjugate to the Bose mo-
ment and a transition occurs only in zero 6eld.

The thermodynamic properties can be determined
exactly in any number, d, of dimensions. In particular,
the asymptotic functional forms near the "critical
point" are found for the coexistence curve, the "sus-
ceptibility, " the critical isotherm, the specihc heat,
etc. ; these are listed in Tables I and II. The exponent P
characterizing the coexistence curve has, for all d, the
"classical" value P=-,'. The properties on the low-

temperature side of the transition are rather uninterest-
ing because of the unphysical nature of this region, bu.t
on the high-temperature side a rich variety of functional
singularities is displayed for different values of d. The
equation of state for the order parameter can be ex-
pressed as a function of one variable only. Its asymptotic
form in the region of a transition point reduces to the
homogeneous structure proposed by Widom except when
logarithmic singularities are involved, that is, in four
dimensions. Everywhere in the asymptotic region the
correlation function is a homogeneous function depend-

ing only on the distance and a single correlation length,
the latter being a function of state. This structure is

simpler than the form proposed by Kadano6. The dis-

tance dependence of the correlation function conforms

to the Ornstein-Zernike theory.

In Sec. V we discuss the precise correspondence that
exists between the asymptotic properties of the ideal
Bose gas transition and those of the spherical model of
the ferromagnetic transition. The relationship between
the condensation of the ideal Bose gas and the P transi-
tion in liquid helium is similar to that between the
spherical model and a real ferromagnet.

In the concluding section the homogeneity properties
of the Bose transition and the thermodynamic inequali-
ties involving critical exponents are discussed. We do
not discuss here Row properties or properties related to
inhomogeneous fields.

II. STATISTICAL MECHANICS OF
THE IDEAL BOSE GAS

A. Discussion of the Bose Moment

Consider a system composed of a number E of non-
interacting Bose particles of mass m enclosed in a sta-
tionary, simply connected volume V. We introduce the
set of pairs of dynamical variables

—V'—1/2a f t V—1/2a t—
which are linear combinations of the pairs of Hermitian
operators

V '"(ay+apt), iV '/2(apt —ag).

The operators akt, al, are the creation and annihilation
operators for the single-particle state k, of the energy
~i„with k=o as the ground state. I.et @'I„%"»*be the
thermodynamic averages of fk, P/, , respectively, with
vl„vl, * the corresponding intensive thermodynamic
variables. Thus de6ned, V%'l, is a complex, extensive
variable. The particular one V+0, which we will call the
total Bose moment, is of special interest here, as it is
the order parameter for the stationary, simply con-
nected ideal Bose gas. ' We will refer to No as the Bose
moment per unit volume or, more brieQy, the Bose
moment, in complete analogy with the magnetic mo-

' One or more of the other variables +i, could play the role of
an order parameter under a different choice of conditions, such as
equilibrium in a rotating system.
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ment for a system displaying magnetic properties. Just
as the conjugate variable in the latter case is called the
magnetic Geld, we will call vo the Bose Geld. The com-
plex-valued %o represents two real thermodynamic
variables, which could be taken as the amplitude 4 and
phase 8 of the Bose moment,

generating function stems from the fact that if one
calculates

X= lim (TrX exp( —PII)/Tr exp( —PII))

one Gnds

Similarly we will write p fol the amplitude of po. As we
shall see, the free energy for the above system in a
homogeneous field depends only on

~
+0 ~', so th« there

will be no loss of generality for our present purposes in
eventually choosing vo (and hence 0 0) as real.

In the same way as for the ferromagnetic system and
other systems developing long-range order, the ideal
Bose gas can be characterized in. the vicinity of a
transition point by such functions as a coexistence curve
(relating the "spontaneous Bose moment" in zero field
to the temperature difference, T—T„ from the transi-
tion temperature, T,) a critical isotherm (relating 4'
and v at T,), an isothermal "Bose susceptibihty, "
kT(8%'/8v)r, and other quantities discussed in detail
in Sec. II C.

%e now wish to consider the statistical mechanics
problem of calculating the properties of the Bose mo-
ment. In general when dealing with a system undergoing
a cooperative transition which is characterized by an
order parameter, it is useful to introduce a generating
function to facilitate the calculation of its properties.
Thus for a system whose Hamiltonian is H and whose
dynamical order parameter' is X, one introduces the
generating function Z(P, &) which is the thermal average
of [exp(P/X)], with P= 1/kT. Thus

Z(P, g) =Tr exp[—P(II—$X)].
Then the thermodynamic order parameter

for al/ temperatures. The value zero for T&T, is,
however, achieved by the system possessing exactly
balanced contributions from each side of the coexistence
curve. This is a reAection of a basic symmetry property
of H associated with the order parameter for a particular
system. The term —$X is just such as to break this
symmetry. ' The most familiar example of this procedure
is for magnetic systems, where I is the magnetic mo-
ment and $ is the magnetic field. Our present example
is the ideal Bose gas, for which X and $ correspond to
the Bose moment and the Bose Geld. The Hamiltonian
commutes with the particle number operator E and is
invariant under the gauge transformation (expiS&),
where p is the phase. This gauge invariance leads to a
zero value for the total Bose moment for all tempera-
tures, a property which is removed by the symmetry-
breaking term.

B«PR1tjtlon FllIlctloQ

The grand canonical partition function for a gas of
noninteracting Bose particles in a homogeneous Bose
Geld' vo is therefore

=Tr exp{—P[II—pX—V (v0$0+ vo*fot)]), (1)

where $0——V 'I'ao, with

k

and where the value of the chemical potential, p, , must
satisfywhere

{X)t= lim (TrX exp[—P(P—tX)]/
~o—g+0

Hence

The thermodynamic "free energy" for this partition
Tr exp[—P(II—PX)]) . function is just the pressure,

(X)= hm hmP '[8 lnZ(P $)/8$] p =p (T,p, vo) = lim (p V) ' ln (T,p, vo) .

and $ plays the role « the thermodynamic»riable The thermodynamic properties are determined by
conjugate to X. In general one finds for an order the differential relation (the Gibbs-Duhem equation)
parameter that

dp= sdT+pdv+@odvo++0'dvo*,

where T, is the "critical" temperature characterizing
the onset of long-range order. The usefulness of this

'This procedure is, of course, suitable for calculating the
thermal average of any dynamical variable, whether or not it is an
order parameter.

where p is the mean number density and s and 0'o the

' N. N. Bogoliubov fPhysica 26 (Suppl. ), Si (1960)j used the
term "quasiaverage" for the thermodynamic mean (X}defined
above.

4 Ke could easily consider the general case where the symmetry-
breaking term is —Vgk(vkg k+vk*fkt), instead of the particular
choice made for the purposes of our present discussion.
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entropy and Bose moment per unit volume. Thus

s=ojp/BT, p=8p/Bp, 4'o=8p/Bvo . (6)

The partition function (1) can be evaluated exactly
by making the canonical transformation

bo= ao V'"—vo*/(oo Ii), —bo'= oo' —V"' v/o( o—o p) (i)
bg ——ag, b) ~——uj. ~, k/O.

=-=T.-pD V....*/("-.)-I Z("-.)b.».7

=exp[j8Vvovo /(oo p)7—Trexp —pQ(ok p)bk bk (9)

As the transformation is canonical, the eigenvalues of
the operators {bk»k) are the positive integers and zero.
Thus we see that the trace remaining in (9) is just the
partition function of the ideal Bose gas in zero field.
Inserting the explicit single-particle spectrum, ok ——kok2/

2m, ~0=0, we thus find that'

p = lim (PV)
—' In™= —vovo*/p

+(~~")-'F",(-I.), (10)

Let us define a critical temperature T„.(p)= 22rk2/

mB,', for d~2, with

X =p Folio(0) d& 2.
Ke can now write (14) in the form

p '( /p)'+(T/T. )'"F.i ( Pp)/F—'e (o) =1 (19)

This has a solution for p(p, T) which is an a22alykic
function of p and T so long as v&0. It is easy to see
that for T& T, a finite contribution must come from the
first term in (19) (corresponding to the ground-state
contribution), since the coeKcient of (T/T, )di2 is &1
for all @&0 LEq. (3)7. LThe functions F~~2(x) are finite
monotonically decreasing functions of x, for x&0, d&2.7
Since this is still true for v=0, p must vanish for all
T& T„whereas it does not vanish for T& T,. Thus for
v=O, p is mod an analytic function of T. That is, a
transition occurs only for v=0, at a temperature T, (p).
For 0& 2 there is no transition.

We now use the thermodynamic equations obtained
above to calculate various properties of the Bose system
in the vicinity of the transition. From (16) we find an
equation of state v(+, T) given by the solution of

F~~2(v/k~)/F, io(0)= (2'/T) i {1 p-+ ). (20)—

and the function

X2= 22rk2/222k T

F.(x)=g n e "*, x)0.

(11) Let us define the function Gq(g) by

Feo(*)/Feo(0) =1—G.(z) (»)
and introduce its inverse function Hq(x) such that if

The thermodynamic extensive quantities are, from

(6),

po= —vo /p,

p= vovo*/122+1 "Fgo( Pp), — (14)

~=(-,'d+1)I "bio+2( Pp) Pp—I 'Fe—o( l3p) (—15)

The expression. (14) is a conservation equation for the

density, with the 6rst term on the right corresponding
to the contribution X /V oof the single-particle ground

state; using {13),we have

p =%'oo%'o+X "F@2{Pvo*/4'o). (16)

The contribution of the remaining single-particle states
is specihed by the usual set of zero 6eld occupation
numbers

rk= {expDI(ok—p)7—1) '. (I&)

Ily inspection of (10) and (11) we see that

(p+vovoo/p) is a homogeneous function of kT and p,
of degree (zid+1). Further, as p depends on vo and vo*

tor ~0~0~ we

any .loss of generality for our present purposes, to be
real. We therefore set v= so= so*, %=%o——0'0~.

'The term V ~ 1n(1—exp'} @which corresponds to the ground-
state contribution for v0=0 vanishes in the 1imit V —+~ for
v0&0, as —p&0.

vl k Tc+~+d (2d~+ p
—2+2) (24)

The equation of state has a particularly simple
structure: v/kT, %' in the asymptotic region around the
transition point is a function only of the variable
(siCh+p '@2) Further, using-the .expansion' of G~{g) it
is easy to show that the functions Hd(x) have the

'I. E. Robinson, Phys. Rev. SB, 678 (1951).

z= Gg{x),
x= EEg(z) .

Then the equation of state is a function of one vari
able, i.e.,

v/k~= IIg{z)
with

z=1-(T./T) "2(I-p-'~2) (23)

We now introduce, for a given density, the dimension-
less temperature variable

I= T/T, (p) —1

with the transition point characterized by the value
zero for t, v, p, and 4. Indeed, by (13), v/4 also vanishes
and therefore in the neighborhood of the transition
point, with

~
3~ &&1 and v/k?%'&&I, we can readily ex-

pand (23). Thus
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+=W (—-', dpt)'ts d& 2

which defines the coexistence curve.
The critical isotherm t= 0, is given by

(26)

v/kT, Bs(p)XV "+ ~ 2&d&4
X%'/in~', d=4
X+s, d&4 (27)

and the isothermal "Bose susceptibility, " X=kT
X (cl%'/cl v) r, is given for t) 0 and the same ranges of d by

y ]—2/(d —2)

Xint '/t, 4=0.
(28)

On the low-temperature side (t(0), X is infinite every-
where on the coexistence curve. This property rejects
the unphysical nature of this region and. the nonexistence
of a metastable state for the ideal Bose gas (see Sec.
V and the discussion by Langer for the spherical
model).

C. Critical Exponents

It is a straightforward matter to calculate the be-
havior of other thermodynamic functions, such as the
specific heats c„,„,c~,„.The behavior of these and other
functions in the neighborhood of the transition is
described in Table II in terms of the corresponding
critical exponents defined in Table I. These exponents,
with extensions discussed below, are defined in the usual
way: We say that the quantity f with variable x has

' As with many asymptotic expansions, these asymptotic forms
and hence (25) are in many cases extremely bad as approximations
over any practical interval. See Sec. UI.' B.Widom, J. Chem. Phys. 43, 3898 (1965).' J. S. Langer, Phys. Rev. D7, A1531 {1965).

asymptotic forms, 7 for x —+ 0,

E4( )-8 ( )=A.Xe — 2~dg4
Xx/in@ ' d=4
Xx) d&4

so that, for the same ranges of d,

v/kT;A&@X (',dt+p-'0')'-I '
X (2t+ p '@')-/1 n(2t+p '@')--'

X (sdt+ p 'It' ), (25)

where the number As depends only on d (a similar
notation is used in the sequel for other numerical fac-
tors). In the special cases where the function is a simple
power (d&4), these asymptotic expressions are ex-

amples of the homogeneous structure first proposed by
Widom. ' In general, however, the form is diferent from
Widom s proposal (2= 4). This distinction is not trivial
and is discussed in Sec. VI.

From (25) it is clear that for t&0 the condition v=0
has, as expected, the one solution 0'=0; i.e., the Bose
moment is identically zero above the transition tem-
perature in zero field. For t&0 the condition v=0 has
the solutions 4= 0 (which is unphysical) and

TmLE I. Definition of critical exponents.

Quantity Variable Exponent Region'

v
v

x
cn) v

ctt~ v
S,—S
T Tc
C(r)'
RQ
+0

—t

t
t
t

-1
t
v

I3

&s

i+y

(d —2+v)

Coexistence curve
T=Tc
S=Sc
v=O

p constant, v=0
p constant, v=0

T—Tc
S=S,

T=Tcq v=O
T=T„v=0

T—Tc

a Except for P all exponents are defined for T &To and, with the exception
of g, for constant density.

TAsLE II. Critical exponents of the noninteracting Bose gas.
(Single-particle energy ~k, in d dimensions. )

Exponent

P
~=&s

7

1+/ —8

K

1dd/o (2

(+-)/(--)
~t (d —~)

(2o —dl/o—(2 —d}/{d—)b
2o/(d —o.)

2 —o'

1/(d —~)
2/(d+~)

d/v =2

3 t

lt
Ot
pt
2g

2 o'

o~=1t
-=(-:)

d/o)2

3
1—(d—2o)/o—(d —2o)/o'
2

2 o'

1/o
2/3o

a When d/e =2+n, with n a positive integer, the first derivative of the
specific heat to diverge is the nth, with the divergence being logarithmic.

b For values of dj~ between 1 and 2 such that (2c —d)/(d —o) is an in-
teger, no derivative of c~ diverges as t -+ 0. This includes the case d =3, c =2.

an exponent g if

lim lnf(x)/lnx=tt.
x~0

Bsec /gT~~t-(m+as)

' This behavior is by no means a special property of the Bose
gas. In fact, it is quite general. Thus, for example, for a ferro-
magnetic system with finite compressibility, an infinity in c„z
is associated with a corresponding finite, cusplike behavior in c,,II.
t See, for example, the discussion by M. J.Buckingham and W. M.
Fairbank, in Progressin I.om-Temperatlre Physics, edited by C. J.
Gorter (North-Holland Publishing Co., Amsterdam, 1961), Vol.
III.)The notation for this case is equivalent to that used by M. E.
Fisher, J. Appl. Phys. 38, 981 (1967).

Whether a quantity vanishes or diverges is indicated
by the sign (+ or —) in the third column of Table I.

The extensions to this notation are as follows. We
distinguish logarithmic factors by "exponents" with
suffix l Thus f(x.) is said to have exponent ttr or rt',
respectively, if

f(x)~x"/lnx ' or kslnk '.
(The entry 0' for the index n, means that c„,„—const

I/t"—= 1/lnt '.) The specific heat c„,„ for the ideal
Bose gas remains finite" as t —&+0, but one of its
temperature derivatives may diverge as t —++0 (the
same remarks hold for c„,„ for d)4). We can char-
acterize this behavior by defining an exponent (m+n. )
such that the mth derivative of c, diverges like
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If n, is positive, the above corresponds to the usual
definition of the exponent for the specific heat. However,
this definition also allows one to give an explicit, con-
sistent meaning to negative n, so as to characterize the
dominant singularity in the specific heat. We are only
interested in the first diverging derivative; i.e., in the
smallest value of m for which (n,+m)) 0 T.he negative
values of a, and $ which occur in Table II are to be
interpreted in this fashion.

We conclude this section by noting the behavior of
the density for the Bose gas."Although for a coopera-
tive transition the behavior of that extensive parameter
which becomes long-range ordered (in this case 4o) is
of primary interest, any other parameter in general also
has nonanalytic behavior. It can be shown" that any
system possessing an infinite specific heat, c„, on a line

of finite slope in the E—T diagram has also a singular
thermal expansion coefficient and isothermal compressi-
bility and moreover that the asymptotic form of the
singularity in both these properties is the same as that
of c„ itself. Thus each of these quantities for the Bose
gas is characterized by the critical exponent $ given in

Table II. A further property of interest is the shape of
the isotherms on the pressure-density diagram. These
approach a point on the transition line (p„p,) like

Thus
C(r)=P exp(ik r)(1Vk/V). (31)

Using the expressions (16) and (17) for (1Vk/V) and
converting the sum (31) into an integral, it is easy to
show that the dimensionless correlation function

g(r) =VLC(r) —@'7

is isotropic and given by

g(r) =g(~ r~) = Dg"R—'G(R,Ro),
where

(32)

(33)

and

G(R,Ro) = Jd~o r(oo)de

o exp(x'/R'+Ro —')—1
(34)

R=r/7, Ro= (—Pp)
—U',

and where Ito=X'/4n. .
The function J„(x) is a Bessel function of the first

kind.
It is for large r, that is, E»1, and in the neighborhood

of the transition, where Eo»1, that we are primarily
interested in the correlation function. It can easily
be shown that in this region the function G(R,Ro)
approaches

p p (p p)2/(rf 2) 2(d(- (p, —p)/ln(p, —p)-',
-(t. t ), — d&4

for p&p, .
(29)

a~~ Jg)o y(z)Ck
E.'

o x'+ (R/Ro)'

=Dg'R'(R/Ro)"" 'Kg)o ~(R/Ro), (36)

III. IDEAL BOSE GAS WITH MODIFIED SINGLE-
PARTICLE ENERGY SPECTRUM

It is a simple matter to extend the above results to
the case where the single-particle energy spectrum,
instead of being quadratic, is given by e&=ck'. The
effect of this extension of the model is precisely to
replace d in the results of the last section by (2d/o),
since the spectrum only affects the density of states.

1S
C(r~—ro)=P Ck&eXpLi(k r~—l ro)7.

~' More details may be found in J. D. Gunton, thesis, Stanford
University, 1966 {unpublished).

IV. BOSE MOMENT CORRELATION
FUNCTION

The correlation function for the set of dynamical
variables {fk,Itk } is

Ckl Q'k%1)= (A k/V)~kl ~ (30)

The equivalent correlation function in coordinate space,
obtained via a transformation to the particle-field
operators

It(r)=Q exp(ik r)pk

the integral being a Hankel transform, where K„(x)
is a modified Bessel function of the third kind. Thus,
when E. and Eo are both large,

g(r)-D.R '"-"(RIRo)"'-'K~~o i(R/Ro) (37)

which reduces to the limiting forms

g(r) R—&"—'~ R/Ro((1 (38)

g(r) R I~~ '~Ro I~~ o~ exp( R/Ro),—R/Ro))1. (39)

Summarizing the above results, we first note from
(33) the simple and exact result that the dimensionless
correlation function g(r) is a function only of R and Ro.
The only dependence of g(r) on the thermodynamic
variables is contained in the correlation length, Ro,
which itself is a function of state, equal to (—Pp) 'I'.
Further, in the vicinity of the transition point, Eo be-
comes large and for R large, g(r) then reduces to the
homogeneous function of degree L

—(d—2)7 given by
(37). Physically, then, there is only one scaling length,
Ro=Ro(t, v,p). This result is simpler than that obtained
by Kadanoff" using general "scaling" arguments for a

~ L. P. Kadanoff, Physics 2, 263 {1966).His equation (28) can
be written in the form g(r) R "G{R/Rt, R/R„) where Rg and R„
are inverse powers of t and v respectively. The {second moment)
correlation length R0 is a homogeneous function of t and v such
that as w ~ 0 R0 ~ Rt and as t -+ 0, Ro -+ R„.
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thermodynamic singularity. The asymptotic dependence
of Ro on the intensive variables (the temperature f and
the Bose field v) is listed in Table II. Finally, it can be
seen from (38) and (39) that the dependence of g(r)
on the distances large and small compared to the
correlation length, conforms to the Ornstein-Zernike
theory. "

In the extended model, where e&
——ck, a similar

analysis can be made; the results are listed in Table II.
The corre1.ation function in the neighborhood of the
transition remains homogeneous, but now of degree
[—(d—a)]. It shouM be noted that except for 0 = 2 the
results are not those of the Ornstein-Zernike theory.

V. CORRESPONDENCE BETWEEN CRITICAL
EXPONENTS OF THE IDEAL BOSE GAS

AND THE SPHEMCAL MODEL OF
FERROMAGNETISM

The spherical model of ferromagnetism was intro-
duced by Berlin and Kac'4 and has since been discussed
by many authors. %e brieQy summarize here some re-
sults for this model, to show the correspondence which
exists between it and the ideal Bose gas. Consider a
lattice of E sites, labeled by the index I, each occupied
by a spin p, ~. The Hamiltonian in a magnetic field 8 is

2 Z &i, l'P&Pl' fl Z Iil.

dp exp( PFI+PsND)— (42)

can be evaluated exactly' "and reduces to

pB'
X ' ln, — —— Q ln(2s —no+yk') (43)

2(2s—io) 2X ~

in the transition region. The terms vo and (yk') are the
first terms in the expansion for small k of the Fourier
transform of the 6nite range interaction ~~ ~ .

Returning to the ideal Bose gas, it can easily be

The spin variables are allowed to take on all real values—~ (pi(+ ~ subject to the "spherical constraint"

(41)

where D'" is the mean "spin" per particle. I.et s denote
the thermodynamic intensive variable conjugate to the
extensive variable ED.

The partition function

shown that Eq. (9) for the partition function reduces to

Pv2
V 'ln ii—————g In(—pp+Mk')

p, V ~
(44)

in the transition region, where X'k' is just the single-
particle energy e~ divided by kT. Thus it can be seen
that a simple transformation identifying equivalent
variables shows that the corresponding thermodynamic
properties of the two models are the same in the transi-
tion region. That is, the corresponding critical ex-
ponents are identical.

The case of the spherical model with long-range
forces has been discussed by Joyce."This model, for
which the interaction falls off with distance to the
power (d+&r) has a Fourier transform for small k
given by

'Uk= Vo Qk +'b—k + ' ' (45)

This corresponds for 0.& 2 to an "ideal Bose gas" whose
single-particle energy spectrum is e& ——ck discussed
above.

Finally, we remark that a similar correspondence
exists between the ideal Bose gas at constant pressure
(the above correspondence is with the Bose gas at
constant density) and the Gaussian model of ferro-
magnetism. To see this, we recall that the Gaussian
model assigns a distribution exp( —QiiP) to the spin
values. If we consider a "generalized" Gaussian model
with a distribution of spins given by [exp —(sgpP)],
the parameter s can be considered as the intensive vari-
able conjugate to the extensive one, D, given by (41).
Thus the free energy at constant s (i.e., the "Gaussian"
model) is just the Legendre transform of the free energy
at constant D (i.e., the "spherical" model). "

VI. DISCUSSION

The ideal Bose gas is an artidcial model because of
its lack of molecular interactions and the consequent
unphysical nature of its low-temperature behavior. It is
even more arti6cial in an arbitrary number d of dimen-
sions. (We could, however, restrict ourselves to three
dimensions, say, and recover most of the cases con-
sidered, by varying the energy spectrum exponent, 0.)
However, its properties are not without interest for the
general problem of cooperative transitions,

To begin with, we have found that the equation of
state given exactly by Eq. (23), reduces in the critical
region to (24). The right-hand side of (24) further
reduces to the asymptotic form II~ given by Eq. (25).
As noted above this asymptotic form for the equation
of state is not, in general, of the homogeneous structure

» L. S. Ornstein and I'. Zernike, Proc. Acad. Sci. Amsterdam
17, '?93 (1914).This result is apparent from the small 0 dependence
of (30), which is just (k~—p) ~, corresponding to the Ornstein-
Zernike behavior only for 0 =2.

'4 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952),

"G.S. Joyce, Phys. Rev. 146, 349 {1966).
"This mathematical correspondence eras, in eBect, pointed out

by H. %'. Lewis and G. H. Kannier, Phys. Rev. 88, 682 (1952).
The implication that the spherical and Gaussian models describe
the same physical system does not seem to have been generally
appreciated.
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proposed by Widom, ' because of the logarithmic struc-
ture in the case d=20-. This lack of homogenity may
have relevance to the general problem of cooperative
transitions, where experimental evidence"'~ suggests
that logarithms are involved, at least in the specific
heats. Indeed, the model considered in this paper (in-
cluding the spherical model) is the only one possessing
a logarithmic singularity in the specific heat for which
an exact solution in terms of all variables has been
obtained, ' and for this case the equation of state is
not homogeneous. This would suggest generalizing
Widom's proposal to encompass the possibility of
logarithmic factors. "

The equations of state also provide examples of a
problem of importance in the experimental or numerical
analysis of critical behavior. This concerns the accuracy
and domain of validity of approximations of the type
involved in obtaining (24) and (25) respectively. The
second is an asymptotic approximation whose accuracy
depends on the function involved. An example will

suflice to make the point. The case d= 3, 0 =5/3 (which
gives y= 5/4) results in (24) being accurate to 2% for
values of the argument less than 10 '. However, (25)
has the same accuracy only for arguments less than
about 10 '.

The precise relationship of the structure of the cor-
relation function to that of the free energy in the
asymptotic region of cooperative transitions is an in-

teresting and as yet unsolved problem. Thus it is
revealing that for the ideal Bose gas the correlation
function is always a homogeneous function of distance
and a correlation length for all d and 0., as contrasted
with the structure of the equation of state discussed
above. However the correlation length ED=ED(t, v) is
itself a homogeneous function of t and v only when the
equation of state is.

The rigorous thermodynamic inequalities" are, of
course, satisfied by the Bose gas. Thus P(8+1)& 2—a'

~' See, for example, Critical Phenomena, edited by M. S. Green
and J. V. Sengers (National Bureau of Standards, Washington,
D. C., 1966).' The two-dimensional Ising model has a symmetric logarithmic
divergence in the specific heat, but its behavior in a magnetic
field is not known exactly. The present model is unsatisfactory, of
course, because of its anomalous low-temperature behavior.

'9 A simple example of such a structure has been proposed by
M. Azbel, A. V. Voronel, and M. S. Giterman, Zh. Eksperim. i
Teor. Fiz. 46, 673 (1964) )English transl. : Soviet Phys. —JETP
19, 457 (1964)g."R.B, Grifhths, J. Chp~, Phys. 4B, 1958 (1965),

is satisfied as an inequality for d/0 &2, n' being zero in
all cases. (The relation 2P+y'&2 —0," is not relevant
here since y' is undefined, but the thermodynamic con-
dition normally leading to this statement is trivially
satisfied). It is of interest to note that, recalling the
definitions and results of Sec. II, we have in all cases

2—cx,)28+y) 2 —a',
2—n, &P(8+1)& 2—n',

the left-hand relations being equalities for d/0&2.
Turning to the general relations involving correlation
function indices "

d—2+g) 2d/(8+1),
'd&~(&+1)/(S —1),
~d& 1+1/8,

we see that the equalities hold for d/0 &2. Furthermore
since the correlation function is homogeneous in all
cases, we have the expected results

(2—g)P=p; (2—g)x=1 —1/8.

As was pointed out in Sec. II, the free energy for the
stationary, simply connected ideal Bose gas in a homo-
geneous field depends on the complex +0 only through
its amplitude. Thus our results here only involve rela-
tionships between the amplitudes of the Bose moment
and its associated field. A discussion of the phase vari-
able is left for another occasion.

We have also not discussed here the relation between
the transition of the ideal Bose gas and the X-transition
in liquid helium. It is of some interest to note that the
singular form of the specific heat and the density
variations indicated by experimental results are asymp-
totically those of the ideal Bose gas in three dimensions
with energy spectrum index 0-=

2 ~ This is a case in which
the accuracy involved in using the asymptotic approxi-
mation, Eq. (25) would be even worse than in the ex-
ample quoted above. It is clear however, in spite of
some statements to the contrary, that the X transition
should be regarded as an example of a cooperative
transition. It is just as respectable as the ferromagnetic
transitions even though the absence of controllable
"external Bose fields" is a serious hindrance to the
experimenter.

2' J. D. Gunton and M. J. Buckingham, Phys. Rev. Letters (to
be published).


