
l66 PHENOM ENOLOGI CAL LAGRANGIAN FOR F I ELD ALGEBRA 1515

Rev. Letters 19, 1064 (1967)]. The tree diagrams we

refer to in Sec. IV are precisely what Schwinger called
skeletal interactions [J. Schwinger, Phys. Rev. 158,
1391 (1967)].We understand that S. Coleman and B.
Zumino have considered the problem we dealt with
in Sec. IV [S. Coleman and B. Zumino (to be pub-
lished) ].
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The Van Hove model of Regge poles is generalized to include propagator self-energy insertions and
used to study unequal-mass daughter trajectories. The 6rst daughter trajectory is found to have negative
slope at t=0.

I. INTRODUCTION

ECENTLY the study of Feynman diagrams has
shed new light on the origin and behavior of Regge

poles in relativistic quantum mechanics. Van Hove' has
suggested a simple model in which the amplitude for
Regge exchange is given by the sum of the one-particle
exchange diagrams for the set of particles lying on an
in6nitely rising Regge trajectory. Durand has empha-
sized the close correspondence between the daughter
trajectories found by Freedman and Wang' in unequal-
mass scattering and the lower spin components that are
carried by off-mass-shell Feynman propagators for par-
ticles with spin.

We wish in this paper to show that the Van Hove
model when studied for unequal external masses and
generalized to include self-energy insertions on the

*Work supported by the U. S. Atomic Energy Commission and
the National Science Foundation.

' L. Van Hove, Phys. Letters 24B, 183 (1967). Durand LLoyal
Durand III, Phys. Rev. 161, 1610 (1967)) has studied the smooth-
ness conditions which are required in order to obtain Regge-type
behavior from an innnite set of t-channel diagrams. In particular
he has pointed out that the "particles" which are exchanged need
not actually occur as physical resonances. They can be poles on the
second sheet with negative mass squared as would occur for tra-
jectories which turn over at some Gnite value of E. Hence, the re-
quirement of in6nitely rising trajectories is not necessary for ob-
taining Regge behavior. The authors wish to thank Professor
Durand for helpful discussions on this point.

s Loyal Durand III, Phys. Rev. 154, 1537 (1967).
3 D. Z. Freedman and J. M. Wang, Phys. Rev. Letters 17, 569

(1966);Phys. Rev. 153, 1956 (1967).

propagators of the exchanged particles leads to and gives
information about moving daughter trajectories. Our
results, while model-dependent, suggest that only in
accidental cases are the daughter trajectories expected
to move parallel to the parent trajectory. In particular
we find the first daughter has negative slope at t=O for
~n(o) & —

s
Lest the reader get lost below in the technical details

of higher spin, let us first state the plan and simple
physical ideas of our work. We 6rst consider the un-
equal-mass scattering zn&+net —+ stts+ms computed with
bare Feynman propagators for the exchanged particles.
We 6nd that the singularities at t=0 of the leading
Regge-pole contribution are cancelled by fixed daughter
poles. As is well known, fixed poles in the angular mo-
mentum plane are incompatible with (l-channel) uni-

tarity. It is natural to hope, therefore, that when the
Van Hove model is unitarized, the fixed daughter poles
will turn into moving daughter trajectories. Our calcu-
lations show that this is precisely what happens, and we
find an expression which determines the 6rst daughter
trajectory.

II. FIXED DAUGHTER POLES

We begin by studying the unequal-mass scattering
tnt+net ~ nts+nzs as s~ oo with momenta as defined
in Fig.;1.In order to avoid undue complications we have
throughout confined our attention to the leading and
first daughter trajectories. The amplitude for the ex-
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FIG. 1. Spin-J exchange contribution to
mI+mI —+ m2+m2 scattering.

change of a spin-J particle is4

g'(J)b(J)Q'"' Q'"
OR(J) =

m'(J) —P'

X(—I)~1'„,...„, „...„,(m (J))Q " Q ~,

where

b(J) = (2J+1)!!/J!= (2J+1)!/2~(J!)'
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&= —Q Q'—
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( — ')'
s—u+

m (J)
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In order to reveal the angular momentum content of

(1) Eq. (2) it is useful to expand it in terms of Legendre
functions of argument s, where s is the t-channel center-
of-mass scattering angle:

(mts —mss)s

and (—1)~I'~(m'(J)) is the numerator of the spin-J
Feynman propagator. s The argument m' in I'~(m')
means that the momentum factors appear as P„,P„~/m'.
rather than P„,P„,/P'. Thu. s f.or P'&m'(J), OR(J) does
not describe pure spin-J exchange but has in addition
spin J—1, J—2, . components. These are present in
precisely the right amounts to guarantee that OR(J) is
well behaved at 82=0.

Equation (1) may be rewritten' in terms of a Legendre

m'(J) —t
X q'&~ '&Pg (s)+ . (5)

m (J)

The quantities q' and s are given by Eqs. (3) and (4)
with m'(J) replaced by t.

The amplitude for Regge-pole exchange is given then,
according to Van Hove, by' '

- -(2J+I)g'(J)
X=OR(Regge) = P OR(J) = P qs~Pg(s)

m'(J) —t

(4t)m'(J)

(2J+1)(2J—1)g'(J) (mts —ms') 'q"
P. .() + (6)

7=1

dJ(2J+1) g'(J)
q"P~(—s)

2 t. sine J m'(J) —t

gs(J+ 1)(2J+3)(mts —ms') '

(4t)m'(J+1)
(6b)

We assume that the coupling g'(J) has no singularities
which prevent us from opening the contour C from its

40ur rules for vertices follow from an effective interaction
Hamiltonian

»=g(J)lb(J)P"+~," pg(&)4~(&)

»» tg2 ts2 tsJ tsJ

where +»...„z, @I,and p2 are thy Hermitian fields oj the: particles

original position about the ReJ&0 axis to some vertical
line in the left-hand J plane. The amplitude then takes

m(J), m&, and ras, respectively. The factor of [b(J)]'~' has been
introduced to simplify subsequent formulas. It seems natural in
the Van Hove model to assume that g'(J) rather than g'(J)b(J)
has good analyticity in J.

If we define G„,=g„,—P„P,/m', then

r =&, r'=G„„j. =&(G„„,G„„,+G„„,c„„,)—&G„,„,G„„,
pic, For an expression for general J, see footnote g of Ref. 2,
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the form

-g'( (t))L2 (t)+17 d (t)
q' ['&P~(t)(—z)

sinwn(t) dt

g'(n(0))[2a(0)+17 du(0)
[2rr(0) —17

sin(rr[n(0) —17) dt

(mi' —ms')'
X (2[a[a]—l]p ( ( z)+. . .

~ (7)

The first term in Eq. (7) is the contribution of the lead-
ing Regge trajectory atm'(J) —t=0, i.e., at J=a(t). The
second term of Eq. (7) arises from the pole in the inte-
grand of Eq. (6b) at rrt'(J+1) =0. Its form is precisely
that of the Erst daughter trajectory. Rather than a true
moving trajectory, however, we have a 6xed daughter
pole at J=n(0) —1. By carrying the expansion further
in Eq. (6b), it is easy to show that the second, third, etc. ,
daughter trajectories are also fixed poles in the simple

Van Hove model. ~ The presence of the daughter poles
means that the usual high-energy behavior is obtained
even at t=0.

IIL MOVING DAUGHTER TRAJECTORIES

I et us now extend the Van Hove model so that it
satis6es two-particle unitarity in the t channel. The
technique for doing this is well known. We must replace
the bare Feynman propagators in Eq. (1) by the full

propagator s.
The full propagator for a particle of integer spin J

is given by (see Fig. 2):
I'„, .'(ms) r„,~(~')

~.: '(t) = + -2 ""(t)~.; .'(t), (8)
t—m2 t—m2

where p stands for the set of indices p, 1, p~, p3 . pg, etc.
The self-energy function Pz"' ' (t) is symmetric under

interchange of any of its indices. It can be written in
terms of J+1 invariant amplitudes in the form

g'(f) [~/s]
X;a(t) g (t) g [gXrrrgXsrs. . .gXgsg]

r=0

gs(J) J' [its] g'(J) (2J+1)(2J—1)
(2J+1)g (t) Q Q {P4P~~g4~&. . . [g4~s]. . .g&z~z) L.(t)

J1 s=1 r=0 J1 3
E~/2j

xp Z [p»;p.;p],;p.,g~... [g],...].. . [g~...].. .g] .,} . . . (9)
sQj r=0

where [g"' *] ineans that the symbol g""' does not ap-
pear. The notation [ . ]„is that of Durand. "The in-
variant amplitudes A q(f), 23~(t), have no kinematic
singularities. Each of them is an -analytic function of t
with a cut running from (rtti+rtts)' to in6nity. In par-
ticular, there are no singularities at t= 0 nor are there any
relations among the amplitudes at that point. %e have

exrr gho' pxpr/ps
rxn —pxps/p2 (10)

In order to simplify the algebra, it is convenient to
introduce a different set of invariant amplitudes by
writing P~"' ~ (t) in terms of the orthogonal projection
operators

g'(J) V ts]
Q ~(t) Q [e~l&1[l~s&2 ~ ~ ~ f]~J&z]

t 0

gs(J) & [&ls] g'(J) (2J+1)(2J—1)
(2J+I)& (t) Z Z [r'*'[]"'"" [0"*"'] "0'"']- L,(t)

Jf i=I r~0 Jt 3
E~/2j

[r];~;rxtr;girder. . . [84 g]. . . [0&; t]. . . []&z~z] . . . (11)
iQj' r-0

~(t)
2 g(t) =2 g(t), J3g(t) = +tBz(t), Cz(t) — &z(t)+ t&z(t)+t'[-"z(t)

2J+1 (2J+1)(2J—1) (2J—1)
~ ~ ~ (12)

~ For convenience we will ignore the trivial complications of signature; it can easily be added at the end. Since the daughter tra-
jectory serves to cancel a term from the leading trajectory it clearly must have the same phase, and hence the opposite signature.

r J. C. Taylor (to be published) has already examined the Van Hove model in the unequal-mass case without self-energy insertions.
The case studied by Taylor has also been studied independently by both J.D. Bjorken and M. S. Halpern (private communications).
If one does not expand Pz(t) in terms of Pz(s), as we do in Eq. (5), one finds that the Regge high-energy behavior is achieved at
t=0 by virtue of s contribution from the I-plane cut of PJ (g). This cut is not, however, a cut in the complex angular momentum
(Regge) plane of the partial-wave amplitude. Instead the structure is that of a set of fixed daughter poles as we have described.

s The brac[mt (g"~'~g"&'& ~ g"~'~}, is a product of J, g symbols symmetrized with respect to either the X, or at. In r distinct pairs,
the left index of one g is interchanged with the right index of the other g""'g"J g -+ g"'"Jg ' &. This interchange is to be done in all
ways which give distinct terms. In this latter regard our notation divers from that of Durand.
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FIG. 2. The full propagator for a spin-J particle.

1
Dg(t) =

t—m'(J)+g'(J) A g(t)
(16a)

and substitute Eqs. (11), (14), and (15) into Eq. (8) we
find

The amplitudes Az(t), Bz(t), have the same analytic
properties as the twiddle amplitudes. However, there
are J relations among them at 3=0:

Ag(0) = (2J+1)BJ(0)
= s(2J+1)(2J—1)Cg(0) = . . . (13)

These relations arise simply because we have expressed
g&"' ' (t) in terms of the projection operators 0&" and
r"" which have poles at t=O. Equation (13) merely
ensures that g J"' ' (t) itself has no singularity at t= 0.

To study the leading Regge trajectory and the first
daughter it suffices to extract the spin-J and spin-(J —1)
parts of 5„,.~. To this end we expand I'„,. „~(m') in the
form

X J—1C D23~PI" [Ps]" PJ; ~1" I:t~l "V

+ (operators which project onto states

with angular momentum J—2,

J—3, , 0), (14)

where the subscripts in square brackets do not occur.
The first two terms on the right-hand side of Eq. (14)
are projection operators onto states of angular momen-
tum J and J—1, respectively. They are orthogonal to
each other and to all other terms in the expansion of
r„., „(m).

If we write

6„.„~(t)=Dq(t)r„, J(P') —D~ i(t)-J
+E ~w'~&'rvfsaf;~b~l (+ )+ ' ' ' (15)

Dg i(t)= (16b)
m'(J) —(2J+1)g'(J)Bg(t)

It is clear from Eqs. (16a) and (16b) that the relation
(2J+1)Bg(0)=Aq(0) is precisely the one required to
prevent A~ from having a 1/t singularity. Higher-order
1/t singularities are also cancelled by virtue of the other
relations of Eq. (13). The full propagator 6„,. „~(t) has
a simple pole at t=M'(J) the physical (renormalized)
mass with a residue that fixes the coupling constant
renormalization. These effects only come from Dz and
are as follows:

M2(j) ~2(J) g2(j)A (M2(j)) (17)

G'(J) =g'(J)[1+g'(J)(dA g/dt)(M'(J))] ' (18)

In Eq. (18), G(J) denotes the renormalized coupling
constant.

These renormalizations are most easily handled by
writing a dispersion relation for Aq(t) twice subtracted
at t=M'(J). We have then

g'(j)D~(t)
G'(j)

(19)
Lt —M'(J) j(1+Lt —V'(J) IG'(J)A&(t) }

where
dt' ImA g(t')1

Ag(t) =—
~,+,~~ [t'—M'(J)]'(t' —t)

(20)

It is convenient also to write a dispersion relation for
BJ (t) once subtracted at t = 0

Bg(t) =A J(0)/(2 J+1)+tBg(t),
1 " ImBg(t') (21)

Bg(t) =- d$'

(~1+~R) t (t t)

and Eq. (13) has been used to fix the subtraction con-
stant. Finally we write

(22)

LM'(J) —t$ f 1+Lt—M'(J)jG'(J)Ag(t) }
(mP —mP) '(2J+3)G'(J+ 1)

(23)
4t(M'(I+ I)L1—M'(7+1)G'(1+1)Ay~i(0)]—(2J+3)G'(1+1)tBg+i(t)}

G'(J)
g'(J)Dg i(t) =

M'(J) L1—M'(J') G'(J)A g(0)j—(2/+1) tG'(J)Bg(t)

For Regge exchange we have in place of Eq. (6b)

i dJ(2J+1)q'~Ps( &)—G'(J)
R=+—

2 Q sinwJ

When we open the contour C we pick up the leading couldcompute M'(J) from Eq. (17),and hence n(t), once
Regge pole at J=n(t), where M'(n(t))=t, from the first m (J) and g'(J) were given. Since A~(M') has a cut for
term on the right-hand side of Eq. (23). In principle we M'&(mi+ns2)' we note that the resulting trajectory
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would properly become complex above threshold,
f= (tmi+ ttts) '. Here we will simply take u(f) as given and,
moreover, assume suflicient analyticity in G'(J) to per-
mit deformation of the contour.

From the second term on the right-hand side of Eq.
(23) we pick up a pole at

M'(2+1) p1—M'(/+ 1)A J+i(0)j
—(2J+3)G'(J+1)tBg+, (t) =0. (24)

Solving Eq. (24) for J gives the trajectory of the first
daughter' J=uD(t).

While it is essentially impossible to solve for un(f)
exactly some properties are clear. At t=0, Eq. (24) is
satisfied by M'(J+ 1)=0 which gives the expected result
uD(0) =u(0) —1.This follows directly from Eq. (13), i.e.,
from the fact that A„. „~(0) is finite.

The factor tB~+i(f) in Eq. (24) guarantees that the
daughter trajectory will move as a function of t. From
the over-all sign of the second term in Eq. (23) it is clear
that if uD(t) were to reach zero, it would give rise to a
ghost state. Thus it is of interest to study the slope of
0,~. For small t we can write

so that

where

ImA g(f) = q(t)'~+'/87rt'",

(f) (ttt s ttt 2)sq(f)2J—i/32~f312

uD'(0) = —u'(0)G (u(0))[2u(0)+ 1$(fatti —mss) s

00

X
32m' {~1+~2~&

dt~q(t~) su (ol—i

~J 5/2
(29)

4q'(f) =t—2(ttti'+tttss)+(ttti' —ttts')'/t.

For J)2 the dispersion integrals for A J (t) and BJ(t)
will diverge. In a more sophisticated model this diverg-
ence is presumably removed by the form factor associ-
ated with the ttt(J) +-+ tli+ttts vertex. Such a form factor
is generated by the many-particle intermediate-state
contributions to the vertex. Here we shall merely
crudely simulate this by cutting o6 all divergent
integrals.

Since u(0)&1 we can let the cutoff go to infinity in
Eq. (26) and then have

un(f) =u(0) —1+ut)'(0) t+ So, for u(0) )—s, the slope of the first daughter is nega-
tive at t=0, and is therefore unlikely to give rise to a
ghost. " It should be noted that the sign of 1mB~(t)
could not be changed by including multiparticle inter-
mediate states. The sign of ui&'(0) can only be changed
if it is necessary to make a second subtraction in Bz(f)."

From Eqs. (27) and (28) we see that ImBJ(t) will
always be proportional to (ttti' —ttts')' as long as we take
into account only two-particle intermediate states. As
a result, in the equal-mass case the daughter trajectory
will only move if we take into account multiparticle
effects.

and we find

un'(0) =u'(o)G'(u(0))Pu(0)+ 1jB (o)(0) (26)

In order to proceed it is necessary to adopt a model
which will enable us to say something about Bz(t). Since
we are interested in small values of 3 we shall make the
physical assumption that the dispersion integral for
BJ(f) $Eq. (21)j is dominated by the two-particle inter-
mediate states. In other words, we shall require that the
scattering amplitude satisfies two-particle unitarity ex-
actly in the t channel, but neglect multiparticle inter-
mediate states. This requirement uniquely determines
Imps"' ' (f). We have'o

( J+1
Im gg""(t)=— g'(J)b(J) d4t'z b (('P+k)' tttts)-—

8x'

Xgy((srP —p)s —ttt ')p"rt'z» p»p~r tr~& (27)

In obtaining our results we have assumed that the factor
{1+Lt—rls(J))G2(J)Az(t) } in the first denominator of Eq. (23)
never vanishes. This is satisfied provided g'(J) considered as a
function of the renorma1ized coupling constant Gm(J), through
Eq. (18), satisfies g'(J))0. Such a requirement sets an upper
bound on G'(J) and is the usual requirement that the theory has
no ghosts. We remark also that this same condition guarantees
that the coefEcient of 3P (1+1)in Eq. (24) is always positive and
hence that the daughter term of Eq. (23) is also ghost free.

' The requirement that the amplitude satisfies two-particle
unitarity is equivalent, in the language of Feynman diagrams, to
including only the contribution of the bubble diagrams in Zq"' ~ (t).
In this approximation Zz"' (t) is given by the divergent integral

Zi t= &J Jb d4k k"~k "2 k"Jk'& k~J
(2s)4 L(~P+tt)' —trtr'gf(-'P —h)' —tang'

Proceeding formally we could obtain Kq. (13) from the O(4)
invariance of the Feynman integral at t 0, and Eqs. =(2/) and
(28) from Cutkosky's rules. It should be noted that the require-
ment that the amplitude satisfy two-particle unitarity does not

determine ImZz"' (t) uniquely since one could always add to the
interaction Hamiltonian given in footnote 4 terms of the form

Hr =g .(J)[b(J)p 8 %pips pg(z)

&&0 t )( "'2 "') ( "'2 ")A()
Such terms would contribute to all of the self-energy functions
except Ag(t). Although these terms would change the magnitude
of uo' (0), it is easy to see that they would not change its sign. They
would also leave our other qualitative results unchanged.

"This result actually holds for intercepts of the leading tra-
jectory down to a(0) )—so. To see this, note that the integral in
Eq. (29) has a simple pole at a(0) = —sr coming from the lower
limit of integration. Thus the combination

(2 (0)+1)
dt'III(t')'~(')-'

(ffsi+ffg2)2 t' ~

is positive for 1)o.(0))—~~. For —3~)a(0))—
& the first daughter

has positive slope at t=0, but the pole at J=—
& of BJ(0) pre-

vents Q.D(0) from ever getting above ——,'. So again the attempt of
the first daughter trajectory to introduce a ghost into the theory is
thwarted."It should be emphasized that the fact we write the dispersion
relation for BJ(t) with one subtraction is not just a luxury, but is
also a necessity. Equation (28) shows that ImB& is negative and
proportional to (mr' —ta2')'. Since ImA~ is positive and does not
vanish as mi ~ m& it is impossible to satisfy the relation A.&(0)= (2J+1)BJ(0) with unsubtracted dispersion relations for both
Ag and Bg.
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00 (t&)sa (0)—1

X- dt'-—
32s (y„,+ggo) t""(t'—t)

(30)

In this case we note that as t —+ & ~ the daughter tra-
jectory goes to a constant even though the leading tra-
jectory may be infinitely rising

(rg)(+ ~)=(rr)(—~)= n(0) —1+ ('r( 0)G'((r(0))

m1+ m2)

t')s (o)—i

(31)
3/2

provided (r(0)(1. For the case (r(0)—1 the dispersion
integral in Eq. (31) is logarithimically divergent, indi-

cating a sensitivity to the detailed behavior at large t

about which we can say nothing v ith confidence.

IV. CONCLUSIONS

%e have generalized the Van Hove model of Regge
poles and used it to study the first daughter trajectory
away from t=0. It should be emphasized that in our
model the existence of daughter trajectories at t=O de-

pends only on the facts that the full propagator for a
spin-J particle has a simple pole at t=M'(J) with resi-

due I'„, „~(M'(J)) and that the self-energy functions are
finite at t= 0. In order to study the daughter trajectories
away from t=0 it is necessary to adopt a model which
will enable us to calculate the self-energy functions. %e
have made the approximation that the self-energy func-
tions are dominated at t=0 by the two-particle inter-
mediate-state contributions. Under this assumption the
6rst daughter trajectory has a negative slope at t=0.
This eliminates the worry that this daughter trajectory
would introduce a ghost state should it cross (rii(t) =0.

The mass dependence of our results is perhaps worthy

In general it is dificult to say much about n&(t) away
from t=0. In the weak-coupling limit we can solve Eq.
(24) to first order in G':

~o(t) = ~(0)—1—~'(0)G'(a(0))[2~(0)+ 1](mrs —m, ')'

of a few comments. If the external masses are set equal,
the daughter trajectories are uncoupled from the scat-
tering amplitude. On the other hand, if the internal par-
ticle masses are set equal, the daughters become fixed
poles in the angular momentum plane. This is not sur-
prising since a model with unequal-mass external
particles and equal-mass internal particles violates
t-channel unitarity. Similar behavior was also obtained
by Swift" who studied the Bethe-Salpeter equation
for unequal-mass scattering. Also, like Swift, we find at
(rid'(0) G'(r'(0) with the great difference that nD'(0) (0
in our case."

It is trivial to extend our results to the general case of
four unequal masses mi+ms ~ m&+m4. In this case the
self-energy functions Az, 8&, receive additive con-
tributions from the thresholds at (mr+ms)' and
(ms+m4)'. The general properties of the resulting first
daughter trajectory are completely unchanged.

The second and further daughter trajectories can of
course also be studied by our method. For the second
daughter the relevant parts of the self-energy equation
[Eq. (8)j reduce to a 2&&2 matrix equation. For further
daughters the complexity escalates rapidly. Since the
second daughter trajectory will involve, among other
things, the function Cz(t) [Eq. (11)J whose imaginary
part is positive, one may expect it to have positive slope
at t=0. It will also be interesting to study the general-
ized Van Hove model in cases in which the external
particles have spin. In such cases the fixed conspirator
poles found by Taylor will turn into moving conspirator
trajectories.
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