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Phenomenological Lagrangian for Field Algebra, Hard Pions,
and Radiative Corrections
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(Received 2 October 1967)

The phenomenological Lagrangian approach to the current-field algebra, and its advantages and defects,
are discussed. The computational rules are stated, and justilcation is overed. Based on the phenomeno-
logical Geld-algebra Lagrangian, we consider the electromagnetic etfects on the pion mass (for finite pion
mass), the p-meson mass, and the pion P decay.

I. INTRODUCTION

ECENTLY there have been several papers' ~ deal-
ing with the phenomenological Lagrangian ap-

proach to current' (or field') algebra. In view of this,
we must offer a raison d' etre for still another paper on
the subject. "The purpose of this paper is to spell out,
in a manner as precise as possible, what phenomeno-
logical Lagrangians are intended to be used for, and
what the computational rules are. It is our feeling that
these points are treated inadequately in the extant
literature. We shall offer a justiGcation for the computa-
tion rules, which are designed to fulhll a limited set of
requirements consistent with the viewpoints of the field
algebra, and of the hypothesis of partially conserved
axial-vector current (PCAC).""For the sake of lucidity
we shall consider a particularly simple model, in which
the world is made of pions, p mesons and A1 mesons;
but many results of this paper (particularly of Sec. IV)
are of greater generality than the presentation in the
context of this model might indicate. We shall not
discuss functional transformations on the Gelds and
their ramiGcations —a subject discussed exhaustively
elsewhere. "

Broadly speaking, a phenomenological Lagrangian,
which incorporates the current algebra and PCAC, is
a device for reproducing the current-algebra results
within the framework of the conventional perturbative
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published) .' J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967).' W. A. Bardeen and B. W. Lee, Canadian Summer Institute
Lectures (to be published by W. A. Benjamin, Inc. , New York,
1967).

L. S. Brown, Phys. Rev. 163, 1802 (1967).' P. Chang and F. Giirsey, Phys. Rev. 164, 1732 (1967).
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Lagrangian Geld theory. The Lagrangian one writes
down in this context is in no sense to be understood as
the basis of a complete Geld theory of the subparticle
world; rather the machinery of the Lagrangian field
theory is utilized only to the extent of constructing
"smooth" oR'-shell amplitudes that satisfy constraints
imposed on them by the current-field algebra and
PCAC.

At this point, a question arises inevitably as to
whether the Lagrangian approach is anything more
than an algorithm for reproducing current-Geld algebra
results. As developed so far, it is nothing but that,
although it is a useful device not only as a computa-
tional short cut but also, as has been emphasized
elsewhere, 5 as a means of eliciting ambiguities and short-
comings of the usual analyses based on current algebra.
It is however hoped, perhaps too optimistically, that
the phenomenological Lagrangian method might pro-
vide us with a formalism for a more satisfactory
description of particle phenomena; by this we mean,
particularly, the possibility of implementing unitarity
together with low-energy theorems derived from cur-
rent-Geld algebra. Although we do not expect that the
present approach will lead to a fundamental under-
standing of the laws that govern the subparticle world,
we may, and do, hope to achieve a limited goal of
unraveling and exploiting regularities that are manifest
in low-energy particle phenomena.

The plan of this article is as follows. We shall con-
centrate on the dynamics of pions and the chiral
SU(2)SSU(2) syminetry. In Sec. II, discussion is
made of the construction of a phenomenological
I.agrangian that consists of the pion fields only and.
satisfies the SU(2)SU(2) algebra and the PCAC
condition. This is preliminary to ensuing discussions.
Applications of this Lagrangian have already been re-
ported elsewhere. ' In Sec. III, a Lagrangian is con-
structed, which includes pions, p mesons, and iso-
triplet axial-vector rnesons (Ai mesons), and satisfies
the field algebra and PCAC. Computation rules for
matrix elements are presented in Sec. IV, which ensure
that the resulting amplitudes satisfy the generalized
Ward identities of the kind discussed by Schnitzer and
Weinberg, "and other constraints of the field algebra

"H. J. Schnitzer and S. W'einberg, Phys. Rev. 164, 1828
(1967).
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and PCAC. The justiGcation for our rules follows from
lemmas 1 and 2 in this section. Section V is devoted
to the discussion of electromagnetic e6ects. Electro-
magnetism is superimposed upon the strong dynamics
in such a way that both gauge invariance and the Geld-

current identity are satisfied. Electromagnetic sects
on the pion mass, p-meson mass and the pion P decay
are considered and discussed. Section VI contains
further discussions on the phenomenological Lagrangian
approach.

IL CHIRAL DYNAMICS

We shall brieQy review the ingredients that go into
the usual current algebra analyses.

(1) One assumes the existence of vector and axial-
vector currents, Vs (x) and A„(x), whose time com-
ponents satisfy the local chiral algebra [e.g., SU(2)
SU(2) j at equal times. For SU(2)SSU(2), one has

(g, P being isospin indices)

[Vpp(x, 0), Vp~(x', 0)]=is»V pv(x, 0)b'(x x'),—
[Vp (x,0), Aps(x', 0)7=is»Ap&(x, 0)8'( x x')—, (1)
[A, (x,0), Aps(x, 0)j=ie»VP(x, 0)8'(x—x').

(2) One notes that

where f is the pion decay constant. The fact that f,I42

is nonzero allows one to use the divergence 8~A„as an
interpolating field for the pion g (x):

81'A ~(x)=f p2$ (—x).

PCAC is an assumption that the off-shell amplitudes,
in which the pion fields are defined by Eq. (2), has a
smooth extrapolation from the pion momentum q

—+ 0
[at which the current commutation relations (1) make
definite predictions about the amplitude j to the physical
value of q, q'=p'.

It was Weinberg's' observation that a Lagrangian in
which Eq. (1) is true and in which the pion field satisfies
Eq. (2) must necessarily reproduce the results of cur-
rent algebra in the lowest-order calculation. We now
turn to an example.

Let us construct a theory' in which Eqs. (1) and (2)
are true using only the pion field P (x). Such a theory
may not be a bad approximation to the real world if
higher mass excitations do not inQuence low-energy
behaviors of the pionic system in an essential way. We
must assign a transformation property of qP(x) under
the chiral SU(2)SU(2). The simplest possibility is
that p (x) transform like the three I= 1 components of
('2, 22). This means that

0'+ p2= mvariant under SU(2) SSU(2), (3)

where 0(x) is an object which is isoscalar and scalar
under the (improper) Poincare group. Since there is no
other field than p~ in the theory, the right-hand side

and its divergence by

8"A ~= 5L/QP(x) = f„142/~(x),
where

(10)

d4x Z(x).

We note firstly that the charges (vector as well as
axial vector), being the generators of the SU(2) SSU(2)
gauge transformations, Eq. (8), certainly satisfy the
SU(2)SSU(2) algebra, Eq. (1), and, secondly, the
PCAC condition is satisfied. Equation (10) justifies
calling the constant on the right-hand side of Eq. (3)
the pion decay constant f

The term quartic in the pion field in Eq. (7) is

& '= (1/gf ')[(~ ~')' —4 2(0')'j

Here, one recognizes the structure of the Tmatrix for the
pion-pion scattering [(ql,n)+ (q2,P) -+ (qp, y)+ (q4, 8)$
given by steinberg":
2'-= (1/f-')—

X[~.,~,4(s-p')+b. &~»(1—p')+~.46&,(N- p') j,
where

S= (pl+$2) I (gl g4) ( (gl gs)
'4 S. r4Veinberg, Phys. Rev. Letters 17, 616 (1966).

of Eq. (3) must be a c-number constant:

0.2+ y2 —f 2

which gives

~(x) = [f-2—02(x)3'"
=f.- (1/2f.) ~ - (1/gf:) (~') + (5)

In Eqs. (4) and (5), f is to be understood as some
constant, which, as we will later see, is actually the
pion decay constant. The unique Lagrangian density
that is chirally symmetric and no more than quadratic
in the first derivative of the pion field is

~ -=2[(~.N)'+(~.~)'j. (6)

To implement the PCAC condition, Eq. (2), we add a
term to Eq. (6), which breaks the chiral symmetry:

~=2[(~1 0) +(~u4r) j+f~p rr i (7).'—=.-f.=-(1/2f.) ~'-(1/gf-') (~')'+ "
The coeflicient of 0' in Eq. (7) is chosen so that the
mass of the pion is p,'.

', ((3„p)' ,'-l4' p'+0—(y-') .

The vector and axial-vector currents are identiled by
considering the infinitesimal local SU(2) SU(2)
gauge transformations:

~.~Ii(x) =~(x)X y(x), (g)
8),y (x) =—0 (x)o (x), bl,o (x)= X(x) y (x) .

In particular, the axial-vector current is given by
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The reason for the lowest-order calculation (in f ')
yielding precisely the current-algebra result will be
discussed in a slightly diferent context in the next
section.

For the ensuing discussion it is convenient to intro-
duce tensor notation appropriate to SU(2) SSU(2), at
this juncture. The upper index u(=1,2) denotes a
cogredient spinor, and the lower index a contragredient
spinor. While the unbarred indices transform under

Q +Qb, the barred ones transform under Q
—Q;,

where

Q~= d'x Vp~(x, t),

Qp= d'x Ap (x,t).

Under this convention,

M b(x) = [o (x)+i~ i(ix)].b,

M b(x)=[o(x)-i~ y(x)].b.

Under the parity operation Q +Qb ~ Q
—Qb,

M'b(x, t)+-+ M b( x,t). —
With the definition of the M fields given by Eq. (11),
Eq. (6) may be written as

,'BuM -,(x)a„M—'.( )x. (6')

[The model presented here is essentially the nonlinear
model of Gell-Mann and Levy, Ref. 11;ramifications of
this model are discussed in Ref. 5.]

IIL PHENOMENOLOGICAL LAGRANGIAN

The notion of the algebra of fields' is motivated by
(1) the empirical observation that the vector mesons
dominate the form factors associated with the cur-
rents, 's "and (2) the desirability of having well-defined
Schwinger terms" in, e.g. , the equal-time commutators
between the time and the space components of the
currents. A precise formulation of this notation is the
statement that the currents are proportional to the
vector (or axial-vector) fields, as discussed by Lee,
Weinberg, and Zumino. ' The only Lagrangian model so
far devised to implement the field-current identity is
that of the massive Yang-Mills Gelds. '7' We caution
here that since the notion of Geld algebra involves the
extrapolation of certain empirical low-energy features
into the high-energy domain, Geld algebra may run into
difhculty for processes that depend upon the high-
energy behavior of the system in an essential way. As
we shall see in Sec. V, this is indeed the case.

Under the infinitesimal SU(2)SU(2) local gauge
» Y. Nambu, Phys. Rev. 106, 1566 {1957).
rs J. J. Sairurai, Ann. Phys. (N. Y.) ll, 1 (1960).
& M. Gell-Mann and F.Zachariasen, Phys. Rev. 134 953 (1961).
's J. Schwinger, Phys. Rev. Letters 3, 296 (1959); T. Goto

and T. lmamura, Progr. Theoret. Phys. (Kyoto) 14, 396 (1955)."C. N. Yang and R. L. Miils, Phys. Rev. 96, 191 (1954).

With the covariant derivatives SJ', which act on the
M Gelds, deGned by

(g)uM)'b rtuM'——b+ig[V+u sM MV u—~]'b,
( )(~uM). ,=a„M.b ig[V—+'~M MV—u e] b,

the Lagarangian density which formally satisGes the
field algebra and PCAC can be immediately written
down:

Z = —Q -(&„V;„—c)„V;„—gV;„XV;„)'—m'(V;„)'
s~l 2

1 1.

[(n„M)'b(n M)'.]+f.tb'o' . (15)
41—p'

The reason for introducing the factor (1—p')"' will
become clear shortly; it has to do with the requirement
that the kinetic-energy term of the physical pion field
in the Lagrangian density be of the standard form
s(&up)s. We define the vector and axial-vector fields
p& and a& by

9"=s(V+"+V-")
a =-', (V —V ) ~

(16)

Making use of Eqs. (11), (14), and (16), we may write
Eq. (14) as

s(r)u9 r) Pu gttuX9 gauXa )

+-', (1—p') —'( (Bua' gp a„)'—
+[D.y+g(f.+")..]')+f.~' ', (»)

where
Du—= c)u—geuX.

The vector and. axial-vector currents are obtained from
the gauge principle":

bL m'
V ~(x)= =—p N(x)

5c)u~a(x)

a V„-(*)= =O
bpp (x)

~The generalized Gell-Mann-Levy equation is of the form

SL SI bL
N, (x) "sa„&,(x)

+ " "sa„a„x(~)
which can be easily proved by using Schwinger's action principle.
In our case,

BL BL

Deus„k (x) usus, s~+ (s)

transformations, the Yang-Mills fields (V~)„cor-
responding to Q~ =Q &Qb undergo the change

5V~u= au1{,~+2g1{',+XV+u, (12)

and the M fields defined by Eq. (11)undergo the change

8M b= —ig[(1(+ ~);M'b —M p(g ~)'b],
8M b=ig[(ys, )'bM'b M—.(g+ ~)'b],

where
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The axial-vector field a„ is not entirely associated with
the 1+ particle (Ar?) in perturbation theory, since the
Lagrangian density (17) contains the bilinear coupling
term gf a„8"P. The diagonalization of the a„and 8„$
fields leads to

8&A„(x)= = =f.tris" (x) .
5) -(x) and

a„(x)= a„'(x)—(p/m) D„y (2o)

&= ——:L&,9.—&.9 —go.x 9.—ga, 'xa.'+g(p/m) (a„'xD, y —a.'x D, y) —g(p/m)'D„yxD, y7

1 m2

+-'m'9 '—r LD.a ' D,—a,' (P/—m) (D.D, D—D )0]'+- (a.')'+ l (D.0)'
2 1—P'

1 1 ( P ) ' 1 g' P+- ( ~ ')—gI 0 .' 0—.0—I
+-

21 P' k
"

m & 21 P'
"

m

+go'I a.'——D.l )I D.~+ a.'i+u' —o'. (21)
m "/(" 1—Ps "/

g

The requirement that the pion field P'(x) satisfies the
canonical commutation relation demands that

p= gf./m, (22)

the use of which has been made in writing down Eqs.
(20) and (21). The mass of the axial-vector meson a„'
is given by

m.'= m, '/(1 —p'), (m, = m),

which may be written in the more suggestive form

(23)

(23')

This is precisely the first sum rule of Weinberg" in
the single-particle approximation. From Eqs. (19) and

(20), it follows tha, t

3„(x)= (m, '/g) a'„—(m,p/g) D„p, (2o')

s' S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
"Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966).
23 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,

225 (1966)."J.J. Sakursi, Phys. Rev. Letters 17, 552 (1966).

which is equivalent to the second sum rule of Wein-
berg."The celebrated Fayyazuddin-Riazuddin-Kawa-
rabayashi-Suzuki (FRKS) sum rule"" is

P= gf /mp 1/V2. —— (22')

In our consideration, this relation cannot follow, since

g, f, and m, are independent parameters of the theory.
Indeed, we do not know of a derivation of Eq. (22')
based entirely on current algebra and PCAC, without
additional assumptions. '4 However, we note that the
FRKS relation is empirically well satisfied.

IV. ALGORITHM

We shall now state the rules of obtaining current-
field algebra (for hard pions, in the sense of Schnitzer
and Weinberg") from the Lagrangian (21).

Recipe: To compute n;point functions of the particle
helds, apply the Feynman Dyson rules t-o the Lagrangian
in Fq. (ZI) and suni over only the tree diagrams with

appropnate external lines. We call a diagram a tree if
every point in the diagram is not self-connected: It
is impossible to start from a point and traverse along
lines to return to the same point without retracing any
path. In short, a tree is a diagram without loops; or a
diagram which requires no integrations after four-
momentum conservation at each vertex is taken into
account.

To prove that this recipe gives amplitudes which
satisfy all constraints imposed upon them by the field
algebra and PCAC, we give two lemmas. I.et us begin
with some definitions and conventions. Ke write the
Lagrangian density (21) in the form

(24)

We have written Z; i as a, function of g and p, since
the constant f„may be eliminated by using the relation

f =pm'/g

Denoting by P any of the fields (P, g„,a„'), we have the
following Iemrnas.

Lenima 1: The n point vertex Q) in -2; & is of order
g" ', p being axed. This is obvious when Z;, (g,p) is
explicitly written out. Note that in the covariant de-
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rivative D„, the combination gp„appears, and that the
field a' is now written as

o'= s—g(pm. ) '0' -'e—g'(pm, ) '(l')'+
I'he reason for keeping P fixed is clear from Eq. (20).
By doing this, a„' and c)„P are, so far as the power
counting of the parameter g is concerned, on the same
footing.

(a) (b)

Lemma Z: Tree diagrams of uny N poi-nt function for the

particle 6elds are all of order g~ ', und conversely, dia
grams of order g~ ' of an N point f-unction are all trees.
Lemma 2 follows from the definition of a tree diagram,
Feynman rules and Lemma 1, by induction. To prove
our main contention, namely that the sum of all tree
diagrams for a given process satisfies field-algebraic
and PCAC constraints, we begin with the following
observation. Constraints imposed by the field algebra
and PCAC upon an Ã-point function for the particle
fields can be formulated as precise mathematical
statements" (such as generalized Ward identities, to
borrow a phrase), which relate an N-point function to an

(N—1)-point function with a proportionality constant
linear in g. Symbolically, we shall write

(N-point function) rc g((N —1)-point function). (25)

There are also relations of the form

lim (N p.f.) rr —(N —1 p.f.)=g(Pm ) '(N —1 p.f.)
q~-+0

when q„refers to the momentum of a pion, and of the
form

lim (N p.f.) ~ (N —1 p.f.)m'
P

when q„refers to the momentum of a vector (or an
axial-vector) meson. Equations of the form of Eq. (25)
are true order by order in g, and, in particular, in the
lowest nonvanishing order (g+ s for an N-point func-
tion) in g. This concludes the proof.

ln comparing our procedure to that of, e.g. , Schnitzer
and Weinberg, "and Gerstein and Schnitzer, "we note
that tree diagrams with branches [examples of which
are shown in Fig. 1(a)g correspond to pole terms in

theirs; contact terms Lexamples in Fig. 1(b)j correspond
to their polynomial terms in momenta. For hard pions,
we need only to retain derivative terms in the La-
grangian which would otherwise vanish in the soft-pion
limit.

Some of the 3- and 4-point vertices, which we will

~' I. Gerstein and H. J. Schnitzer (to be published). To be more
precise, the scheme of Gerstein, Schnitzer, and Weinberg is more
general than ours, in that the field-algebra constraints, such as
Eqs. (20) and (23), need not be imposed, and the "anomalous
magnetic moment" type couplings have been included.

Fro. 1. Examples of tree diagrams. (a) Trees with branches; (b)
trees corresponding to contact interactions.

g 'Z, = ,'(it, y. -B,y,) —p"Xy",

g '&, = —g(y, xp,)'.
(26d)

(26e)

V. ELECTROMAGNETISM AND RADIATIVE
CORRECTIONS

To ensure the Geld-current identity and electro-
magnetic gauge invariance in the presence of electro-
magnetic 6eld, we write the Lagrangian Z, EM in the
presence of electromagnetism as

zEM —— ,'(F„„)s+z——
—-' p'L(p ')' —(p '+~./g)'3 (27)

where 2 is given by (21), C„ is the electromagnetic
potential, and

E„„=B„C„—B,C„.

As emphasized by Schwinger, ' and Kroll, Lee, and
Zumino, ss Eq. (27) is completely gauge invariant and
is canonically equivalent to the formulation of Lee and
Zumino. e

Neither p„nor C „can be identified with the physical

p particle and photon, but rather some combinations
of them. For the purpose of lowest-order radiative
corrections, however, it suffices to take the additional
interaction Lagrangian to be

(REM);~r, ——(emps/g) p„'4»= eV„'4& (28)

~6 N. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376
(&967).

need in subsequent applications, are as follows:

g '2,.~= —ti„(PXr)"re)

+ ', (p/m -)'(c) g r)„—y„) 81'yx 8"y, (26a)

g 'Zg„,.= ,'(p—/—m,) (r)„p. r)„—p„)
(a„'X r), P —a,'X c)„P)

'(P/—,)-(&, ,' &, ,')—(&,p,—&.p„)X y, (26b)

g-'~„.,= l(p„x y)'
—( p/m, ) s(&„t„—a„p„) (p Xy)X&"y
——,'(p/m, ) L(&„y,—&.y,)x y1s

-l(P/, )'(~.x ~.) (~"Sxp"S), (26 )
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Thus the radiative correction to the hadronic process
n —k P may be visualized as n+ (virtual ps) ~ )8

+ (virtual p') wherein two virtual ps lines are joined by
a photon propagator. The process n+(virtual p') ~8
+(virtual pe) is to be described by the algorithm
developed in the last section. In all radiative correction
calculation, the line representing the sequence: (virtual
p') k (virtual y) —& (virtual p') appears, with the
effective propagator (in the Landau gauge):

(—k)'I k ~ 1(k" ——,)(k-—,)
P

"sea gull" diagrams) is

X k' ——
(p —0)'—m.'

-u2-X2P2- (t~ p)2-

3m.2
(34)

To order (p/m, ,)', the two terms in Eqs. (33) a,nd (34)
are, respectively,

3n p,
' /m))2

(by') 2 m,=' 1-+ — ln~ —
~

(, yi

g&"—— — — . 29 B,Ilail

15 1 A
+—+—

1n(—) (33')

A. Pion Electromagnetic Mass

The x+-x mass di6erence can be calculated by
considering all the tree diagrams for 2r++p' —k 2r++p'
and closing the p'-y-p loop. The relevant strong vertices
are contained in', 2, Zz„, and Z, k 2, Eqs. (26a)—(26c).
For our purpose, we shall group these terms into

30! p '19
(by2)2——m, ' 2 ln2 —1+ — —ln2

4m m, 4

55 1 A.

(34 )
16 16 mp

where A is the ultraviolet cutoff momentum and use
has been made of the FRKS relation

where

2 =Xi+22, (30)
p= 1/vZ, (22')

3Q p mp
by2= —mk2 2 ln2+ ln

4z mp' p,
'g

—'22 —— 2(P/m—,) (B„a„' B„a„')—(8"P"—8"(o")X P
—',(p/, )(& p"—& "(9 ) (a„'X&,y —a,'X&,y)

sg (P/m, )'p—(&,p. &,p,)X pg—'. (32) 1.9 5 1 A.'
+—ln2 ——+—ln . (35)

4 2 8 mp'Zi and. 22 are separately gauge invariant. Using Eq. (29)
the calculation of the m+ electromagnetic mass shift
goes through in a straightforward manner. (There is
no EI= 2 mass shift for the 2r'. )

The contribution of Zi (pion pole and the related
"sea gull" diagrams) to bys=ys(2r+) —y2(2r') is (with
P'= y')

In the limit of zero pion mass,

(36)(hays)„k p
——(3n/42r)2 ln2,

which is exactly the soft-pion result of Das et al. ,
'~

previously derived by assuming the Weinberg sum

rules and using the standard current-algebra technique.
The derivation of this result using the phenomenological
Lagrangian method has been independently carried out
by Schwinger ' and Wick and Zumino. "Our calcula-
tion shows, however, that when the pion is not soft,
namely p'/0, the calculated mass shift is logarithmi-
cally divergent. The soft-pion calculation of Das et at.
is understood only in the light of the field algebra (the
Weinberg sum rules being exact according to the field

algebra). Our calculation, which is based on the field

e' d4k 1 m ' 1
(~y') i=—

(2 ) k k —m )(k—k)' —k

((2P—&) &j'
(2P—&)'— 3((p &)' y'j— — —

+4()9/m, )2I (k p)' —kspsj

+ (p /m )4$2LP2/2 (p. $)2j (33)

which is empirically well satisfied. The sum of the two
contributions is

~ yxa y+ ', g(9„xy)', -(»)

"T.Das, G. S. Guralnik, V. S. Mathur, F. E. Low, and J. E.
and the contribution of Z2 (A. i pole and the related Young, Phys. Rev. Letters 18, 759 (1967).
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algebra, demonstrates directly that the field algebra
alone does not assure a 6nite electromagnetic mass
difference for "real" (as opposed to "soft") pions. This
conclusion, which has been reached independently by
Gerstein and Schnitzer, " and Wick and Zumino, " is
consistent with the general argument of Halpern and
Segre" that the field algebra, in general, may give rise
to logarithmically divergent electromagnetic mass dif-
ferences. The numerical coefficient of the logarithmic
divergence in Eq. (35) can indeed be reproduced using
the method of Halpern and Segre" as observed inde-
pendently by Wick and Zumino. "

To have an idea as to the dependence of bp,
' on the

cutoff parameter A, we write Eq. (35) as

are the current-Geld algebra commutation relations
and the statement concerning the violation of isospin
conservation by electromagnetism:

(B„~ieC„)U~~(x) =0 (39)

In the phenomenological field-algebra Lagrangian
model, Eq. (27), these conditions are satisfied. There-
fore, we expect that the result, Eq. (38), should come
out from a direct calculation based on the phenomeno-
logical Lagrangian model, and it indeed does.

To see that the condition, Eq. (39), is satisfied by
the phenomenological field-algebra Lagrangian given by
Eq. (27), we observe that the local gauge transformation

by= 6.0 1&leV+——ln —~.
4 8

(35')
89'=gro~ 9+~sro ~

8C'.= —(g/e) a„~s
(40)

e cutoff-dependent term contributes 0.07 Me/ to
8„ for A=10m, and 0.14 MeV for A=100m, . 82=m s(9" c} ro e(ro—X 9")sC'l,l,

3n 1 d4k

(8m & )divergent = —m&—
4m 4i (k'+i )'e

(37)

We note that in calculating the p+ —p' mass difference,
there is also the diagram p' —+ y —+ p', which contributes
to the AI= 2 p'-meson mass shift.

B. y-Meson Electromagnetic Mass

The p+ electromagnetic mass shift can be similarly
calculated by considering the tree diagrams for p++p'~ p++p' and closing the p' —y —p' loop. The relevant
strong vertices are contained in Z, ~ and Z, 4, Eqs. (26d)
and (26e). As anticipated, the calculated p+-ps mass
difference is again logarithmically divergent:

which implies that

(r}„~ieC„)U~s(x) =0, V„= (m, '/g) y„

The calculation of the radiative correction to the
pion P decay can be carried out by considering the
electromagnetic modification of the tree diagram
n.++ire —+ p+ ~ e++ v. In the Landau gauge, the
divergence of the radiative correction comes from (I)
the electromagnetic modification of the p+ propagation
function and (2) the modification of the p e+r vertex,
with a p -y line connecting the p+ and e+. While the
first one gives rise to a multiplicative factor —hm, s/m, s,

the second contribution can be calculated in a straight-
forward manner. The sum of the two contributions is

3o, 1 d4k

(p+ie)s
(38)

which is logarithmically divergent and independent of
the strong-interaction dynamics. The two assumptions
that go into the Bjorken-Abers-Norton-Dicus theorem

"G. C. Wick and B. Znrnino, Phys. Letters 258, 479 (1967).
"M. B. Halpern and G. Segre, Phys. Rev. Letters 19, 611

(~9o7)."J.D. Bjorken, Phys. Rev. 148, 1467 (1966).
"E. S. Abers, R. E. Norton, aad D. A. D&cup, Phys. Rev.

Letters 18, 676 (1967),

C. Radiative Corrections to the Pion $ Decay

The subject of radiative corrections to P decays has
recently been of active interest, mainly due to a general
argument by Bjorken" and later elaborated by Abers,
Norton, and Dicus." They showed that the electro-
magnetic correction to the weak vector-current matrix
elements is, to the order e', given by a universal constant

&np' 3o. 1 d4k

+——
m, ' 4a. 4i (lP+ie)'

(41)

+:g, Harari, Phys. Rev. Letters 17, 1303 (1967).

which, on account of Eq. (37), is indeed in agreement
with the general result of Bjorken, and Abers, Norton,
and Dicus " (BAND).

We end this section with a few remarks.

(I) The divergence of the calculated g.+-g' mass
difference is hardly surprising, since the present theory,
which is tailored to describe low-energy phenomena,
has been unjustifiably extrapolated to a high-energy
virtual process (k —+ ~). Thus, high-energy damping
sects, which made it possible for Harari" to argue
(plausibly) that the AI= 2 electromagnetic mass shifts
should be dominated by low-lying excitations and should
therefore be computable, is in fact lacking in our con-
sideration. In addition to this, the present experimental
data seem to indicate a much faster decrease of the
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electromagnetic form factor than that implied by the
p-dominance model. We feel therefore confident that
when these effects are taken into account properly, "
the effective cutoff momentum A will be a relatively
small one, being not much more than several p-meson
masses.

(2) A similar remark applies to the divergence of
the p+-p' mass difference. As for the renormalization
constant Z4 (in the notation of Abers, Norton, and
Dicus"), we may write

QZ, =1—bm. p' 3o, 1 d4k

+——
mp' 4s. 4i (k'+is)'

Taking 8m, to be equal to the uncertainty in the p mass,
&3 MeV (which is probably an overestimate), we find
the correction factor to be not much more than 1.5%
(In a gauge-invariant model in which the electro-
magnetic form factors decrease faster than (ks —m, ') ',
the relation

(B„aiec„)v+~(x) =0,

which is one of the conditions required for the BAND
theorem, is no longer valid, and there is no contradic-
tion to Z4 being finite; this model will be discussed
elsewhere. ]

VI. CONCLUDING REMARKS

In the phenomenological Lagrangian approach we
have described, we have tacitly assumed that the low-

energy, small-momentum transfer limit of a scattering
amplitude is describable by the sum of tree diagrams,
where the masses and coupling constants are to be
regarded as the physical ones, loop diagrams, which
are neglected, producing only the renormalization effects
on these parameters in this limit. '4 The work of Schnitzer
and Weinberg fortifies this belief, to some extent, but
how one should interpret a "physical coupling con-
stant, " in order to make the above statement correct,

ss J. Schwinger LPhys. Rev. Letters 19, 154 (1967)g discusses
possibility in terms of a momentum-dependent (nonlocal) yp'
coupling. We understand that T. M. Yan of Harvard University
is considering the various implications of this model to the radia-
tive corrections (J. Schwinger {private communication) g.

34%e wish to thank Professor H. Lehmann for stressing to us
this viewpoint. This view is apparently also held by V. Weisskopf
t Varenna Summer Shcool lectures, 1967 (to be published)g.

where the second term will be finite, once 8m, ' is made
finite, and the last term refers to the divergent integral
associated with the photon exchange between the p+
and e+. Assuming that the effective cutoff for the last
term comes from the faster damping of the p electro-
magnetic form factor, for example, and that it is not
much different from that appearing in the p+-p mass
difference, we may argue that

QZ&~1 —28m '/m '~1 48m—,/m„

remains to be examined (is it the value of the vertex
function when every particle is on the mass shell, or
when some or all momenta go to zero?, etc. ; this
probably is an academic question in view of the PCAC
smoothness condition).

An alternative view is to regard the phenomeno-
logical Lagrangian as a device for exploiting, in phe-
nomenological analyses, symmetries of low-energy
hadronic phenomena through the action principle
applied to a nonoperator, numerical Lagrange function.
This is another way of understanding the algorithm
developed in Sec. IV in which renormalization effects,
characteristic of the operator field theory, have been
consistently neglected. "

In discussing radiative corrections, we have devised
an intuitive rule, whereby the radiative correction to
the process n ~ P is computed by first computing the
strong process cr+p' —+ cr+p' by the algorithm and then
connecting the two p"s by a photon propagator. (In
this case we admit a loop created by the effective photon
propagator, Eq. (29).j The justification for this rule,
aside from being reasonable intuitively, is that this
prescription is precisely that of Cottingham, "in which
we substitute the forward Compton scattering ampli-
tude by the model amplitude constructed from the
phenomenological Lagrangian. We have seen that this
prescription reproduces the field-algebra result of Das
et al'. for the 7r+m mass difference in the limit

(~/m, )' ~ O.

An obvious defect of theories of this sort is that they
do not satisfy the unitarity. Thus the extrapolation of
this method to higher energies is dangerous and un-
warranted, until and unless a reasonable means of
implementing the unitarity requirements has been
achieved. [The same remark applies equally well to
the current algebra, of course. ] With the implementa-
tion of the unitarity, the damping of the (undesirable,
and clearly wrong) polynomial growth of scattering
amplitudes for high energies may be presumed to occur,

In short, what we have achieved is a way of determin-
ing low-energy limits of amplitudes based on such
notions as the field algebra (or an equivalent action-
principle statement), PCAC, and vector-meson domi-
nance. To this, we must add a means of incorporating
the unitarity requirements, at least in some phenomeno-
logical sense, so as to allow an extrapolation to higher
energies. It appears to us that the works of Schwinger, '7

and Ok.ubo et al. ,
"among others, are first steps in this

direction. It is a largely unexplored terrain, however.
Note added irr proof Amore deta.iled discussion of

the m.+-7r' mass difference is given in I. S. Gerstein,
B. W. Lee, H. T. Nieh and H. J. Schnitzer )Phys.

35 We believe this view comes very close to the view of J.
Schwinger. See Ref. 2. See also Ref. 37 below.

3 W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).
3' J. Schwinger, Phys. Rev. 152, 1219 (1966); 158, 1391 (1967}."S.Okubo, R. E. Marshak, and P. S, Mathur, Phys, Rev. Let-

ters 19, 407 (1967).
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Rev. Letters 19, 1064 (1967)]. The tree diagrams we

refer to in Sec. IV are precisely what Schwinger called
skeletal interactions [J. Schwinger, Phys. Rev. 158,
1391 (1967)].We understand that S. Coleman and B.
Zumino have considered the problem we dealt with
in Sec. IV [S. Coleman and B. Zumino (to be pub-
lished) ].
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The Van Hove model of Regge poles is generalized to include propagator self-energy insertions and
used to study unequal-mass daughter trajectories. The 6rst daughter trajectory is found to have negative
slope at t=0.

I. INTRODUCTION

ECENTLY the study of Feynman diagrams has
shed new light on the origin and behavior of Regge

poles in relativistic quantum mechanics. Van Hove' has
suggested a simple model in which the amplitude for
Regge exchange is given by the sum of the one-particle
exchange diagrams for the set of particles lying on an
in6nitely rising Regge trajectory. Durand has empha-
sized the close correspondence between the daughter
trajectories found by Freedman and Wang' in unequal-
mass scattering and the lower spin components that are
carried by off-mass-shell Feynman propagators for par-
ticles with spin.

We wish in this paper to show that the Van Hove
model when studied for unequal external masses and
generalized to include self-energy insertions on the

*Work supported by the U. S. Atomic Energy Commission and
the National Science Foundation.

' L. Van Hove, Phys. Letters 24B, 183 (1967). Durand LLoyal
Durand III, Phys. Rev. 161, 1610 (1967)) has studied the smooth-
ness conditions which are required in order to obtain Regge-type
behavior from an innnite set of t-channel diagrams. In particular
he has pointed out that the "particles" which are exchanged need
not actually occur as physical resonances. They can be poles on the
second sheet with negative mass squared as would occur for tra-
jectories which turn over at some Gnite value of E. Hence, the re-
quirement of in6nitely rising trajectories is not necessary for ob-
taining Regge behavior. The authors wish to thank Professor
Durand for helpful discussions on this point.

s Loyal Durand III, Phys. Rev. 154, 1537 (1967).
3 D. Z. Freedman and J. M. Wang, Phys. Rev. Letters 17, 569

(1966);Phys. Rev. 153, 1956 (1967).

propagators of the exchanged particles leads to and gives
information about moving daughter trajectories. Our
results, while model-dependent, suggest that only in
accidental cases are the daughter trajectories expected
to move parallel to the parent trajectory. In particular
we find the first daughter has negative slope at t=O for
~n(o) & —

s
Lest the reader get lost below in the technical details

of higher spin, let us first state the plan and simple
physical ideas of our work. We 6rst consider the un-
equal-mass scattering zn&+net —+ stts+ms computed with
bare Feynman propagators for the exchanged particles.
We 6nd that the singularities at t=0 of the leading
Regge-pole contribution are cancelled by fixed daughter
poles. As is well known, fixed poles in the angular mo-
mentum plane are incompatible with (l-channel) uni-

tarity. It is natural to hope, therefore, that when the
Van Hove model is unitarized, the fixed daughter poles
will turn into moving daughter trajectories. Our calcu-
lations show that this is precisely what happens, and we
find an expression which determines the 6rst daughter
trajectory.

II. FIXED DAUGHTER POLES

We begin by studying the unequal-mass scattering
tnt+net ~ nts+nzs as s~ oo with momenta as defined
in Fig.;1.In order to avoid undue complications we have
throughout confined our attention to the leading and
first daughter trajectories. The amplitude for the ex-


