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An examination is made of the theory of the ground state of solid 3He proposed by Saunders (EMS) and
modi6ed by Garwin and Landesman (GL). We 6nd the theory is inconsistent or wrong in the following
respects: Unphysical single-particle functions result from a misapplication of the Pluvinage method of
generating a wave function; the heuristic derivation of an expression for the exchange integral J is in-
consistent with this wave function; a correct solution for the integral equation for the single-particle prob-
ability density has not been given; the heuristic expression used for the cohesive energy is inconsistent with
the Pluvinage method. The use of the Pluvinage method and the single-particle probability density in the
theory are analyzed in detail. The numerical results given in EMS and GL, such as for the exchange integral,
are shown to be in doubt because of the errors. We discuss a possible modi6cation of the method, which is
not subject to these criticisms, and which gives results similar to those of Nosanow s cluster-expansion
theory.

I. INTRODUCTION

S EVERAL years ago, Saunders proposed a theoretical
analysis' of the ground-state properties of solid 'He.

Despite the fact that some workers' ' noted that KMS
contains numerous errors and some approximations
which are difEcult to justify, the results of the theory
have frequently been quoted and compared with experi-
ment. Recently, Garwin and Landesman' corrected
some major numerical errors and slightly generalized
some of the procedures of the method. One of their con-
tributions, was to give the correct solution of the EMS
differential equation for the correlation function x(r).
However, they did not question the basic equations of
the theory, since their main intent was to give an
example of what is required to calculate the 'He ex-
change integral once one has an adequate theory.

The purpose of this paper is to examine the validity
of the basic assumptions made in KMS. We find that
there are more difficulties with the theory than just the
numerical errors corrected in GL; many of the basic
procedures of the theory are incorrect as we will show.
Garwin and Landesman felt that the EMS theory
merited reexamination and correction because the pre-
dicted value of the exchange integral is in reasonable
agreement with experiment. " However, our work
indicates that this agreement with experiment ap-
parently is fortuitous. In EMS a heuristic derivation is
given of an expression for the exchange integral which
agrees in general form with the results of other deriva-

tions."This expression may give a correct order of
magnitude to the exchange integral if a helium atom is
confined with approximately the correct distribution iD

its Wigner-Seitz cell. However, we will show that be-
cause of a poor approximation neither the distribution
used in EMS nor the one used in GI is the one actually
predicted by the theory and that the theory's agreement
with exchange experiments is now in doubt.

In addition to poor approximations, a serious fault of
the theory is its lack of consistency or rigor in its deriva-
tion of expressions for the most fundamental quantities, .

such as the cohesive energy and the exchange integral.
Indeed, we show that a treatment of these two quanti-
ties consistent with the basic assumptions of the theory
would lead to far diferent expressions, and in the case of
the exchange integral, to a physically unreasonable
result.

In Sec. II we list some apparent shortcomings which
will make it clear that the Saunders theory is un-
acceptable in its present form. A detailed examination
of the theory is presented in Secs. III and IV. In Sec. III
we discuss the use of the Pluvinage method of generating
a wave function and in Sec. IV, the method of the single-
particle probability density is investigated. The analyses
of Secs. III and IV suggest a fundamental modification
of the theory based on one approximation of the KMS
method, which might lead to a consistent theory of
solid helium. This modification is discussed in Sec. V.
In an Appendix we discuss some numerical methods
used.
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II. SOME SERIOUS DIFFICULTIES WITH
THE EMS THEORY

There are several aspects of the EMS treatment which
make the theory suspect and which immediately suggest
that deeper analysis should be made:

(l) The erst of the difhculties concerns the character

e N. Bernardes and H. Primakoff, Phys. Rev. 119, 968 (1960).
~ L. H. Nosanow and W. J. Mullin, Phys. R,ev. Letters 14, 133

(1965).
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of the solid-state wave function given, which is

O=II ~(r;;)LZ(-1)"P.II e.(")~.j, (2.1)

of the form"

(—I)4p(«)ei(rp) II 4;(r')((P~p"').). (2 5)

where the X,; are correlation functions which vanish at
small r,, and to go unity at large r;j", the g~ are spin
functions; and the pp turn out to be free single-particle
functions which are given crystal-lattice boundary
conditions. The function f is made antisymmetric by
summing over all permutations v of IIpp, with P, a
permutation operator and p„ the parity of the permuta-
tion. We question the presence of these nonlocalized
free-particle functions in II, which is meant to describe a
solid. Clearly, if the pp were localized, (2.1) would de-
scribe a solid. It is also possible' to construct a (trial)
wave function for a solid which contains, as a factor, a
Slater determinant of Bloch functions (each of which is
a linear combination of localized single-particle func-
tions); but one would expect these functions to be far
different from free-particle functions. Further, in such a
function one does not associate spin with the Bloch
state. It is even possible' to describe a crystal by a func-
tion simply of the form /= II xg. But we are unable to
see any physical reason for the presence of the free-
particle p; used in EMS.

(2) Because II X,, is completely syinmetric, the
Fermion properties of the wave function are carried
entirely by the antisymmetrized product of the p, (r,).
We can show by a simple argument that this property
would lead to unreasonable results for the exchange
properties of solid 'He, if the calculations of EMS had
actually been carried out in a manner consistent with
the wave function. If we define

vo=tI e', (2.2)

and note that the permutation operator can be written
as a product of a spacial part P„G and a spin part P„,

P„=P„GP„,,

then the energy expectation value is

z(-»'x(rr ~„~.*)«rr ~.;p..~.)d.(p,.)
V i&j i &j

E(—1)""J' II &"4p*P.pAdr(P-)

(2.3)

. (2.4)

J. H. Hetherington (private communication).
~ W. L. McMillan, Phys. Rev. 138, A442 (1965).

In (2.4) H is the Hamiltonian of the system; dr is the
many-body volume element dr&dr& dr~., and (P„,) is
the spin-space expectation value of the spin-permuta-
tion operator. If we write B as a sum of a "direct"
energy and an "exchange" energy (plus multiparticle
exchange terms), the direct energy will contain the
terms which have P„p 1, and the (pair) ——exchange
energy will contain terms for which (—»""P„ppp(P„,) is

Thus the exchange energy E, will be like a Heisenberg
Hamiltonian

K.= —P Ai(Pip").)
k&l

(2.6)

where A is an operator and D is a normalization de-
nominator. (P., is of the Heisenberg form because
(P~qP'), contains a term in S~ Sp where S~ is a sPin
operator. ) In the KMS theory the localization of the
particles about lattice sites is provided entirely by the
factor (II x;;)' in the probability density. Suppose we
consider an extreme case (large particle mass) for
which II x;, provides almost perfect localization, that
is, it is essentially a product of 5 functions centered on
lattice sites. Then J~~ will be of order

4 *(R)4.*(Rp)4.(R~)4i(~~), (2 g)

where Rq and R~ are the positions of lattice sites k and l.
Even in this extreme case of localization, for which
exchange effects should vanish, Jl, ~ depends on overlap
of nonlocalized free-particle functions, which is not
small. This situation is certainly not improved if we
consider less extreme localization as it occurs in solid
'He. Thus it seems that the mechanism of exchange
provided by the EMS wave function is entirely un-
physical. However, in EMS this difhculty is avoided
somewhat by the use of heuristic arguments which lead
to an exchange-energy expression of a more reasonable
form.

(3) There is another rather general peculiarity con-
cerning the P;:There is no single numerical result in the
EMS theory which depends on the nature of the p;. For
example, as we have just pointed out, the exchange
effects are derived on the basis of arguments which
have nothing to do with the antisyrrunetrization of the
wave function, and indeed are inconsistent with the
nature of the wave function. Further, the evaluation of
the direct energy and of the all-important single-
particle density are independent of the choice of the @;.
As we will see when we make a more detailed examina-
tion of the theory, the p; are actually a mathematically
and physically extraneous feature of the theory. This
last fact need not have been so, of course. For example,
if the p, (r;) had been chosen to be 1ocalised about lattice

~ See, for example, %.J. Carr, Phys. Rev. 92, 28 (1953);W. J.
Mullin, i'd. 1N, A1126 (1964),' or Ref. 7.

with an "exchange integral" of the form"

1jpi= — (rr &;;4p*)~
D i&j

X[II x;,y («)y (r ) II y, («)]d. , (2.7)
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r (ri) —=
~ P ~

'dr, ar, dr~, (2.9)

where we assume iP to be normalized. An integral equa-
tion is developed for I"(ri) by a derivation which we
shall review in Sec. IV. This equation is

P (ri) = (const) g P (rq)X'(rii)dry. (2.10)
k(&»}

For a solid it is expected that

P(r') =Z V(r' —»), (2.11)

where y(r; —R;) localizes particle i about the lattice site
at I;.It is assumed that each particle is near a specific
1Rttlcc sltc so that

(2.12)

sites, then the trial wave function would have been
physically reasonable and exchange cGects could have
received a consistent treatment.

One reason the cohesive energy E does not depend on.

the @;is that the derivation of E is a heuristic one which
is altogether inconsistent with the energy expression
which comes from the Pluvinagc method used to
generate the wave function of EMS. (See Sec. III for
details. )

(4) The central element in the EMS theory, the
single-particle probability density, is defined by

the X(r) given in EMS we were unable to find a localized

solution of Eq. (2.13). We note that

'y(ll, )= collst (2.16)

does satisfy Eq. (2.13) since j'X(r&i)dry is independent
of ri. The sequence of y '"'(ui) appeared to be relaxing to
the solution (2.16).For the X(r) given by GL, which has
a large maximum at r=4 A, we found a localized solu-

tion; however, it differs considerably from y&@(ui). In
Fig. 1 we show plots of p&" (ui) and our solution

y(ui) =7'"&(ui)—:y&'&(ui). Clearly, a poor approxima-
tion to y(u) is used in EMS and GL. (Note that all of
our expressions for y(u, ) are functions of magnitude

~u, j only, because of a spherically symmetrizing ap-
proximation made for mathematical simplicity. This
approximation consists of replacing a lattice sum over
vector RI,»=R~—R» by an average over the angles of
RI, i, plus a sum over the magnitudes

~
Rki~. (See the

Appendix. )
The use of the correct solution to Eq. (2.13) instead

of p&'&(ui) would undoubtedly lead to considerably
larger values of the exchange integral since it is a much
wider function. For reasons discussed in Sec. IV we

cannot accurately estimate what value the theory would

now predict for the exchange interaction. However,
there are some indications that its prediction may now

be too large (see Sec. IV).
In this section we have given only a superficial dis-

cussion of the de.culties of the EMS theory. In the
next two sections we present a much more detailed
investigation.

Then Eq. (2.10) becomes

y(ui) = (const) g
Eo(&»}

y(u, )X (r„)dr&, (2.13)

where u;= r;—I;.The EMS method is to assume as a
first approximation that y(uI, ), on the right side of
(2.13), may be replaced by

and then to solve for y&'&(ui) on the left. One must, of
colli'sc icpcaf. 'tllls procedure until the sequence r & "& (ui)
converges. In KMS it is argued ghat further iterations
yield no chRngc Rnd that

Further, in GL, Eq. (2.15) is assumed to be adequate
and 'r ~ ~ (ui) is follild ilslilg thc GL solution fol' X(r). Wc
have used a reasonable analytic approximation to the
X(r) of EMS and the exact numerical X(r) given in GL
and have iterated Eq. (2.13) with an approximate
numerical procedure. Ke give some details of this calcu-
IRtlon ln thc Appendix. Thc resuIts Rlc Rs follows: FOI'

with

&=&o+&', (3 1)

A2 ZC Z8 8
Ho ——— (7„'+V'„'+2 7'„,')— (3 2)

28$ r» r2 r»2

where

(3 3)

"P.Pluvi»»age, AnI1. Phys. (Paris} 5, 145 (,1950)."P. %'alsh and S. Borowitz, Phys. Rev. 115, 1206 (1959); 119,
1274 (1960).

III. SAUNDERS'S USE OF THE
PLUVINAGE METHOD

To understand the EMS theory we must first under-
stand the Pluvinage-Walsh-Borowitz (PWB) method" "
upon which it is based. Pluvinage" noted that, in solving
the Schrodinger equation for a two-electron atom, one
could take the nucleus-electron distances ri

~
ri ~,

r2 ——~r~~, the interelectron distance ri2= ~ri —r2~, and
three Euler angles as independent variables. Then the
Hamiltonian depends only on r», r2, and r»2.
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Fn. 1. Plots of u2y(~) (u} and
u'y(u) for bcc 'He. y"&(u) is a
spherically symmetrized approxima-
tion to the function {2.15) assumed,
in EMS (Ref. 1) and GL (Ref. 3),
to be the solution of the fundamental
EMS equation LEq. (2.13l] for the
single-particle probability density.
y(u) is the actual solution of (2.13)
which we 6nd in the spherical ap-
proximation. Ke have used the GL
correlation function y(r). The large
difference in the two curves illus-
trates the gross error made in the
EMS theory. The curves are nor-
malized to have equal values of
Jo" u'y&"& (u) du.

0.5 I.Q l,5 2,0 2.5

Also

frl r2 +r12+=-
2m& Bf181'12

~2~12

The operator Ho contains all the singularities in H and
so H' is taken as perturbation. The unperturbed
equation

+os'o =+oPo

dent of one another. However, for the sake of easily

generating a trial function which behaves properly at all

the singularities in the potential, one assumes they are
all independent in solving the unperturbed Schrodinger
equation. If an important aspect of the problem is the
nonindependence of these variables then a very poor
trial wave function may be generated.

Some simple one-dimensional examples may serve to
illustrate the PWB method:

(1) First consider the two-particle harmonic-oscil-

lator problem illustrated in Fig. 2 (a). The Hamiltonian. ,

separates in the variables rr, ro, rro and so Po has the
form

A= 4 (rr)4 (ro)~(rr~) . (3.5)

The g(r, ) are hydrogeniclike wave functions while w (r»)
is an electron-electron scattering function. The ground-
state energy is then estimated by using Po as a trial wave
function for the complete Hamiltonian.

This method was extended by Walsh and Borowitz"
to many-electron systems. They showed that a separa-
tion of the unperturbed fo, analogous to Eq. (3.5) was
a mathematically rigorous procedure only for atoms
with two or three electrons. The reason is that, for an
E-electron atom, the electron-nucleus distances, the
interelectron distances, and the three Euler angles total
E+olV(E—1)+3 variables. The original number of
degrees of freedom is 3E. Equating these two quantities
gives )V= 2 or 3. For E&3 "redundant" variables have
been introduced, i.e., not all the variables are indepen-

b
2

2b
=X

@~rent

b
2

(b)

&b

2

F10. 2. Two one-dimensional systems used to illustrate the
Pluvinage method of generating a trial wave function.
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with k2/212= 1, is

8 lq12 8 8 8
+ +

dq1 ~q1 dq1 ~q12 ~q1 ~q12
(3.7)

1(d' d2)
+ I+2kEq12+(gl —g2)'+q2'], (3 6)

2 Edgy dg2 )
where k is the spring constant for all three springs; and
q1

——x~—-', 6, q2=x2 ——,'b. As variables we choose q1, q12= q»
—

q2, and q2. Assuming the wave function will be a
function of these variables we write

Without using any variational parameters we have ob-
tained. a result containing only 4%%uo error.

We wish to emphasize that the equation HpiPp=Ep1Po

is not actually separable in q1, q2, q». Treating them as
independent is only a trick to construct a trial wave
function.

(2) As a second example, consider the two-particle
oscillator system with one wall and one end spring
removed as in Fig. 2(b). This situation will illustrate a
dif5culty introduced by the redundant variables which
helps us to understand certain peculiar aspects of the
EMS theory. For this system the P'tA'B method gives

Similarly
8 8

dq2 ~q2 ~q12
(3.8)

1( O' O' O'
Hp

~
+ +2 + k(gl +q12 ) (3 19)

2 (Ogl Ogp Ogl 2

The Hamiltonian becomes

H=Hp+H',

1( O' O' O'
Ho= —-( + +2„.„. .... .„..)

(3.9)

( O2 O2

H= —
]

EOglOg» Og2Og»~

+-2,kEql'+q2'+g12'], (3.10)

(3.11)

4'0 41424'12 &

where p1, for example, satis6es

1 O'
+2kqi' 141=E141.

2 Oq, 2

Thus,

(3.12)

(3.13)

We drop II' and proceed as if ql, q2, and q12 were all
i22depe22demt variables. Two particles in one dimension
have only two independent variables, so actually one
of these variables is "redundant. " The Schrodinger
equation then separates, with ground-state solution

H' is again given by Eq. (3.11).
If we assume that q1, q2, and q12 are independent as

before, we And once more that p1 and p» are given by
Eqs. (3.14) and (3.15), but that &2 satisfies

~ (q)=EW,
2 dq2

(3.20)

a free-particle equation. Thus

y2=Ae+~«2+g3e ~«2

E2——2E2.

(3.21)

(3.22)

Ep = 1.21+k, (3.23)

with the perturbation expectation value

Such a &2 is a physically unreasonable quantity which
certainly does not appear in the true wave function. It
arises simply because we have considered q1, q2, and q»
as independent, which implies that q2 is a free-particle
variable; this is certainly incorrect. Nevertheless, we
can obtain a reasonable trial function by setting E=0.
With pp=pllfl2 as trial function, the energy expectation
value is

Q, =A1 exp{—(f2+k)q, 2), i =1,2, (3.14)

and, similarly, The exact result is

(H')=0. (3.24)

f12=~12 exp (3.15)
E= 1.12+k . (3.25)

(3.17)

The error is about 8%.
of H s the sum of thr e In EMS, free-Particle equations similar to Eq. (3.20)

are found because of the redundant variable difhculty.
Eo=E1+E2+E»= (Qk) (2+2+1/V2) = 1.71+k (316) However, instead of discarding them, they appear to be

used in a fundamental way to provide an antisymmetric
compared. with the exact result

wave function.
E=1.36+k. Saunders splits the many-helium-atom Hamiltonian,

If one uses 1' as a trial wave function with the exact
Hamiltonian, that is, one now considers the perturba-
tion H', a much improved energy upper-bound results:

52
H= — P V„.2++ V(r,,),

2m
(3.26)

El+E2+E»+(H')= (1.71—0.29)+k=1.42+k. (3.18) into Ho and H' in a way analogous to Eqs. (3.1)—(3.4)
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so that

I:~ ~ +2 Z ~.; j+Z V(r')1 (3 2&)
~&j '&j

The de6nition of V,' was given in Eq. (3.3). H', which
we will not write down, contains the cross derivatives in
analogy to Eq. (3.4). The differential operators of (3.27)
have been developed just as in (3.7)—(3.11) on the
assumption that the wave function will depend only on
r; and r,;.The EMS method is to proceed as if r, , r,; were
all independent variables (which of course they are not)
and to separate the IIO equation into the equations

A2—-~„'~;(r;)=e,~,(r,),
2m

(3.28)

A2

V'„,, +-', V(r,~) X(r,;)=e;,X(r;;). (3.29)
2m

"

The 6nal trial wave function is then

~=n~;( )rr X(;,)
a&j

(3.30)

if we neglect symmetry eRects for a moment.
Note that, unlike the many-electron systems studied

in Ref. 12, there are no single-particle potentials V(r;)
in this problem. Thus the 1', are free-particle functions.
We saw in our oscillator problem t Fig. 2(b) $ that such
a factor is unphysical and is a fault of the invalid
assumption that all the r; and r,; are independent.
Hopefully, one can still get a reasonable trial function
by setting the p;= 1 as we did in our simple example.
In fact, one can even leave them in the trial function,
since the choice of trial wave function is rather free, but
there is no reason to believe that they will improve the
value of the energy expectation value anyway. Indeed,
there is no single result in EMS which depends on the
p; being diRerent from unity. However, the antisym-
metrization of the solid 'He wave function and the
resulting exchange eRects which are computed are made
to seem entirely dependent on the 1t;. We will discuss
the EMS treatment of symmetry eRects more com-
pletely below.

We now discuss the solution of Eq. (3.29) for the pair
functions X(r;,). In contrast to our harmonic-oscillator
examples, Eq. (3.29) does not have a pair bound-state
solution if m is the He atomic mass, and if V(r;,) is the
Lennard-Jones potential; there are only scattering solu-
tions. In this case the simplest. thing to do is to use the
solution for e;,=0. The resulting X(r,,) ~ 1 as r,, —&~

and does not oscillate at inhnity. Such oscillations
certainly have no physical meaning in this problem and
should be avoided just as the p; should have been
avoided. On the other hand, the fact that X(r,;) -+ 0 as
r,, —1 0, because of the singularity in V(r,;), is a very
important. feature because thep. thy tripl wave function.

f=P X,; behaves properly at all the singularities in the
Hamiltonian; the development of such a property of f
was just the reason the P%3 method was invented.

Sometimes other circumstances may prevent the
P%3 method from giving a reasonable trial function.
For example, in the case of eHe, the bound-state (or
resonance) eigenvalue occurs very near e;;=0. Thus it is
shown in GL thatw, hile X(r) does approach unity at
large distances, it has an enormous maximum for r =4 A.
Such a feature could make P an extremely poor choice of
trial function. The occurrance of such sticky problems
leads us to question the wisdom of using the PWB
method at all for generating a trial function for solid
helium. After all, one can immediately write down an
analytic trial correlation function which has all the
necessary properties. McMillan, ' Nosanow, and co-
workers ' " and I.evesque et ul '4 have used analytic
forms for the correlation function with success. In each
case a minimization of the energy was used to determine
the best correlation function.

Once the trial function is settled upon then the energy
expectation value must be found. From the PKB
method the energy is

E=(H)=P e;+g e+(II')=P e;+(H'). (3.31)

The last equality holds since e;;=0. Furthermore, the
unphysical single-particle functions should. be discarded

by setting e;=0. However, Eq. (3.31) is not the energy
estimate used in EMS. There, an involved heuristic
argument leads to

." ( )(~ '~3)7"'( )~ +(~')
2m

where (H') is neglected without real justiacation. It is
clear that the heuristic argument is incorrect since the
first term in Eq. (3.32) bears no relation to g e, of
Eq. (3.31).

Since we have shown that the nonlocalized single-

particle p, 's are unphysical and cannot account for the
exchange eRects in solid 3He, we may ask how symmetry
effects should be treated. The trial function 114——Q X;;
is completely symmetric and cannot be antisymmetrized.
without including a single-particle function factor. In
fact, however, as we have mentioned. before, the single-
particle functions are never used. in KMS to discuss
exchange eRects. Exchange is discussed in terms of the
overlap of neighboring single-particle densities which
are actually dependent on only the properties of g X,,
and not on the P;. Thus dropping the p; is of no real

. consequence. It merely points out that the theory does
not derive exchange eRects in a consistent way. It
injects them at the end in a heuristic way. Given correct

~ J. H. Hetherington. , %.J. Mullin, and L. H. Nosanorv, Phys.
Rev. 154, 175 (1967}.

11 D. LCvesqllc, D, glllff, 7, Klllct) slid L. VC1'lct (llllpllbllellcd).
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single-particle densities this heuristic derivation may
very well give a decent order-of-magnitude estimate of
the exchange integral J.However, the lack of a consistent
derivation always causes some doubt in this problem
because J contains much internal cancellation and is
very sensitively dependent on the overlap of neighbor-
ing single-particle probability density functions. ~

One consistent way the trial wave function can be
changed to allow antisymmetrization is to include, as a
factor, a Slater determinant of localized single-particle
functions. ~ Apparently such functions also lower the
energy upper bound as shown in the Monte Carlo work
of Levesque et ul. l4

IV. EMS SINGLE-PARTICLE
PROBABILITY DENSITY

In Sec. II we presented a preliminary discussion of
the single-particle density and indicated that it had
been inaccurately computed in previous work. '' We
would now like to enlarge upon that discussion.

The derivation given in KMS leading to an equation
like (2.13) is clear. Nevertheless, the derivation we give
here is slightly different. We 6rst drop the exchange in
the wave function (2.1) on the basis that such terms
lead to small contributions to the energy because over-
lap factors like p,*(1)p,(1) are small. Of course, this
would be correct for physically reasonable p, (such as
localized P;) and according to our argument in Sec. II
it is incorrect for the p; used in EMS. However, such a
difhculty is of secondary importance to us in this section
and we will proceed for awhile as if we had appropriate
P;. If we assume each particle is in a speci6c single-
particle state and the wave function is the unsym-
metrized form

then

I'(ri) = (const) Ip (ri) I' II IA(ri) I'~'(rii)

where we have neglected spin. The basic EMS assump-
tion is that

(4.2)

so that

I'(ri) = (const) lgi(ri) I' II I'(r~)7i'(r»)«1, (4 3)
Ir (pl)

If we no longer neglect the wave-function symmetriza-
tion, so that any distribution of particles among single-

particle states is equally probable, then we 6nd

I'(ri) = (const)p
I p;(ri) I

' II I'(ri)x'(riq)dry, (4.4)

where the overlap terms are still neglected. Now in
KMS, it is claimed that for the nonlocalized free-particle
@i used,

g Q, (ri) =const. (4 3)

With (4.5), Eq. (4.4) reduces to Eq. (2.10). The final
EMS form four Eq. (2.13)j is then derived as shown in
Sec. II.

Note that Eq. (2.10) and Eq. (2.13) would result from
this derivation if the wave function were simply of the
form

A=II x(re) (4.6)

because the Pi no longer appear in the theory. But then
Eq. (4.6) leads to

I'(ri) =
I P I

'dr2 drN =const. (4.7)

because the X(r;,) depend on interparticle distances
only. Equation (4.7) expresses the translational in-
variance of the P of (4.6); that is, because the center of
mass of the system can be anywhere, each particle also
is equally likely to be anywhere. LIt is interesting that
the wave function of the harmonic crystal can be
written in the form" II,&; f,,(r;, R;,) and —has the
property (4.7).j And, indeed, one solution of Eq.
(2.10) is

I'(r;) =const. (4.8)

"This can be shown by some simple manipulations of configura-
tion space representation of the crystal-wave function as given by
T. R, Koehler, Phys. Rev. 144, 789 (1966).' R. Brout, Physica 29, 1041 (1963)."R.Brout, S. Nettel, and H. Thomas, Phys. Rev. Letters 13,
474 (1964).

However, we do not believe that this discussion invali-
dates the EMS method. After all, the approximation
(4.2) breaks the translational invariance, as long as

y(u, )& I, and is really periodic as Eq. (2.11) implies.
A similar problem has been treated by Brout" in a

discussion of the partition function for a classical solid.
In fact, Brout derives an equation for a single-particle
function which, in some respects, is similar to the EMS
equation. This equation is solved by Brout, Nettel, and
Thomas" for solid argon. Brout" notes that his equation
also has the trivial solution corresponding to F(ri)
= const. However, a localized solution is found as well,
in Ref. 17.

We have noted that our solution for the single-
particle density is a broader function than the functions
of EMS and GL. This will lead to a larger theoretical
value of the exchange integral J. One way we might
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estimate this value is by fitting our solution with a
Gaussian and using the EMS expression for J. In EMS
this curve fitting was done in the neighborhood of the
origin, u=0. When such a procedure was followed in
GL, an exchange integral several orders of magnitude
too large was found. This occurs for a least two reasons:
First, even our spherically symmetric approximation to
y&" (u,) falls off faster than a Gaussian so that a
Gaussian approximation results in an overestimate of J.
Second, a nonspherically symmetric p&@(u;), such as
that computed in GL, will fall off faster in the directions
of the neighboring particles than in the intermediate
directions. Thus a spherical average (such as the
Gaussian) also will lead to an overestimate of J.

An estimate of J using our spherically symmetric
approximation to the correct solution, y(u;), would be
subject to the second cause of overestimation. However,
the first does not hold. Our y(u, ) falls off more sfow/y

than a Gaussian, so a Gaussian approximation tends to
give an underestimate of J. We get a Gaussian ap-
proximation by normalizing y(u) to unity at u=0 and
then determining a Gaussian parameter 8 by taking

y(ro) =exp( —Pro' } (4.9)

for
~ ro~ =1 A, rather than near the origin. This gives a

slightly more realistic fit because near m=1 A, u'y(u)
has a maximum. If the resulting 8's are used in the EMS
expression for J, we get J's that are two to three orders
of magnitude too large. Of course, for the reasons given
above, we do not know how reliable such an estimate is.
To achieve a realistic estimate one would need to
iterate Kq. (2.13) without making any spherically
symmetrizing approximation and then compute J as in
GL. Such a computation is quite de.cult and we
believe that there are so many objections to the theory
in its present form that such a computation is not
warranted.

For the sake of some comparisons we list in Table I
the 6' values gotten in EMS, and here, and also some
equivalent Gaussian parameters from other theories of
bcc 'He. We see that the present results for P are not
much different from those of the Bernardes-Primakoff
theory'; the Gaussian parameters of that theory are
npw thpught tp be tpo small.

We have carried out an analysis, similar to the one
described above for hcp 4He using the GL X(r). Although
the solution we 6nd for y(u) is a bit wider than y&'& (u)
it still seems too narrow a function to provide a reason-
able description of 4He, in agreement with the GL con-
clusion. For 8=3.7 A we find, as above, 5'=2.3 A '
whereas, for example, the equivalent parameter in the
Nosanow theory' is O'=1.80 A '. (We should note
that the GL conclusion was that the theory led to
"ridiculous" results for 4He. While our results seem
poor for 'He, they are not ridiculously far off.)

We wish to emphasize that any detailed conclusions

"L.H. Nosanow, Phys. Rev. Letters 13, 270 (1964).

TABLE I. Values of the Gaussian parameter 5' for bcc 3He from
our calculations (see text) with the GL solution for y(r); from
EMS (Ref. 1);from the B.ernardes and Primako6 theory (Ref. 6);
and from the Nosanow theory (Ref. 5). R is the nearest-neighbor
distance in A. for bcc 'He. The units of 8' are A '.

This
work

rce of 8'
GL-x

This
work
p(~)
GL-x

EMS
8ernardes- Nosa-

EMS-y Primakoff now

3.5
3.6
3.7

1.8
1.5
1.3

1.1
0.9
0.85

2.38 0.84
1.92 0.83
1.56 0.82

1.60
1.48
1.36

concerning the usefulness or accuracy of y(u) based on
our numerical calculations are clearly tentative because
we have made certain simplifying approximations.
Nevertheless our basic point concerning y(u) has been
made: The calculations of Refs. 1 and 3 are incorrect
because they have used y&'&(u) instead of the fully
iterated solution y(u). Any future calculations based on
the EMS method must avoid this error.

In the analysis of this section we have not questioned
one basic assumption of the Saunders theory, our

Kq. (4.2), indeed, we find this approximation rather
appealing although we have no way of testing it. In an
attempt in the next section to make the Saunders theory
into a more consistent treatment of solid helium we will

retain this approximation.

with real p& and X... and if we use the identity

&PV &Pdr& . dr= — &P2V ' in&Pdr& drN, (5.2)
2

PE2

I' = (II)= — P (V,' In&t, )&P2dr& dr«&

4m

+g V,,&P2dri dry &pdri' ' dfN, (5.3)

7. DISCUSSION OF A POSSIBLE MODIFICATION
OF THE EMS THEORY

We would like to suggest some improvements in the
EMS method, which make use of the basic approxima-
tion. (4.2) but which are not subject to the objections
we have raised. The introduction of localized single-

particle functions results in some simplifications. Fur-
ther, it seems valuable to choose an aealytic form for
X(r) and to minimize the energy expectation value with
respect to parameters contained in it, rather than
choosing a 6xed form a priori

If we neglect symmetry effects for a moment and use

(5.1)
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(4 2) lve assI the sp

(r2),acto»5 (5.11)

where
h2

g-2 1nX'gV(r. .)= V(&22) (5 4)

p2dll ~ . 'dry
~ 5.5)dr1rp(rl, r2 =—
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2(/1)

(5.14)
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bcc He

I"»G. 3. An illustration of the
accuracy of approximation (5.8) to
the solution of Eq. (5.7), The func-
tion p'(I) is the approximate solu-
tion and 7(u) is the exact solution.
The curves are normalized to enclose
equal areas as in Fig. 1.

0.5 l.5

proximations of this section. One simply antisym-
metrizes the factor g p(n;) in (5.1). The addition of
antisymmetrization does not change the properties of
p(n, ) (such as its localization) since exchange effects are
only about 10 4 of the direct efI'ects. ~ Thus our neglect of
antisymrnetrization in this section is a very good
approximation. Ke shall not go into further details
concerning exchange here, however.
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APPENDIX

Approximations have been used in our calculations
of the single-particle probability density y(n;) and we
discuss them here. Write Kq. (2.13) in the form

y(ui) =a exp —P ln y(ni)X'(rig)dry . (A1)
Ec(&»)

One approximation is to make y(ni) a spherically
symmetric function of Ni ——

~ ni~ only, by replacing the

lattice sum over Rii by an angular average over the
directions of vector RI,» and a sum over magnitudes
Z„= (R„(.That is,

N(Rii)

I (H1) Ra&(WO) &Is&(80) 4'
dQR„, (A2)

X df t ln dh xy(x)F(x,t), (A3)
l u1—BP1l 0 ~NW

@+t

F(x,t)= dy yx&(y) -.

l~tl

The integrations are performed numerically. Sufhcient
accuracy results for our purpose, if we sum over only
the first thirteen shells of particles for bcc 'He.

where e(Ri, i) is the number of particles in the shell at
distance EI,». Some simple integrations then give the
result

n(Ei, i)
y(gi) =o, exp

RIs1, (+0) 2Q»gg»


