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Recent inelastic neutron-scattering measurements on liquid argon at 94.4'K are quantitatively analyzed
in terms of velocity autocorrelation functions obtained from computer molecular-dynamics experiments
and from a simple model which has no adjustable parameters. The model is derived using dispersion-relation
and sum-rule arguments, and a single, operationally well-defined approximation. Physically it corresponds to
treating the motions as if the atoms were moving in a relaxing cage. The model description is tested against
computer results, and both are employed in the cross-section calculation, in which two recent convolution-
type approximations are considered. Over-all agreement between present analysis and experiments is quite
satisfactory. Moreover, detailed comparisons show that the results are not very sensitive to the differences
in the model and computer velocity correlation functions, and that the observed discrepancies arise mainly
from the existing methods of relating coherent and incoherent scattering functions.

I. INTRODUCTION
' 'NELASTIC neutron-scattering measurements and
~- computer molecular-dynamics experiments are the
most direct methods with which atomic motions in
liquids can be studied in. detail. These investigations
are closely related in that they both provide information
about the density correlation functions G(r, t) and
G, (r, t).' In computer calculations' one constructs the
density correlation functions as mell as the velocity
autocorrelation function P(/) and the mean-square
displacement (r'(t)) from a knowledge of the particle
positions and velocities at various time intervals. In
neutron experiments' 4 one measures the space-time
Fourier transform of G and G„although usually not
separately. From the neutron data it is possible to
infer (r'(t)) ' ' or the frequency spectrum of P(/), ' but
this is a dificult problem and the results obtained thus
far can not be considered very precise.

It is physically meaningful and mathematically con-
venient to discuss molecular dynamics in liquids in
terms of iP(t) and (r'(t)). Any vibratory component
present in the motions would appear in P (t) as a negative
region, or in its frequency spectrum f (&o) as a peak away
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from the origin. The diQusive component, always pres-
ent in a liquid, would give rise to a linear gromth of
(r'(/)) with time. These characteristics clearly manifest
themselves in the computer results, and to a lesser
degree they also have been observed in the neutron
data.

Since neutron scattering is capable of furnishing
microscopic details about atomic motions, it can be
expected that interpretation of the data will not be
simple. Conventionally one first attempts to compute
the incoherent scattering cross section by means of a
model for G, (r,t). The result would be sufhcient for the
analysis of experiments on liquids containing hydrogen,
an element with a large scattering cross section that is
almost entirely incoherent. For liquids which also
scatter coherently, a knowledge of G(r, t) is needed. This
is a more complex problem in that phenomenological
descriptions are dificult to formulate. Fortunately, in
both cases one nom has the aid of computer results to
motivate and test approximate calculations.

The computation of G, (r, t) can be reduced to the
problem of determining P(t) or (r'(t)) through the
assumption that 6, is a spatially Gaussian distribution.
This is a useful procedure which can be made quite
accurate because reliable methods for estimating the
non-Gaussian corrections have been developed. In the
Gaussian approximation, model calculations therefore
begin at the level of f(t) or (r'(t)). Initial attempts to
describe both solidlike oscillations and diffusive motions
in this way were made by Rahman, Singwi, and
Sjolander using stochastic arguments. Later models
which involve more formal and elaborate procedures
have been proposed by Ardente, Nardelli, and Reatto, '0
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and by Sears."All these calculations have the common
feature that two distinct types of motions were intro-
duced into the description ab irido. We observe, on
the other hand, that if the atom vibrating initially is to
be the same particle diffusing at later times, , then
oscillations and diffusion should result from a single
unified treatment. Moreover, there should be an inti-
mate connection between the two processes.

Although a good deal is known about the properties
of G(r, t), its computation generally involves an in-
direct approach. The most common procedure is to
express G(r, t) in terms of G, (r, t) and the equilibrium
pair distribution function g(r), the erst approximation
of this kind being the convolution approximation
suggested by Vineyard. "Modifications of this approxi-
mation have been made notably by Singwi" and by
Rahman. ' Rahman suggested a delayed convolution
approximation (DCA) which was primarily motivated
by his computer results. More recently, another approxi-
mate relation between G and G, has appeared in the
literature. '4" This procedure, which we shall call the
effective-mass approximation (EMA), has the attractive
feature of introducing no additional parameter or func-
tion relative to the original convolution approximation.
Both DCA and EMA have not been used in any ex-
tensive calculation, but initial results'~" obtained
with these phenomenological prescriptions have been
encouraging.

The purpose of this paper is to consider a model
that is mathematically simple and also qualitatively cor-
rect, to test the model against computer experiments,
and to apply both model and computer results in a
quantitative analysis of neutron-scattering measure-
ments. Our specific discussions will be concerned with
liquid argon since this is the only system for which
computer and neutron-scattering data are presently
available. In the next section we begin with the cor-
relation function formalism of Martin. ' The model is
derived using dispersion-relation and sum-rule argu-
ments, and the assumption of a single relaxation pro-
cess. It is an interpolation description which has the
correct asymptotic behavior at short and long times.
This description is not entirely new in that similar
results for P(t) and f(~) have already been obtained
elsewhere"; however, the present formulation enables
us to give a simple interpretation of the model and to
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emphasize the fact that it has no adjustable parameters.
The comparison of model and computer results for
P(t), f(co), and (r'(t)) is discussed in Sec. III. We also
present results for the incoherent-scattering function
computed in the Gaussian approximation. The actual
calculation of the double differential neutron-scattering
cross section using DCA and EMA is described in
Sec. IV. The computed spectra are compared with
neutron data in several ways in Sec. V. It is found that
the most serious approximation in the calculationaI
procedure is the treatment of coherent effects. We then
conclude the paper with a number of remarks in Sec. VI.

IL INTERPOLATION MODEL

x"((u) = Ct e'"' -,'i(fx(t), x( 0)7ps), (2.&)

C (cv) = dt e' '(x(t)x(0)) (2.2)

where L 7ps denotes the Poisson bracket and ( ) an
equilibrium ensemble average. These two quantities
are not independent but are related through the
fluctuation-dissipation theorem'

x (~)= p~@(~) (2.3)

where P is the inverse temperature in energy units. We
next define the complex susceptibility function

co /~I x/I (~l)
x(s) = (2 4)

with s=w+ie, a complex variable in the upper half-

plane. In terms of real and imaginary parts one has, on
taking limit e —+ 0+,

with
x (co) =x'((u)+ix" (m), (2.S)

x'(u&) =
te d~l xi/ (~I)

(2.6)

where I' denotes the principal value. It can be shown
that x"(co) is real and odd in co, hence x'(co) and 4&(co)

are both real and even.
An essential part of Martin's formalism is the dis-

persion relation. This equation is motivated by con-
sidering certain analytic properties of x(s). In our

'"R. Kubo, in Lectures in Theoretical I'hysics (Interscience
Publishers, Inc. , Neer York, 1959); also, R. Kubo, Rept. Progr.
Phys. 29, 255 (1966), and references therein,

To develop our model description it is necessary to
first introduce a number of basic definitions and rela-
tions. ' We consider the liquid as a spherically sym-
metric classical system. The Fourier transforms of the
displacement response and correlation functions are
defined by
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SIMPLE LIQUIDS AN D COLD —NEUTRON SCATTERING

with characteristic frequency coo during short times,
and as a diffusing particle with friction coefficient
coo'ro at long times. The time constant 70 which deter-
mines the two types of asymptotic behavior appears in
the role of a relaxation time. If we associate the
behavior of X(t) with the motion of an atom in the
liquid, then the present description corresponds to
putting the atom in an external parabolic potential
which relaxes in time so that eventually the atom ex-
periences only a frictional force.

I.O—
(a)

III. COMPARISON OF MODEL VfITH
COMPUTER EXPERIMENTS

To determine the utility of the interpolation model
and to illustrate the interpretive remarks of Sec. II,
we consider a comparison with computer experiments
on liquid argon. Machine solutions of Newton's equa-
tions of motion for 864 argon atoms have been obtained
by Rahman" and the results used to determine the
velocity autocorrelation function f(t), its frequency
spectrmn f(pp), and the mean-square displacement
(r'(I)). Using the f (&p) given by Rahman at 94.4'K we
have obtained the constants a&p and r p from Eqs. (2.15),
(2.16), and (2.19).Numerical integration gives a&p' ——45
)(10" sec ', and combining this with D=2.43X1.0—'
cm'/sec we find rp to be 1.78X10 "sec.The comparison
of model and. computer results for P(t) and. f(pp) is shown
in Fig. 1. We see that the velocity autocorrelation
functions are in good agreement at short times, but
the oscillatory behavior in the model f(t) is not as
heavily damped. The fact that the interpolation de-
scription also allows for diffusive motions is more
apparent in f(&p), which has an appreciable value at
co=0. Since we are using the computer value of D,
the two frequency spectra are constrained to coincide
at the origin. In Fig. 2 we compare the displacement
functions at 94.4 and 85.5'K. For the lower temperature
the constants are coo'=45X10', D=1.88&(10 ', and
70= 2.05X10 ' . The more pronounced discrepancy at
85.5'K suggests that our simple model becomes less
valid as the triple point (83.8'K) is approached.

In the analysis of inelastic neutron-scattering experi-
ments one needs to know the scattering function S,(~,co),
the space-time Fourier transform of the van Hove
self-correlation function G, (r,t). If one assumes that
6, is a Gaussian distribution in r, then S, is completely
determined in terms of f(t) or (r'(t)). Nijboer and
Rahman" have evaluated S, for liquid argon at 85.5'K
in this approximation using computer results for
for (r'(t)). A comparison with model calculations at
~=2 A ' is shown in Fig. 3(a). Since the shape of S,
is not a sensitive criterion, we have also examined the
variation of the width at half-maximum, or~~2, as a
function of ~. The model and computer results are given
in Fig. 3(b). It can be observed that maximum error
in the width occurs in the region x 3 A ', where the
IB. R. A. Nijboer and A. Rahman, Physica 32, 415 (1966).
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Fn. 3. (a) 7rD~'S, (~,~) as a function of co/Da' under Gaussian
approximation (GA): model (solid line), computer experiment
(dashed line). (b) (a~/D~') as a function of z: model+GA
(solid line), computer experiment+GA (dashed line), computer
experiment —non-Gaussian (broken line).

model gives an. underestimate of about 15%. It is
somewhat surprising that in this region the model
result is actually in better agreement with the width of
5, when non-Gaussian corrections have also been in-
cluded. To our knowledge this behavior is fortuitous.

On the basis of the above considerations we may
conclude that the simple interpolation model is con-
sistent with general requirements at short and long
time, and that the essential features of computer ex-
periinents can be reasonably well reproduced. We con-
sider next the application of the model to an analysis of.
neutron-scattering experiments. In the following two
sections we describe the calculation of scattering cross
sections and a detailed comparison with recent measure-
ments on liquid argon.

IV. CALCULATION OF NEUTRON-SCATTERINQ
CROSS SECTION

In an inelastic neutron-scattering experiment the
quantity directly measured is the double differential
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cross section

d'cr kg
ppj C0/2~ —p@2tt2/8~

dQko k;

XL(~)'S(xp)+ ((~')—(~)')S.(~ ~)3 (4 1)

where k; and kj are initial and final neutron wave
numbers, hlr =h(iran —lr;) and har= h(cof —~;) are neutron
momentum and energy gains, and 3f is the mass of
the scattering atom. The scattering lengths (a)' and
(u') are averaged quantities whenever there is a dis-
tribution of isotopes present. Since the coherent- and
incoherent-scattering functions, S(x,e) and S,(x,o&),

will be computed classically, one needs to include the
two exponential factors in Kq. (4.1) to take into account
recoil effects and to preserve the property of detailed
balance. " For calculational purposes it is more con-
venient to consider the intermediate scattering func-
tions, F(z,t) and F, (K,t), de6ned by

OC

S,(~,u) = —dt comtF, (x,t), (4.2)
7P p

S(a,~) = dt coscotF (x,t) . (4 3)

Vg(t) = -', (r'(t)), (4 4b)

n„(t)= (r'"(t))/c„(r'(t))"—1 (4.4c)

c„=1X3X5X X (2n+1)/3", (4.4d)

(r "(t))= r "G,(r t)47rr dr. (4.4e)

The first term in Kq. (4.4a) corresponds to the Gaussian
approximation originally proposed by Vineyard. Our
result for S, shown in Fig. 3(a) was obtained in this
way. The non-Gaussian corrections, characterized by
the n (t), have been studied by Rahman for liquid
argon. ' They have also been computed for dilute gases."
When the n„(t) are expressed in terms of a reduced
time scale which partly takes into account the density

2~ P. Scho6eld, Phys. Rev. Letters 4, 239 (1960); K. S. Singwi
and A. Sjolander, Phys. Rev. 120, 1093 (1960); R. Aamodt,
K. M. Case, M. Rosenbaum, and P. F. Zweifel, ibid. 126, 1165
{1962).

+ R. C. Desai and M. Nelkin, Nucl. Sci. Eng. 24, 142 (1966);
R. C. Desai, J. Chem. Phys. 44, 77 (1966).

These functions are in fact the transform of the van
Hove density-correlation functions G(r, t) and G, (r, t).

A practical representation of F,(~,t) is "
F,(z,t) = e "'&'&'~{1+n2(t)LK py(t)g'/2!

-&-.(»-3-,«)jt:"~.(t»/3!
+Ln4(t) —4n8(t)+6n2(t)]

XI:"vi(t)j'/4' — &, (4 4a)
where

dependence, the dilute-gas results are quantitatively
similar to those found for liquid argon. Moreover, it
was found that the leading correction, ~2nq(t)[~'yq(t)7~,
gives almost all the non-Gaussian effects in S,. Accord-
ingly, we have devised a procedure for evaluating the
time transform in Kqs. (4.2) and (4.3), and this method
is described in the Appendix.

It should be noted that our method of computing
S,(x,&u) preserves the frequency-moment sum rules

Mq = dc' 4& Sq(K&co)

for m~& 4. This is because the non-Gaussian corrections
to frequency moments erst appear~' at m=8 and be-
cause our model (r'(t)) is correct to t4 at short times.

The calculation of the coherent-scattering function
S(x,&o) for liquids is a diKcult and still not satisfactorily
resolved problem. A number of phenomenological
approaches have been suggested whereby F(x,t) is
expressed in terms of F, (~,t) and the equilibrium pair
distribution function g(r). Suppose one writes

F(K,t) =F (K,t)+r(~)F,(~,t'(t)), (4.6)

where F(~) is the Fourier transform of NLg(r) —1), e
being the number density. The convolution approxima-
tion corresponds to setting t'(t)=t." For the DCA,
Rahman' has suggested the empirical relation

t'=t —rL1 —exp( —t/r) —(t/7) exp( —t/r )], (4.7)

with r = 10 "sec for liquid argon at 94.4'K. If one uses
instead the expression

F(K t) =P+r(~)] exp{—K'y, (t)/L1+F(~) j), (4.8)

one obtains the KMA '4"
The contents of these various prescriptions can be at

least partly discussed in terms of frequency-moment
sum rules. 24 It is well known that the convolution
approximation fails to satisfy the second moment, and
therefore does not predict the deGennes narrowing
effect." Since the sum rules are essentially the co-
eKcients of time expansion of F(~,t), the requirement
that co' be preserved is equivalent to the statement that
P~=Ii —F, should not contain a term proportional to
P in the expansion. This condition is satis6ed by EMA
without introducing any additional quantity besides
F(z) and (r'(t)). Another interpretation of this condi-
tion is that the initial damping of Ii~ should be slower
than that of F„consequently, in DCA a delay is
introduced through Kq. (4.7), where r is the delay
time. With either EMA or DCA, co is not given cor-
rectly, ' but in the latter approximation 7- may be

'3 P. Scho6eld, in Inelastic Scatterin of Neutrons in Solids and
Liquids (International Atomic Energy Agency, Vienna, 1961},
p.39.

'4 R. C. Desai and S. Yip, Phys. Letters 25A, 211 (1967),
2~ P. G. deGennes, Physica 25, 825 (1959).
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FIG. 4. Neutron-scattering cross section, J(t(,',~y) in units of 2.2&(10 40 cm~/(sr sec ' atom) as a function of d p= (coy —co;)/271, in
units of 10"sec ', for liquid argon at 94.4'K: bar-circle, experiment; solid line, model +DCA(r = 10 "sec); dashed line, model+EMA;
o, Model +DCA(g=2)&10 '~ sec) j Q, computer experiment +DCA(~=10 "sec). (a} ~=1.2A ', (b) ~=1.6A ', (c) a=2.0A ~,

(d) a=2.4 A ', (e) x=2.8 A ', (f) ~=3.2 A '. Effects of non-Gaussian corrections and incident spectrum have been included in all
the theoretical cross sections.

appropriately chosen to give a reasonable 6t to the
exact result. This procedure leads to a value of r twice
as large as that suggested by Rahman. Moreover, if r
is""allowed to vary with ~, then one can even satisfy co4

exactly.
The spectra of inelastically scattered neutrons from

liquid argon at 94.5'K have been extensively measured
by Skold and Larsson. "In comparing theoretical results
with experiment we 6rst compute F(~,t) from E,(z, t)
using DCA or EMA. Then following the method de-
scribed in the Appendix we evaluate S,(~,a&) and S(~,a&),

and these are inserted into Kq. (4.1) to give the double

IK. Skold and K. E. Larsson, Phys. Rev. 161, 102 (1967}.

differential cross section. For scattering lengths we
use (a')=5.57X10 "cm' and (u)'/(e')=0. 675, and we
take measured'~ values of I"(~) for liquid argon at 84'K
ignoring a slight temperature correction. The cross
section is then averaged over the experimental incident
spectrum (taken from Skold)'4" which has its mean at
co;= 7.38&(10~ sec '. The cross sections thus computed
are denoted. as J(a,~t) and these are the quantities
which are compared with measurements in Sec. V. It
should be emphasized that the present procedure gives
absolute cross sections and requires no normalization
of any kind.

~7 D. G. Henshavr, Phys. Rev. 105, 976 {1957).
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FIG. 5. J(a,coy) as a function of a. All symbols and units are the same as in Fig. 4. (a) Av=0, (b) b,v=0.25,
(c) dv=0. 50, (d) bv=0. 75, (e) hv=1.00, (f) dv=1.25.

V. COMPARISON WITH NEUTRON-SCATTERING
EXPERIMENT

The neutron-scattering cross sections of liquid argon
measured by Skold and Larsson extend over a consider-
able range of momentum and energy transfers. To fully
analyze these data we consider the variations of the
cross section with both fi: and co. In Figs. 4 and 5 the
measured and computed spectra are compared. We have
used the displacement function (r'(t)) obtained from
computer calculations as well as that derived from the

interpolation model. The computed cross sections in-

clude results based on these (r'(t)) in conjunction with

DCA (r= 10 ").In addition, we also show the effects
of KMA and DCA (r=2&&10 ") using the model

(r'(t) ). In all the calculations displayed in Figs. 4 and 5,
non-Gaussian corrections have been taken into account.
The variation of the width of J(~,cot) at half-maximum
is of interest because of the narrowing behavior first
predicted by deGennes. The theoretical and experi-
mental widths are shown in Fig. 6.
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On an over-all basis the calculated cross sections
using either computer or model (r'(t)) are in reasonable
agreement with experiment. In some instances Lsee
Fig. 5(e)] the agreement between measurement and
results obtained with computer (r'(t)) and DCA is
remarkable. At small and intermediate values of energy
transfer and in the region of the first diffraction maxi-
mum (» 2 A '), EMA results are in better agreement
than DCA with either 7. Beyond z 2.3 A ', DCA
(v=10 ") appears to give better results. It is known"
that DCA (v = 10 ") reproduces the inelastic structure
found by Chen et a/. 28 quite well, whereas EMA seems
to give a less pronounced structure. As seen from Fig.
4(a), this structure is also very sensitive to the value of
v. in DCA. It is interesting to note that the computed
spectra in Fig. 5 always intersect at ~~1.8 A ' and
a~2.3 A ', these are also the values where the fourth
frequency moments, ~4, intersect. '4 In fact, the superior-
ity of EMA over DCA (v=10 ") in the region 1.8~&~

&~2.3 is consistent with the fourth-moment behavior;
however, the striking improvement in ro4 when
~=2X10 " is not evident in the cross sections. The
most serious disagreement between DCA calculations
and experiment occurs around ~ 2 A '. Here and at

1.2 A ' the results are sensitive to a variation in
v. , otherwise the cross sections as well as the half-width
shown in Fig. 6 apparently do not change significantly
with v.

We have not explicitly indicated the magnitude of
the non-Gaussian corrections. Generally speaking, these
are appreciable only in the quasi-elastic region, and
even here the qualitative behavior of the cross section
is not aGected. The contribution of the non-Gaussian
terms at K= 2 A ' was 10% at co=0 and 1% at a&=3.1
X j.0"sec '. At larger or the contribution was noticeable
only at large a, which are beyond the experimental
range.

VI. DISCUSSION

In this paper we have presented a detailed analysis
of inelastic neutron-scattering measurements on liquid
argon. The calculations, which include incoherent and
coherent contributions, divide naturally into two dis-
tinct parts. The main problem in incoherent scattering
is the determination of the velocity autocorrelation
function P(t) of an atom in the liquid. For this purpose
we have proposed a simple interpolation model which
is consistent with general requirements and has no
free parameters. In the case of liquid argon at 85.5 and
94.5'K the model has been subjected to a thorough
test by comparison with computer molecular-dynamics
calculations.

The interpolation model is derived from a rigorous
correlation-function formalism and follows directly
from a single approximation. The assumption of a

"S.H. Chen, O. J. Eder, P. A. Egelsta8, B. C. G. Haywood,
and F. J. Webb, Phys. Letters 19, 269 (1965).
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FIG. 6. Full width at half-maximum Ace of J(a,coy) as a function of
sc. All symbols and units are the same as in Fig. 4.

~ J. C. Maxwell, Phil. Trans. 157, 49 (1867); P. Drude, Ann.
Phys. 1, 56 (1900); 3, 369 (1900).

'0K. S. Singwi and M. P. Tosi, Phys. Rev. 157, 153 (1967).

single relaxation process is hardly new; in di6'erent
context it was probably first discussed by Maxwell and
Drude. » More recently, Berne, Boon, and Rice have
investigated a memory-function approach to correla-
tion functions. They obtained essentially the same
results as our P(/) and f(cu) by assuming an ex-
ponentially decaying (in time) memory function.
Similar calculations also have been reported by Singwi
and Tosi' using a Gaussian memory. When the param-
eters are determined in the same way as in Sec. III,
the Gaussian assumption gives qualitatively the same

type of results as shown in Fig. 1. However, it has the
advantage that it gives finite sum rules whereas with
the exponential memory one knows that Kq. (2.12)
and all high-order frequency moments diverge. It is of
interest to point out that if an exponential or Gaussian
form for X"(co) is assumed, Kqs. (2.11) and (2.12)
can be used to determine the two parameters and one
then obtains a "calculation" of D. of course, one may
employ a three-parameter description to accomodate
the two sum rules and preserve the correct value
of D.

The advantage of the simple interpolation model is
that it leads to analytical expressions for P(t), f(~),
and (r'(/)). While these functions have the same basic
behavior as the computer results, the extent to which
the model is useful depends largely on the intended
application. For the purpose of analyzing neutron-
scattering spectra, our results indicate that close agree-
rnent in P(/) or even (r'(t) ) between model and computer
results may be too stringent a requirement since they
are not directly observable. Fig. 3(b) shows that the
width at half-maximum of S, calculated from the model
has a maximum error of about 15%.This deviation will
be further reduced in an actual experiment when broad-
ening due to incident-spectrum and instrument-
resolution effects is considered. Calculations are pres-
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ently underway to apply the model to neutron spectra"
of liquid argon containing hydrogen as an impurity.
In this case, the scattering is dominated by the hydrogen
and is therefore mainly incoherent.

The present computation of the coherent-scattering
function, S(x,ra), is based on two empirical prescrip-
tions, DCA and KMA. Both approximations may be
viewed as modiications of the convolution approxima-
tion, but numerically they could give quite diferent
results. As can be observed from the detailed com-
parisons shown in Figs. 4 and 5, KMA is clearly superior
around x 2 A ', whereas DCA (r=10 ") gives slightly
better results at larger ~. Deviations between experi-
ment and J'(x,&ar) obtained with computer (r'(t)) and
DCA are most pronounced around ~ 2. These are
almost certainly due to the use of DCA, and one should
expect improved agreement had KMA been used. In
fact, the failure of DCA around the diffraction maximum
raises serious questions regarding its value as a general
calculational procedure. On the other hand, the
simplicity of KMA and the fact that it gives reasonable
results over practically the entire range of (x,co) con-
sidered appear to make this a more attractive procedure
for future calculations.

As a Gnal remark we note that a direct study of
G(r, t) is needed for a more fundamental understanding
of coherent neutron scattering or detailed explanation
of computer results on correlation functions. The
formalism discussed in Sec. II, which provided a con-
venient basis for formulating an interpolation descrip-
tion of single-particle motions, should be equally well
suited for this problem. Other approaches to compute
G(r, /) have been used, "but no conclusive results have
been obtained.
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APPENDIX

In this Appendix we summarize the procedure which
is followed in performing the cosine transforms of
Eqs. (4.2) and (4.3). Let us denote, for brevity, the
series in Eq. (4.4) by

F,(~,/) =e "&'&'&(1+Ay As+A4 —~ ~ ~ ). —(A1)

"O. J. Eder, S. H. Chen and P. A. Egelsta8, Proc. Phys.
Soc. (London) 89, 833 (1966).

83 P. A. Egelstaff, Brit. J. Appl. Phys. 16, 1219 (1965); J. H.
Ferziger and D. L. Feinstein, Phys. Rev. 158, 97 (1967); R. K.
Osborn and A. Z. Akcasu (unpublished); M. Nelkin and S. Ran-
ganathan, Phys. Rev. 154, 222 (1967).

First we approximate

F,(x,t) =e "' &'&(1+A2—A3+-'A4) (A2)

since a (t) are known only for v= 2, 3, and 4. Next we
formally rewrite Eq. (4.2) as

N 00

mSg(x)a&) =Q Ig(K)M)+ d/cosco/Fg(K)$), (A3)

where

I~(K,co) =
(L—1)H

Ch coscotF, (x,t) .

The numerical procedure consists in fitting F,(x,t) to a
function {exp[—(ag+b~/)])(A~+8~/) in each interval
(l—1)H ~& / &~/H and it is assumed that e~, bg, A ~, and B~
are constants within the interval. Then

F,(e,t) (a& since/ —b~ cosco/)
I)(x,~) =

~2+b 2

[(co' bP) co—scA+2cobg sinter/]
+P)g (rrl+blt)

(~2~b 2) 2

Note that
(a(+b(t) =x'y~(t),

b =x'[v (/H) —v (H(/ —1))]/»

t=(l—1)H

(AS)

(A6)

(A7)

8(——H—'([1+A 2(lII) —
A 8(/H)+-,'A 4(lH)]

—[1+A,((/ —1)H) —A, ((/ —1)H)
+lA. ((/ —1)H)]) . (Ag)

"R.C. Desai, Ph.D. thesis, Cornell University, 1966 (unpub-
lished).

34 M. Nelkin and A. Ghatak, Phys. Rev. 135, A4 (1964).

In order to elucidate the chosen form of integrand in
each subinterval (l—1)H&~/&~/H, and to evaluate the
in6nity correction given by the integral from EH to ~
in Eq. (4.6) we note that for large t, (i) y~(t) increases
linearly with t, and (ii) the terms A2 and AI of Eq.
(4.S) are linear functions of time for dilute gases. "
If we assume that for EH&~t&~ ~, a~, bg, A~, and 8~
are constants and are same as those found in the interval
(N 1)H&~t&~NH, w—e get the value of infinity correc-
tion as just the negative of the brack. eted expression in
Eq. (4.7) evaluated at t=NH. In all the numerical
work. , t was measured in units of 10 " sec, u in units
of 10 ' sec ', ~ in units of A ', and 7 in units of A'; E
was taken to be 400 and II was chosen to be 0.05. The
above procedure was check.ed for the single relaxation
model of Nelkin and Ghatak. '4 For this model, S,(e,co)

is analytically known. Agreement between the numerical
and analytical answers was found to be very satisf actory.


