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A low-energy theorem for the scattering of gravitons from spin-0 particles is derived. We use the
dispersion-theoretic method, recently utilized by Abarbanel and Goldberger to derive low-energy theorems
for the Compton scattering of photons, to write unsubtracted dispersion relations for physical helicity
amplitudes. The scattering amplitude at fixed angle is shown to be given by the Born approximation up to
fourth-order terms in the graviton energy.

I. INTRODUCTION

~

~ ~

CLASSIC result of quantum-Geld theory is the
derivation of low-energy theorems for Compton

scattering by Low' and by Gell-Mann and Goldberger. 2

To prove these theorems, tacit assumptions about the
commutation relations of Geld and current operators
were made, but the main ingredient in the proofs was
gauge invariance. It should therefore be possible to
derive similar theorems for graviton scattering where
one also has invariance under gauge transformations,
and where charge conservation is replaced by energy-
momentum conservation,

The amplitude for the process, matter state a+
graviton — matter state b is given by A (b~T„„~a)
e„„(k,X), where T„„ is the energy-momentum tensor of
the matter system and e„„(k,X) is the polarization tensor
of the graviton, whose momentum is k. Gravitons are
spin-2 massless particles, and this implies that e„„be
symmetric, traceless, and orthogonal to t|„. Further,
invariance under gauge transformations' 4 allows us to
write e„„=e„e„where e„k„=o, e„~&=0, and to require
that A be invariant under a change of gauge:

epey + epey+ X (kyey+. eplilv) ~

This means that k„(b~ T„„~a)=0.' One can then, as in
the derivation of Low, ' evaluate the matrix elements of
the 4-rnornentum density (b

~
Te„~ a). However, there is

one complication which prevents a straightforward
derivation, i.e., the nonvanishing of the commutators
)T„„,T„„j.In the case of Compton scattering, the
presence of a Schwinger term in [Js,Jrcj is inessential,
in that it merely serves to cancel the seagull term. '
However, here the cornmutators are nontrivial and will

~ Junior Fellow, Society of Fellows.' F. E. Low, Phys. Rev. 96, 1428 (1954).
'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433

(1954).' S. Weinberg, Phys. Rev. 134, B882 (1964);135, B1049 (1965);
138, B988 (1965).

4 R. P. Feynrnan, Acta Phys. Polon. 24, 697 (1963).' S. G. Brown, Phys. Rev. 158, 1444 (1967}.
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serve to represent the contribution of the graviton-
exchange pole. Such a pole must be present because
gravitons interact with themselves as well as with
matter, i.e., they couple to the total energy-momentum
tensor, including the gravitational part.

Recently, an elegant derivation of the low-energy
theorem for Compton scattering has been given by
Abarbanel and Goldberger. ' They work with physical
helicity amplitudes, gauge invariance appearing only
insofar as the photon has two helicity states. Utilizing
the existence of kinematical zeros and assuming reason-
able high-energy behavior, they deGne new amplitudes
which satisfy unsubtracted dispersion relations. From
these one derives that, at Gxed scattering angle, the
Born term is exact to second order in the photon energy.
It is this method that we shall apply to graviton
scattering. Only one new feature is present —the pole
in the t channel due to graviton exchange, which necessi-
tates a somewhat more involved argument. The result
we obtain is that the low-energy scattering amplitude
as a function of the graviton energy, at Gxed scattering
angle, is determined by the mass of the scalar particle
up to fourth-order terms in the graviton energy, and to
this order the Born approximation is exact.

In Sec. II, we discuss the kinematics and the deriva-
tion of the Born term. The low-energy theorem is
derived in Sec. III, and the results are summarized and
discussed in Sec. IV.

II. KINEMATICS AND THE BORN TERM

The kinematics, crossing relations, and position of
kinematical singularities of the scattering amplitude for
gravitons are identical to those of photons, except, of
course, that the graviton helicity is ~2. Therefore most
of the kinematics is identical to that given in Ref. 6, and
we shall use their notation.

The elastic scattering of a graviton by a scalar particle

' H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. (to be
published).
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Pro. 1.Diagram representing
the elastic scattering of a
graviton by a scalar particle.

tensors (except for the metric tensor) by using the
Minkowski metric. Thus for any tensor (except g„„)we
have by deGnition p&""'=q& g"p. ~ ~ T' p... .

The quantization procedure we adopt, following
Gupta and Feynman, is to set

pi (p2) and ki (k2) are the 4-momenta of the initial
(final) massive particle and graviton, respectively, and
)1 (V) is the initial (final) helicity of the graviton. See
Fig. 1. The square of the center-of-mass (c.m. ) energy
is s=(pi+hi), the momentum transfer squared is
t= (pi —p2)', and u= 2m' —t—s. We also defined g, to be
the c.m. scattering angle and E(p) to be the c.m. energy
(momentum) of the massive particle. Useful relations
are

p= (s ms)—/2+s v
E= (s+m2)/2+s, (2)

cos28g =1 $(s—m')'+st7'I' (m' su)'I2—

(S—m') (S ms)—
sin-', (),= (—t/4p')'" = (—ts)'"/(s —m'),

—t(t 4ms) sin'8, —=4(m4 —su),

(3b)

(3c)

where 8& is the t-channel c.m. scattering angle.
The Born approximation to the process under

consideration has been discussed by Feynman, 4 using a
quantization procedure for the gravitational Geld Grst
developed by Gupta. ~ Although the amplitude has
appeared in the literature, "we believe it instructive to
give a derivation here.

The general relativity Lagrangian density describing
the interaction of matter with gravity may be taken to
be a sum of a Geld Lagrangian I I and a matter Lagran-
gian L~. These are

L,= dsx(asr+Z p) (4)

Here we have used q to describe a spinless matter Geld
of mass m. E. is the Riemann curvature scalar, and g„„
is the covariant metric tensor of the Riemannian space,
with g being det{g„„}.We shall also use the Minkowski
metric tensor

of mass nz is described by the helicity amplitude

(22r)48(ps+ ks—pi —k 1)
Sv) =&1 ),+2 Ai. ), (s,t) . (1)

(16plsp20klsk20)

Zsr' 2(q &q
——„— m'p—2)

v

Zsr'= —
—2,)h&"—-'1i&"h 70v q + 'm h 292-

s242 ,'(th»h "———-'-hv"h —-'qv"hr h + 'qa"h' h-70,0

+ '4mths"h„„--'ha h" 7—02'.

)In offering the expansion of Lp, we did not expand
Eg(—g), but an expression which differs from Rg(—g)
by a total divergence and which contains no derivations
of g„„higher than the first. 7

In addition to the Euler-Lagrange equations which
give the Einstein equations, we also impose on the Geld
h&" a subsidiary condition of the form4 ~

hPp ——gPh;p ——0,
introducing the notation

gap —jap & ~aphr

The free-field equations, which follow from the free
Lagrangian, are

8"8 A P=O

APp ——0

(r)&r)„+m2) q =0
(10)

Evidently, the fields which are to be quantized and
expanded (in the interaction picture) in creation and
annihilation operations are h p and y.

The 5 matrix is then given by the Feynmann-Dyson
expression

S=T exp i Z;„,(2:)dh

g"=~u.+Eh"
and expand (4) in powers of E. Terms independent of
E then represent the free Lagrangian, while terms
proportional to E, K', etc., represent the interaction
Lagrangian. YVe therefore have

2p= 220+El p'+E'Res+
&sr =~sr'+E&24'+E2&242+ . .

2 p0 —— 4[2k"—,vh—„v 2h, ,),h—P",p hp, „h P—"+h "hPp, ,7,
'$(hv"——-,'gv"h —.)q—Pr)»+rjv"h""qPv+2)v"rt "h»7

X [2hv1, phvp, a 2hlvv, aha, p hp&, shap, v+hpp, shay, v7 ~

ypv —g" ~ goo=ggg= 1 ~ 't/IIt, y=0p p, Q V.
The term proportional to E,which is of interest to us, is

We shall eeMr make use of contravariant quantities,
except for g&", which is the inverse of g„„,i.e., +gp„= 5„~.
However, we shall on occasion raise indices of covariant

' S.N. Gupta, Proc. Phys. Soc. (London) A65, 161 (1952); A6S,
608 (1952); Phys. Rev. 96, 1683 (1954).

S'=iE' d4x(: Z p2 +:231'.) pE. 2T d4xd4y—
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The terms involving I.~' and I p'(x)I.s'(y) do not
contribute to graviton scattering. Hence the matrix
element of interest is given by

(pkX i
5'i psksX') = by, ,+A,+A s+A „(13)

k„) ksl)l k»)t

Ps
(0)

Ps

kz, X

Pe

A '~= SmrGm4t/(S m') (—44 m'), — —(1S)

where E'=16mG, G is Newton's constant, and h and c
have been set equal to one throughout. The magnitude

SThe polarization vector @ is chosen, as for photons to be
4~4(K) =0, s~(K)

=as(Ecosoc+@

—%sine), where K= )K[(cosine
+4 cosa) is the 3-lnornentnnl of the gravitonl

where the states are normalized according to (I' ~I'p)
= (21r)'5(P —Ps). The three terms on the right side of
(13) correspond to the three different types of diagrams
represented by Figs. 2(a), 2(b), and 2(c), respectively.

Figure 2(c) exhibits the t pole which is a unique
feature of gravitation theory. It arises from the three-
graviton interaction given by I.~' and corresponds to a
long-range gravitational force between matter and
gravitational radiation. Figure 2(a) is a "seagull" term,
familiar from photon-meson theory.

The usual Wick contraction procedure may now be
applied to evaluate (13). A straightforward but ex-
ceedingly tedious exercise yields for the individual
contributions of the separate graphs to the amplitude

Ac 2E [(41'pl)(42 'p2)(el'es )
+ (el ' p2) (42 ' pl) (el ' 42 )

+s(el es*)'(m' —pl ps) j (14)

As= —(&'/pl kl)(pl 41)'(ps's*)'
+(1~'/p'k. )(p'"*) (p' ), (»)

Ag=E [(ele2 ) (kl. 'k2+(pl'kl)(pl k2)/kl'k1)
(el' e2 )((pl'kl/k2'kl)[(el 'k2) (42 'pl)

+ (el'ps) (42 ' kl)]+ (pl' k2/kl' k2)[(el ' pl) (42 ' kl)

+(el ks)(es* ps)j+(el ks)(es* kl)

+ (el'ps) (es ' pl)+ (el 'pl)(es ' p2))
+(1/kl ks)[(el Ps)(el ks)(es*P1)(es* kl)
+ (el'pl)(el'ks) (es ' ps) (cs 'kl)
+ (el ' k2) (42 ' p2) (e2 ' pl)

+(el'pl)(el'ps)(&2 'kl) j] (16)

We have described the initial polarization X by ej&e&",

and the final polarization X' by e&&'*&2"'*.The individual
terms are not gauge-invariant, though their sum is.
Indeed, the fact that the sum turns out to be invariant
under gauge transformations (which, in the present
context, take the form that the amplitude vanishes
when el&el" is replaced by k,&e,"+k,"&,I') is a very strong
test, which reassures one that no algebraic errors have
entered into this calculation.

We now evaluate the separate c.m. helicity ampli-
tudes A'++ and A'+ '.

A '++ = —81rG(m4 —sl)'/(s —m') (I—m') t, (17)

of G in our units is 1.2)& 10 "m, ', where m is the pion
mass.

III. DERIVATION OF THE LOW-ENERGY
THEOREM

The Abarbanel-Goldberger method of deriving the
low-energy theorem' consists of first locating the
kinematical zeros of the helicity amplitudes. These are
a simple consequence of angular momentum conserva-
tion, which forces the helicity-flip (non-helicity-Rip)
amplitude to vanish in the forward (backward) direc-
tion. There are two independent s-channel c.m. helicity
amplitudes: A's ~s——A'+~ (A' ~ is related by parity:
A' ~——A'+~), which are expanded in partial waves:

A'1.
&, (s,t) =p (2J+1)A' sl.

&, (s)d~ll. (8,) . (19)

Since the rotation matrices d~ll (8,) are equal to
(sin-', 8,)~"' "~(cos-,'8, )~l'+"~ times a Jacobi polynomial in
cos8„9 we would expect

A *+~ cos4(1s8,)= 14 (1+cos8,)s as cos8, —& —1, (20)

A '+ sin'(-', 8,)= -', (1—cos8,)' as cos8, —+ +1. (21)

However, we have to consider the effect of the graviton-
exchange pole at 1=0, i.e., in the forward direction. In
fact, because of the presence of this pole, the above
partial-wave expansion does not really exist. We can,
however, imagine that the graviton has a small mass p,
go through the above argument, and let p, go to zero.
This is justi6ed since the forward pole is dynamical and
arises from the divergence of the partial-wave expan-
sion, whereas the kinematical zeros appear in each term
of the series. For positive y the above kinematical zeros
will be present, and as we let p —+ 0, the pole in A'+~ at
cos8, =1+p'/2p' will approach the forward direction.
Therefore the correct behavior of the helicity ampli-
tudes is

A'++ cos4(-', 8,)= 4(1+cos8,)' as cos8, —+ —1,
A'+ sins(ls8, )= ls(1—cos8,) as cos8, ~+1. (22)

It is reassuring that the Born terms, derived previously,
exhibit exactly this behavior.

The independent c.m. helicity amplitudes in the
t channel [scalar+ scalar ~ graviton (helicity v)+ gravi-
ton (helicity 1')j, A'ss, s+s ——A'++ (A' +——A'++), satisfy

A'„,.=P (21+1)A"...(i)ds, „(8,),J
(23)

4 Q. I„g@ng, Phys. Rev, 142, 1187 (1966).

Fzo. 2. The Feynman diagrams that contribute to the Born term.
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It follows that A'+, for fixed cos8„ is given by the Born
approximation up to terms of order p', since t= —2p'
X (1—cos8,). This is strange because we found that the
helicity-non-flip amplitude was given by the Born term
up to terms of order p4, and we would expect the same
for the helicity-flip amplitude. The problem is due to the
graviton-exchange term, which gives rise to a pole at
t=0 and reduces the double kinematical zero of A'+
at 1=0 to a single zero. One could argue that since the
rest of the amplitude, i.e., after subtracting the Born
term, has no pole at t=o, it must vanish like P at t=0.
Then one could divide by t', introducing a pole into the
Born term —whose residue is calculable —and write an
unsubtracted dispersion relation for A'+ jP. We would
then derive

A'~
(S—m2) (u —m2)

P dh' ImA'~(s, t')
+—

t' dl' ImA' (s,N')+-, (37)
„,I'—I (2m2 —S—S24')2

showing that the Born term, for fixed 8„ is exact to
order p4. However, this argument is somewhat circular.
It can be made rigorous by the following line of reason-
ing. We write down the most general form that a gauge-
invariant graviton-scalar scattering amplitude can take
and prove that, if there are no singularities at threshold,
the helicity-flip amplitude vanishes, for fixed scattering
angle, like p'. Since the second term in (36) satisfies
these requirements (no poles at threshold and no cuts
to lowest order in G), it vanishes like p4. Therefore (37)
is true, together with a superconvergence relation which
we shall give below.

It is easy to write the general gauge-invariant
form of the graviton-scalar scattering amplitude
A = e~ "e~*&'"'A„,„, if one remembers that e~ "=e~ c~",
where &&& is essentially a photon-polarization 4-vector.
One simply takes bilinear combinations of the two inde-
pendent gauge-invariant tensors that one can form for
photon-scalar scattering. These are g„„(k'k') —k„'k„2 and

P„P,(kl k2) PK(P„k„2+P„k—„'+g„„(P.K)2),
where P= —', (pl+ p2), K= 2 (kl+k2). One additional
requirement, which reduces the number of independent
invariant amplitudes to two, is that A„„„,be traceless
A»,„,=A„,,„„=O.The most general amplitude can
then be written as

A =F(S,t)[(41 &2*)(kl k2) —(41 k2)(42* k,)]2
+G(s)&)[(el P)(42* P)(kl k2)

(41'k2) (62 'P) (P'E) —(41'P) (42 'kl) (P 'K)
+ (41' 42 )(P 'E) ][(41'P) (22 'P) (kl ' k2)

(41'k2) (42 'P) (P 'E) (41'P) (42 'kl) (P 'K)
+ (&1 &2 ) (P 'K) (&1' &2 ) (kl' k2)P

+(41 k2)(42* kl)P'j. (38}

It is now trivial, but lengthy, to evaluate the c.m.
helicity-flip amplitude in terms of the scalar amplitudes
Ii and G. We find

= 14PF(S,()—[P(4212'—t)2/256)G(S, &). (39)

Therefore, since Ii and 6 have only dynamical singu-
larities, once we have removed the Born term (in a
gauge-invariant fashion), A '+ must vanish like P in the
forward direction, and for fixed 8„ it must vanish like
p' at threshold. We have thus shown that (37) holds
for A'+, and that therefore, for both helicity ampli-
tudes, the Born term is, at fixed H„exact up to terms of
order p4.

Let us examine whether superconvergence relations
follow from (31). We expect that A'++ s2, as s~ ~
for fixed t. The Born term has this behavior, and the
integral in (31) also goes like s2 because of the crossing
properties of A'++, Since we expect that A'+ t &'& for
t —+ ~ and for s(2142,n(s)&1 (since we have excluded
the possibility of Pomeranchuk exchange), one relation
will follow by setting to zero the coeKcients of t' in an
asymptotic expansion of (37) for large t. We derive

ImA'~(s, N') =0. (40)
„, (2m2 —s—I')'

There is, of course, little possibility of checking this
relation, certainly not experimentally, while theoret-
ically we cannot saturate the integrals with resonances,
since we know little about the coupling of gravitons to
particles of different mass.

IV. DISCUSSION AND SUMMARY

We have shown that the discussion of the low-energy
limit of graviton scattering follows closely that of
photon scattering. The graviton pole did not afford any
undue complication. There are two aspects of the
present result which may be contrasted with the low-
energy Compton-scattering result. First, for graviton
scattering the Born term is exact, at fixed angle, to
order p4, as opposed to p for Compton scattering. This
energy behavior was seen to follow from the fact that
the graviton spin is 2, and therefore the kinematical
zeros of the amplitude spin are raised to twice the power
of the kinematical zeros of a spin-1 amplitude. One
couM conjecture that the Born amplitude for the
scattering of a massless spin-s particle is exact at fixed
angles to terms of order p". However, arguments exist
to the effect that such particles cannot interact in a
Lorentz-invariant fashion at zero energy. '

The second part that we wish to call attention to is
that the low-energy theorem we have derived is deter-
mined solely by the mass of the scalar scatterer. The
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general form for the graviton-scalar vertex is

G~'(»—u2).

G(Pll 2'"(*)
I
Ps&=-

2(4PloPa)'"

&& [Fl(q') (F.F.+q'n" —q.q.)

+F (q')(q'~" —M )j;
pl+ ps I q pl ps ~ (41)

This form follows from Lorentz and gauge invariance.
From the properties of the energy spectrum, Fl(0) is
determined by the mass of the particle and in the above
form is one.

In the Born approximation, Fl(q') = 1 and Fs(q') =0.
We might expect that Fs(0) would appear in the ampli-
tude, expanded through order p'. The surprising fact is
that it does not enter into this order.

The interaction of a graviton with spin- —, particles
involves a vertex with three form factors. We expect
that a low-energy theorem can be derived as above, and
to order p4 will involve two of these form factors (at
zero argument).

In conclusion, we discuss the unpolarized differential
cross section, which in our notation is

The above expression exhibits a pole in the forward
direction, familiar in Rutherford scattering and re-
Qecting the graviton-exchange pole. In Rutherford
scattering, this pole is not physically interesting, since
there is always some screening effect to remove the
in6nite tail of the Coulomb potential. Since gravitation
cannot be screened, the present pole must be eliminated
in a different fashion. Evidently, the usual description
of a scattering event in terms of asymptotic waves
which extend to inanity is not a good approximation for
the description of gravitational interactions near the
forward direction. To calculate the forward cross sec-
tion, one must therefore account for the 6nite extent of
the initial wave packet of the graviton.

We conclude with a word about the assumption of
unsubtracted dispersion relations for the kinematic-
singularity-free helicity amplitudes. The usuaP' de-
rivations of low-energy theorems seem independent of
the high-energy behavior of the amplitude. Subtrac-
tions, however, do not necessarily invalidate our
derivation. Suppose that 2++, for example, behaves like

g F~(t)s~+O(1/s'+') as s -+ ae, with e)0.
tn=o

The zero-energy limit is then

da 1+6cos'8, +cos48,—= ~~Q2m2

dQ (1—cos8,)'

«/dil= (1/64x'~)[[&'y+['+ [&*/ ['j.

(42)

Then, as long as the F (t) are nonsingular at threshold,
for 6xed 2,'„ the above derivation of the low-energy theo-
rem can still be carried out. One can therefore speculate
that the tacit assumptions made in the conventional de-
rivations of low-energy theorems are such that possible
subtractions must be of the above form.

Since 6'm '=10 "barn, the process under considera-
tion is significant only when the graviton scatters off a
heavy planet,

'~The exp1icit form of the Born approximation to graviton
scattering oii scalar and spin-$ targets appears in a paper by
A. Chester, Phys. Rev. 143, 1275 (1966).


