
P 8 YS I CAL R EV I EW VOLUM E 166, NUM HER 5 25 FEBRUARY 1968

Gravitational Radiation in the Limit of High Frequency.
II. Nonlinear TessrIs and the Effective Stress Tensor*

RICHARD A. ISAACSONt

Departmelt of Physics arsd Astrortorrty, Umsserssty of Maryland, College Park, Maryland
(Received 14 July 1967)

The high-frequency expansion of a vacuum gravitational Geld in powers of its small wavelength is con-
tinued. %'e go beyond the previously discussed linearization of the Geld equations to consider the lowest-
order nonlinearities. These are shown to provide a natural, gauge-invariant, averaged stress tensor for the
dFective energy localized in the high-frequency gravitational waves. Under the assumption of the WKS
form for the Geld, this stress tensor is found to have the same algebraic structure as that for an electromag-
netic null Geld. A Poynting vector is used to investigate the flow of energy and momentum by gravitational
waves, and it is seen that high-frequency waves propagate along null hypersurfaces and are not back-
scattered by the lowest-order nonlinearities. Expressions for the total energy and momentum carried by the
field to flat null infinity are given in terms of coordinate-independent hypersurface integrals valid within
regions of high Geld strength. The formalism is applied to the case of spherical gravitational waves where a
news function is obtained and where the source is found to lose exactly the energy and momentum con-
tained in the radiation Geld. Second-order terms in the metric are found to be Gnite and free of divergences of
the (1 rn)/r variety.

1. INTRODUCTION

HE principle of equivalence tells us that it is
possible to transform away any uniform gravita-

tional Gelds by simply changing coordinates, but is this
to hold for gravitational waves as wells The energy and
momentum carried by an electromagnetic GeM is
measured by its stress tensor, but a gravitational field
is usually described by a pseudotensor which can be
locally annihilated by a suitable coordinate transforma-
tion. While the pseudotensor is satisfactory enough for
calculating the total energy or momentum of an isolated
system, there is no way of localizing their distribution
if we keep using it.

In a preceding paper (denoted as I),' we showed how
the assumption that the gravitational field is of high
frequency led to a gauge-invariant approximation
procedure to first order. When this was combined with
the assumption of a WEB form A„„e'&for the wave, we
found that the gravitational Geld was remarkably
similar to the electromagnetic Geld in the behavior of
its amplitude, frequency, and polarization. In the
present paper, we extend the results of the linear
approximation to incorporate some of the essential
nonlinear features of the Einstein equations, and in so
doing further extend the analogy between light and
gravitation. We shall Gnd that in the high-frequency
limit, the gravitational field has a natural gauge-
invariant stress tensor. Since we now have a true
tensor, it cannot be made to vanish by a simple co-
ordinate transformation. Lik.e the Maxwell stress
tensor, the effective stress tensor for gravitational waves
involves only first derivatives of the Geld, allows us to
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introduce a Poynting vector to describe the Qow of
energy and momentum, and acts as a source generating
curvature of space-time.

While the hypothesis of high frequency (i.e., the
wavelength is much smaller than the radius of curvature
of the background geometry) will be used throughout
this paper, we will sometimes combine it with either or
both of two additional and logically independent
assumptions. The first of these is to assume the WEB
form for the radiation 6eld (see I for elaboration). The
second of our working tools will be an averaging
procedure whereby the Gne detail of some property of
gravitational waves is replaced by its space-time
average over a region containing many wavelengths.
This method is familiar from electromagnetism or
statistical mechanics, and we will call it the "SH
assumption" after Srill and Hartle, ' who applied this
technique to the analysis of gravitational geons. When
either of these two assumptions is used to derive im-
portant results, we will indicate it in the resultant
formula by placing the 1etters WKS or BH after the
appropriate equations.

h=—y t'h
p ——0. (2.1c)

These equations determine the gravitational wave h„„
once the background geometry p„„is given. The second-

s D. R. Brill and J. B.Hartle, Phys. Rev. 135, B271 (1964).
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2. EFFECTIVE STRESS TENSOR FOR
GRAVITATIONAL RADIATION

In I, we expanded the vacuum Geld equations in
powers of the wavelength of the gravitational wave. To
lowest order, the Geld equations become E„„&'~=0,or,
choosing our gauge with the reservations discussed in
I, this was shown to reduce to

h„„:~.tt+2R, „„tt&a&he'+E,„tosh„'+R,„& lh„'= 0, (2.1a)
h~".,„=0, (2.1b)
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order terms in the Einstein equations can be written

g (0) — g&g (&) (2.2)

2' "—= (e'/87r) (R„„t'&——',y„„R"&)

= (e'/16&r) (Q„„—S„„«,),
where R(') =y~&g

Q««= sk ';«k«~;«k«" (kr«'«h««;~)
sk' (kg«+«ky« «k««'g)'

+-'q I-'k«b. r.—h l"«h .,
+h'(h, '"——',h„)j,

(2.4)

(2.5)

S«y =—5«h kgb «+k (h«y;g kg«;y kgy «)

+q„„[h«(h,.'" ,'h „) ', h.,-h "-«j. . -(-2.6)

Here Q„„is a tensor quadratic in Bh, whereas S«,»s of
the form It,8h. Since only the divergence of S„„&appears
in (2.4), this piece of the effective stress tensor does not
contribute under integral averages (see the Appendix).

From (2.3b), we 6nd that, in the high-frequency
approximation, gravitational radiation Gelds are un-
coupled from their sources and are endowed with a
vitality and independent existence of their own. They
are just as good as any other source of energy when it
comes to curving space, and later on we will see that
they behave like any other conceivable Geld as far as
energy and momentum transport and conservation are
concerned.

3. BRILL-HARTLE AVERAGING SCHEME

The high-frequency oscillations of the gravitational
waves are seen to produce the background curvature,
but we are not really interested in all the Gne details of
the latter's Quctuations. The situation is somewhat
analogous to the problem of Gnding electric Gelds in
macroscopic dielectrics. While it is in principle possible
to take into account all the atomic charge distributions
in a dielectric to Gnd the local electric Geld at any
interior point, it is scarcely interesting to arrive at
electric fields which Quctuate over a huge range as we
move the observation point by 10 " cm, and which

Lsee I, Eqs. (2.5)-(2.8) for explicit expressions. ]
Equation (2.2) shows us how the wave apparently acts
as a source for the curvature of the background. Notice
that (2.1) and (2.2) cannot be solved individually, but
rather only in a self-consistent Geld scheme, as BH'
have emphasized. We now observe that the Einstein
field equations may be solved to an error of order ~&&i

by simultaneously solving

(2.3a)

R„„is& ,'y«„R—is&-= 8rr T„:—", (2.3b)

where the effective stress tensor for the high-frequency
field is given (in a completely general choice of gauge)
by

require an exact description of the precise location of
10 3 atoms. This sort of detail is totally irrelevant to the
answering of any reasonable question about bulk
matter. Rather, we take the field equation ~ E=4&rp
and average it over a region of space which is large
compared to the scale of charge Quctuation, but small
compared to the dimensions of the material of interest.
Then we say that the average Geld is given as a solution
to /. E, =4&r(p), where (p) denotes the space-averaged
charge distribution.

Returning to the problem of gravitation, whenever
regions of interest are large enough to contain many
wavelengths, it is natural and advantageous to intro-
duce a similar averaging process. Time-averaging has
been done in the past by Tolman' for a radiation-filled
universe, by Wheeler4 for electromagnetic geons, and
by BH' for gravitational geons. Here we wish to average
over space-time as Arnowitt, Deser, and Misner' have
done, and so we let the symbol ( ~ ) denote an average
over a region whose characteristic dimension is small
compared to the scale over which the background
changes, but independent of s $i.e., O(1)), and therefore
large compared to the wavelength of the radiation in
the limit ~ —& 0. Then the averaged approximate Geld
equations can be cast into the Gnal form as given by
BH:

g (0) L+ g(0) 8~T' BH

where the BH-averaged effective stress tensor is

(3.1a)

(3.1b)

4. BH AND WEB SIMPLIFICATION OF THE
EFFECTIVE STRESS TENSOR

The general expressions (2.4)-(2.6) defining the
effective stress tensor are rather unwieldy, and even if
we specialize to the "Lorentz gauge" (i.e., the class of
gauges satisfying (2.1)), T„„"'is still clumsy. When we
perform the BH averaging indicated in (3.2) we obtam
a neat result. The rules we follow to do this are (see the
Appendix for justifxation)

(1) Under integrals, divergences become reduced by
a factor of e. We may therefore drop S„„&,, and similar
terms.

(2) Under integrals we may "integrate by parts, "
8 R. C. Tolman, Relativity, Thermodynamics, aid Cosmology

(Oxford University Press, London, 1958).' J. A. Wheeler, Phys. Rev. 97, 511 (1955).
«The space-time averaging used by these authors insured

coordinate invariance of their expression for the Poynting vectorfor gravitational radiation. See R. Arnowitt, S. Deser, and C gr
Misner, Phys. Rev. 121, 1556 (1961).

(3.2)

The oscillatory terms neglected by averaging (2.4) serve
as a source for higher-order corrections to the metric
(see Sec. 8).
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e.ge)

(h,' ph, „..)= —(h. "„h,„),
if we ignore terms down by a factor ~.

(3) Covariant derivatives commute on high-fre-
quency waves as ~ —+ 0, e.ge)

hpv; [pr] = z+pvpr h v+z~vvpr hp

or
2

hp, v;[pr]=~ )

where the symbol = is discussed in detail in I, Sec. 3.
Using these rules, we find that in the Lorentz gauge

T„„~H is simply

BH assumption. Thus we let (see I, Sec. 6)

h„„=Re(Mep„e'& },
h.=p,„h"h„=0,

epII +k 0 )

(Mhs), =0,

k e&v=0

give&"= 0.

We find that the effective WKB stress tensor is

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

(4.4f)

(44g)

= ( / )(;P Pr;v)+ ( ) ( ) ( ) 2 WEB (s2/32~)~2 h h sins +0(e) (WKQ) (4 5)
If we Qx the gauge so that h0„=0, we see that Too is
positive definite.

To see if (4.1) has any invariant significance, we must
investigate how T„„behaves under a change of gauge
(see I, Sec. 4). Since we have from (2.5) Q„„(c]h)(c]h),
under the change of gauge h„„~h„„h+8$, we obtain

Q" Q"- (~h) (~h)+ (~h) (~'k)+ (~'k) (~'5)

The first group of terms of the form (c]h) (c]h) are just
the old Q„„.The additional terms induced by the gauge
transformation can be roughly divided up into either
high or low frequency. For low-frequency waves we have

4=0(1), 4;.=o(1) 4;-=0(1),
and therefore the second and third group of terms in Q
are negligible compared to the erst group. On the other
hand, for high-frequency waves we assume

$„=0(e), $„,„=0(1), $„;„,=0(e ').
In this case, $p, [„,] ='e', and so covariant derivatives on
high-frequency coordinate waves commute. We find
that the terms in Q of the form (c]h) (8'$) can be con-
verted to a divergence by integrating by parts, com-
muting derivatives, and using the general wave equation
LI, Eq. (5.7)$ for h. Similarly, by integrating by parts
and commuting derivatives, we may reduce the terms
like (8'$) (8'$) to a divergence. Putting this all together,
we obtain the behavior of the effective stress tensor
under a general gauge transformation

eff ~ p eff —2' eH+U p +0(e) (4 2)

While U„„p,p=O(e) for low-frequency coordinate waves,
it is of order unity for high-frequency coordinate
transformations, and so T„„"'is not gauge-invariant in
general and hence not a physical observable. However,
since U„„p.,p is reduced under integrals,

2 aH~ y sH 2 aH+0(e)

and the BH-averaged stress tensor is gauge-invariant
and thus given by (4.1) for all choices of gauge.

A corresponding simplification of the stress tensor
occurs if we assume the WKB form for h„„but riot the

where Toowz~ is positive definite as expected.
Fina, lly, we combine the BH and WKB approxi-

mations to obtain the effective averaged high-frequency
wave stress tensor in the geometrical-optics form (to
lowest order)

2 HF=[lsh h &s=,s~s/64~ (IlH WKIi) (46)

Equations (4.1), (4.5), and (4.6) may also be derived
independently using the Einstein equations rewritten in
the Landau and Lifshitz' form

H "&, p=167r( g)(T "+t")—
where TI'" is the stress tensor of material sources which
are present in the general case, tl"" is quadratic in the
first derivatives of the metric, and

If we insert g„„=y„„+eh„„into the fmld equations and
either average them, use the WKB assumption, or do
both, we Gnd

"""~ T""aH, T""wKP„T""HF,

respectively.
From now on we will use (4.6) as the final form for

the stress tensor for gravitational waves. This is
precisely the form for electromagnetic null radiation
fields, further extending the analogy between light and
gravitation. Several other authors have obtained results
similar to this in diferent contexts. Thus Trautman'
has shown that (4.6) arises from weak-field linearized
theory with Sommerfeld radiation conditions, while
Brill' 6nds that in the limit of short wavelength, the
development of a universe closed by the presence of
gravitational waves is the same as for the Tolman
electromagnetically filled universe.

From (4.6) we see that the background geometry is

'L. Landau and E. Lifshitz, The Classeca[ Theory of Fee&ds
(Addison-Wesley Publishing Co., Inc., Reading, Mass. , 19&2),
p. 100.

A. Trautman, Lectures on General Relativity, King's College,
London, 1958 (unpublished).

D. R. Brill, Nuovo Cimento Suppl. II, No. 1 (1964).
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required to have the form

g (0i o.2$ P o.s —Ls2~2 (BH WKB) (4 7)

Solutions to these equations have been found which
exhibit, for example, spherical, axial, or plane sym-
metry. '

From (4.4b) and (4.4d) we obtain

T&"HF,„——0. (BH-WKB) (4.8)

These conservation laws tell us that the effective
stress tensor for the high-frequency gravitational fieM
is conserved on an equal footing with other stress
tensors, and will later allow us to calculate the energy
and momentum carried by the radiation field. Ana-
logously to electromagnetic theory, we may define a
spacelike gravitational Poynting vector S describing
the Qow of gravitational energy measured by an ob-
server with timelike four-velocity z». This is given by

S = (5 „—v v„)v T&"Hp=(urI'(k —rov )
(BH-WKB) (4.9)

where co—=k v is the frequency of the wave as measured
in the rest frame of the observer. We see that S v =0,
S S = —co4q4, and that S only vanishes in the limit
that the observer moves with the speed of light. In the
rest frame of the observer, k"= (cu,k) s,nd 5 = (O,rdq'k),
and we find that gravitational energy Qows along the
rays of the field and is not scattered off of null hyper-
surfaces (in this approximation) by the background
curvature of space-time.

5. ENERGY AND MOMENTUM OF THE
GRAVITATIONAL RADIATION FIELD

In special relativity, the homogeneity of space-time
leads us to the laws of conservation of energy and
momentum; however, in general relativity, space-time
is curved and does not in general have any symmetries.
Without some method of introducing the special rela-
tivistic reference for comparison, it seems hopeless to
try to extend these concepts to curved space. We must
therefore content ourselves with being restricted to
asymptotically Rat spaces where we require energy and
momentum to behave as the components of a four-
vector under I orentz transformations. For the usual
problem of outgoing radiation emitted by bounded
sources in a vacuum, it is reasonable to expect asymp-
totically Rat (but radiative) space at large distances
from the source, and we shall later show this to be the
case for a specific example. For the rest of this section,
we will assume that there exists a coordinate system x&

which asymptotically becomes I orentzian as space
becomes flat, and we will use (4.8) along with Stokes's
theorem to obtain formulas for computing the energy
and momentum which arrive at Oat infinity after being

' See, e.g., P. C. Vaidya, Nature 171, 260 (1953);P. C. Vaidya
and I. M. Pandya, Proc. Natl. Inst. Sci. India, A26, 459 (1960);
R. Penrose, Rev. Mod. Phys. 37, 215 (1965).

radiated from an isolated source. These expressions will
be in the form of integrals over general hypersurfaces
where gravitational fields may be large, and in which
arbitrary coordinate systems may be used.

By Stokes's law, we may write

I'"dS„) (5.1)

I(o)= I'"dS„,—

where a- is an open three-surface. If I"I' has vanishing
divergence (I'&,„=0), then (5.1) becomes

(5.3)

If in addition I(Zq) =I(Zs) =-0 (as is usually the case,
since radiation travels outward along null cones), we

FIG. 1. The light cones Z& and
z2 enclose an outgoing pulse of
radiation from a source traveling
along world line s&. They are cut
by the three-dimensional space-
like hypersurfaces o.

& and 02.

FIG. 2. The light cones Z& and
Z2 enclose an outgoing pulse of
radiation from a source traveling
along world line s&. They are cut
by the spacelike hypersurface o2
and the timelike hypersurface O.I.

where, in the notation of exterior forms,

dS„= (1/5!)( y)'"s„—~s~dx A dx~ a dxr, (5.2)

V is a four-dimensional region, BV its boundary. For
the following, we choose V to be the region bounded by
two nonintersecting null cones Z& and Z2 and by two
three-dimensional hypersurfaces o.

& and ~& which cut
both null cones. The hypersurface 0.

& will always be
assumed spacelike, but r& may be either spacelike or
timelike as shown in Figs. 1 and 2. Z~ and Z2 should be
thought of as future light cones emanating from the
world line sI' of a gravitational wave source, while 0 ~ and
o-2 are chosen to make V lie entirely in a region where
the high-frequency, WEB, and BH assumptions are
simultaneously valid. I.et us define
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have an integral conservation law I(o s) = —I (rrt), where
the minus sign just rejects the fact that the outward
normals to V at 0 & and o 2 are oppositely directed.

For our first example let us choose P&=M'kI'. Then
by (4.4d) we have the required condition that Ps ,„=0..
To evaluate I(Z) where Z=Zt or Zs, choose retarded
time coordinates xs= (x'= I, x', x', x'). Then dg =0 on
the light cones Z, and

I(Z) = Ps( y)r~sdxt A dxs A dxs

The phase p in (4.4a) must be a function of retarded
time only, and since k is a null vector, this in turn
implies P'=0 and I(Z)=0. Then cV—= I(os) =—I(or) is
a conserved quantity, independent of the (spacelike)
hvpersurface used to evaluate it. If a source radiates
only while it is between points zr" and zss on its world
line, PI' vanishes outside the region included between
light cones Z~ and Z2, since radiation travels outward
only along null surfaces and is not scattered by back-
ground curvature to lowest order in e. We may therefore
extend 0-.„ to include an entire spacelike surf*ce 5
oriented the same as 0-2 to obtain

E= W'ks( —q)'»dS„,
8

(5.4)

and E is our conserved graviton number.
In order to develop expressions for the total energy

and momentum arriving at null inGnity, we must erst
define a tetrad e&~&„(a selects one vector out of the
family of four, r gives its vector components). We do
this by requiring the tetrad vectors to be parallel-
propagated along the rays k and to point along the
asymptotically Lorentzian coordinates x& at null
infinity. Then the tetrad is the unique solution to the
differential equation

e& )„,.„A~=0, (5 5)

jP (a) Pa0 de

with the boundary condition e( ',~8, in x& coordi-
nates at null infinity. We define a four-momentum
density for the gravitational radiation as

P&~)~=e&~) Z"~

Then, by (4.6) and (5.5) we find P&».
,„=0, and we may

use (5.3). As before, introducing retarded-time co-
ordinates on Zr and Zs, we find I(Zt) =I(Zs) =0, and
the total four-momentum arriving at inanity is

P~ '—= I(os) =—I(ot).
To show that this agrees with the usual special rela-
tivistic result, we evaluate I(o s) with coordinates xs and
choose 02 as the Qat spacelike region at null in6nity
given by x = const. Then we find

which is the expected result. However, the utilitv of all
this lies in the fact that we may also evaluate P& ) on
the general hypersurface cr& where

1p()-
tr1

q'e&'&, k"kate„p„(—y)ti'Ch n dxza dxv.

(5.6)

Here 0.~ may be taken inside a region of strong gravita-
tional fields, so the tetrad Geld e& '. has explored space
to the extent that (5.6) automatically separates off the
part of the radiation which will escape the binding of
the source and incorporates all red shifts which this
radiation suGers as it climbs out of the strong gravita-
tional potential near its point of creation. The four
integrals (5.6) are all scalars under coordinate trans-
formations on 0& once the asymptotic coordinates x& are
specified. This means that (5.6) may be evaluated in
any coordinate system on 0&, not necessarily in Lorentz-
ian coordinates, as is required for expressions de-
pendent on the Landau and Lifschitz pseudotensor. ' It
should be remembered, however, that r& may not be
taken arbitrarily close to an intense source, since if
space becomes highly curved, the ray congruence k
develops caustics as light rays intersect and the geo-
metrical-optics limit breaks down. This is precisely the
same limitation as in the Bondi-Sachs multipole
analysis. "

Now let us investigate the e6ect of changing our
choice of asymptotic coordinates x& by a Lorentz
transformation corresponding to a rotation of four-space
at inGnity. Then new asymptotically Lorentzian
coordinates are given by

(5.7)

We require a new tetrad of vectors denoted by f& &„

which point along the S" axis at null inGnity. This is
given by

(5 g)

In (5.6), the net result of changing our asymptotic
Lorentzian coordinates is the eGect induced by the
change of tetrad. Then (5.4) and (5.6) transform as a
scalar and four-vector, namely,

I&I=E, P& &=L"„P&»,
'

(5.9)

conGrming their special relativistic character.

6. GENERALIZATION TO SEVERAL
W'AVE FRONTS

So far we have been concerned with the presence of
only one monochromatic wavefront at a point, as is
implicit in the WKS form (4.4a). We may extend this
to the case where several sources are present, or where
a source (or sources) produces a polychromatic spectral

rs H. Bondi, M. G. J. van der Burg, and A. W. K. Metsner,
Proc. Roy. Soc. {London) A269, 21 (1962);R. K. Sachs, ibid 270, .
103 (1962).
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distribution. In either case, we assume the existence of
an asymptotic expansion as e approaches zero in the
form

T "F=Q T "v(m)
T„„H(vm)= q'(m) k„(m)k„(m),

(6.2)

and so we have a superposition principle for the stress
tensors as well as for the amplitudes of the various
components of the radiation field.

'?. SPHEMCAL GRAVITATIONAL WAVES

To give concreteness to the formalism which has been
developed, in this section we apply both the BH and
%KB approximations to a speciGc example. In order to
simplify the algebra, a highly symmetric situation is
needed, so we will investigate radiation from a spherical
body of mass m. This may be interpreted as a star or
gravitational geon leaking away high-frequency gravi-
tational waves. Of course, if the star were truly spheri-
cally symmetric in its motion, no radiation could be
emitted, so symmetry is to be interpreted as holding
after some sort of average in time or over many inde-

pendent modes of oscillation. Radiation emitted by
some perturbation on the average symmetry will

propagate into space, still feeling the inQuence of the
gravitational Geld of the star. The result is a spherical
shell of radiation expanding in a spherically symmetric
background geometry determined from (4.7).Vaidya"'2
has found an exact solution to these Einstein equations
for the background in the form

dS' = f1 2m(u)/r jd—u'+ 2du dr r'(d8'+sin'Hdg) —. (7.1)

Here m(u) is a nonincreasing but otherwise arbitrary
function of the retarded time I and may be interpreted
as the mass of the star measured by an observer at
in6nity. If m(u) is constant, then the substitution

u=t —r—2mln(r —2m)

brings us to the Schwarzschild form of the metric.

where each component h„„(m) =A„„(m)e'&& & is the
(approximate) solution to the wave equation (2.1).
Since the wave equation is linear, (6.1) is also a solution.
Combining the %KB and BH approximations, we
substitute (6.1) in (4.1) and drop corrections of order e.
Then, since k„and A&' are slowly varying functions over
the region of integration, we have

(hp', „h„„)= ,Pk„(,m) k„(u)A&'(m)A „(u)
X (sing(m) sing(N) ).

For the usual case of incoherent sources of waves, we

may drop all terms where m&u and use (sin2$(m) )= ~~.

In this manner, we find that for incoherent sources

c0(u) =k„v = (y+U)-'j. (7.3)

For an observer at rest at inhnity, the measured fre-
quency is a&„(u)=$(u). Thus, in general, we have the
frequency-shift formula

(7.4)

relating the frequency ~ measured (or emitted) by an
observer with radial velocity U to that measured by an
observer at rest at infinity, including all gravitational
and Doppler eRects.

The modifications which the background imposes on
the radiation are given by (4.4) in the Vaidya geometry.
From these we find

h„„=r—'A (u) e„.e'4''"& (7.5)

allowing for AM or FM transmission of information via
the functions A(u) and P(u), which must satisfy Eq.
(6.4) of I but which are otherwise arbitrary. There are
precisely two polarizations representing true gravita-
tional effects rather than just coordinate waves. These
are the only two modes which give a nonvanishing
contribution to the dominant part of the Riemann
tensor R,e»"'~2ki heii~kg (see I).They are transverse
traceless modes with explicit form

.0 0 0 0.

y'sin2B 0 0 0 0
(s)—

0 0 0 1
(7.6)

.0010.

Now that we have found the background geometry
created by and consistent with the radiation 6eld, we
may introduce observers and see what properties of the
gravitational waves they may measure. We assume,
following I indquist, Schwartz, and Misner, " that our
observer has four-velocity v& but only moves radia11y.
Then, defining

U=dr/dr= r ,„v—&.
and using vI'v„=1, we Gnd

(7.2)

where

y= (1+U' —2m/r)'".

Any spherical generator of gravitational radiation must
have its boundary radius outside the physically un-
accessible region bounded by r= 2m(u) and must emit
waves whose phase can only depend upon the retarded
time u. Hence, in (4.4), P=p(u), and so k„= (&,0,0,0),
where p=P.„. The moving observer measures a fre-
quency in his rest frame given by

"P.C. Vaidya, Proc. Indian Acad. Sci. A33, 264 (1951}.
"P.C. Vaidya, Nature 171, 260 (1953).

'~ R. %. Lindquist, R. A. Schwartz, and C. W. Misner, phys.
Rev. 137, B1364 (1965).
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0 0 0

r2000
(2)——

v2 0 0 1

0

0
(7.7)

the (u,r,8,$) coordinate system which displays the
symmetry of the problem. Then, using (5.6) on the
r = constant hypersurface, we find

I'(» = (Am, 0,0,0),

.0 0 0 —sin'8. ,

x'= u+r,
X'=r sin8 cosP,
x'=r sin8 sin@,

g'=r cos9,

(7.9)

in terms of which the metric becomes

g
o= 1+2m/r

gs'= 2mx'/r',

g'& = 2mx'x&'/r' 8—(7.10)

which tends to the Lorentz form as r approaches

inanity.
If we evaluate the conserved graviton number E by

(5.4) over a general hypersurface r = const. , we find that
it satisfies the differential law

6' 1 dm

~ dQ
(7.11)

In order to calculate the energy and momentum in the
radiation fields, we express the tetrad components in

where p, ) =u, r, 8, qk The only nonvanishing component
of the Ricci tensor of the back. ground is

R&)&,
("——(2/r')dm/du,

wlllcll gives~ frolil (4.7)~

dm (u)/du = ——,', «'LA (u)o)„(u)]'
=—:."t.~( )-.( )] &1-2 ( )/"( )], (7.8)

where ~0 is the frequency of the radiation measured at
the surface of the star where the radius is r=ro. If the
star continuously emits radiation with frequency &e&)(u)

and. specific amplitude A(u) as it collapses toward

r&) 2m——(u), then the observed mass at infinity tends
toward a constant value, and co tends toward zero, i.e.,
all the radiation is red-shifted away as ro approaches
2m(u).

From (7.8), we see that there is no tail to the radi-
ation; A and co are nonzero only when the driving mass
of the source is changing. The radiation travels outward
along the light cones u= const, without being scattered
off these null hypersurfaces. Conversely, from (7.8) we

see that the 2'co„' is a "news" function of the kind
found by Bondi, "and a radiating star must lose mass
whenever information is carried away by radiation.

The existence of radiation is compatible with having
space asymptotically Rat, for we may introduce
coordinates

where Am is the change in mass of the source during the
time it radiates gravitationally, as measured by an
observer at infinity. Because of spherical symmetry, the
source cannot lose momentum, so we see that the energy
and momentum carried by the radiation is just balanced
by the energy and momentum lost by the source, and
over-all total conservation is maintained.

g..()=v..()+ h..'"(, )+"h., (, ), (81)
where p is the slowly changing background, and h"',
h") are high-frequency wave components. The Ricci
tensor may now be expanded to give

R„„(g)=R„,&"(y)+«R &" (h&")

+«'fR "'(h &'))+R „(')(h('))]+ «'R„„('+) (8.2)

where E.('&, R('), and R(') are dehned as in I, Eqs.
(2.6)—(2.8), with either h") or h") replacing the argu-
ment h given there, and R(3+& is again a remainder term.
We next decompose (8.2) into a system of equations in
which the various frequency components are separately
made to vanish. Thus, if h(') is a wave of frequency +,
R("(h&") will still be of frequency o), while R( ) (y) has
frequency 0. Since R")(h")) contains terms typically of
the form Bh('&Oh('&, it will have frequencies 0 and 2a.
To satisfy the field equations, R"'(h"') must then have
frequencies co and 2', which requires that

h„,"'=p„,+m„„, (8.3)

where p„„is of frequency o), while m„„ is of frequency 2M.
Now we group terms of the same frequency into
separate equations to get an approximate solution to
the Einstein equations as

(() (h(i)+ «p)
—0 (8.4a)

R „(&))(p)— «2(R (2)(h(1))) (8.4b)

R "'(m)= (Rpp(')) —R (8.4c)
'4 A. Trautman, in Proceedings of the International Con-

ference on Relativistic Theories of Gravitation, London, 1965
(unpublished).

"V.Pock, Rev. Mod. Phys. 29, 325 (1957l.

8. HIGHER-ORDER CORRECTIO~S
TO THE METRIC

Having explored many features of the high-frequency
approximation, we now will see if it is possible to extend
it to give a systematic method for generating an exact
solution. Trautman ' and Pock" have shown that the
weak-field approximation already runs into divergences
when pushed to the second order, and therefore we
check the analogous case for the high-frequency
approximation. We consequently assume that to second
order the exact metric is of the form
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As an example of how this may be solved, we now add
the %KB assumption and calculate nz„„according to
(8.4). Choosing k&') to have the WEB form

k„„o)=A„„cosg,

where @,„—=k„and A„,=Me„., we find [see Eq. (4.5)]
that to lowest order

E i') (k "')= iM' sin'@ = iM'(1 —cos2&),

where the 1 represents the zero-frequency part and the
2P gives the double-frequency component. Now y and
ku) are found from (4.7) and (8.5), while m is deter-
mined from

rivi;p+rl;vv —re;vp mv;vp= iM k~kvcos2@. (8.6)

We assume nz has the usual WEB form

tv =Bpv cos)P, )P,v= qv ~

Substitute this into (8.6), retain only the dominant
terms for a consistent approximation, and thereby get

B„„qpqe co—s)P Bq„q„c—osg+B„Pq„qp cosf

+Bv qlvqp cos)P= iM kvkv cos2$. (8.7)

Let )P= 2@; then q„=2k„, and (8.7) becomes

Bk„k„+—B„Pkpk„+B„Pkpk„=,',M'k„k, . —(8.8)

Then to solve (8.8) we need only require

(8.9a)

(8.9b)

Now we try to determine p„„ in (8.4a) in order to im-

prove our approximate %KB solution to the wave
equation. With proper choice of gauge, this reduces to
(2.1), into which we insert

h„„=k„„i"+ep„„,

with p„„in the form

p ic eiQ C ei($+rl2)

This converts the wave equation into an ordinary
differential equation along the rays, with solution given
in terms of integrals along the null geodesics x&(t) as

l

C„„(l)=e &') e 'e «—)—[A„„'",.

the second-order terms really are a factor of e smaller
than the first-order ones.

The success uncovered so far makes it seem likely
that the high-frequency expansion (8.11) may be
pushed to still higher orders, and the results to be
uncovered thereby should be an interesting subject for
future research.

APPENDIX: COMPUTATION OF AVERAGES

In this Appendix, we show how to construct th&

average of a rapidly oscillating tensor Geld, and justify
integration by parts within such an average.

The result of integrating a tensor field does not give
a tensor in a curved space, because tensors at different
points have different transformation properties. Since
it is permissible to add tensors at the same point, we
must go about constructing an average by somehow
carrying the tensors back to a common point and
adding them there. To do this in a unique manner, we
introduce the bisector of geodesic parallel disptacement,
denoted by g P'(x, x') (DeWitt and Brehme)6 Synge'7).
This transforms as a vector with respect to coordinate
transformations at either x or x', and, assuming that x
and x' are suSciently close together to insure the
existence of a unique geodesic of the metric y p between
them, given the vector A p. at x', then A = g t'A p. is the
unique vector at x which can be obtained by parallel-
transporting A p from x' back to x along the geodesic.

Given a tensor T„„which is assumed to have high-
frequency components of wavelength X and a back-
ground geometry p„„containing only low-frequency
components of wavelength L)&X, then we define the
average of T„, to be the tensor

(T„,(x) )—=

11 space

g„"(x,x')g„p'(x, x')

X7'. p (x)f(x,x)dix, (A1)

where f(x,x') is a weighting function which falls
smoothly to zero when x and x' diR'er by a distance d
(X(&d(&1.), and where
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2E&o) „PA pjdq+C„„(to), (8.10)
a11 space

f(x,x')d'x= 1.

n(t) =— kP,.pdq.

If R(0' is bounded and no caustics develop, then C„„
remains finite, and the metric is given to second order by

g
—y +eg eie+ e2B e2ie+ e2+ eiie+v /2) (8 11)

Note that no divergences arise to second order, and so

Since f vanishes well within the region where the back-
ground remains approximately Bat, there is no problem
about the global existence of unique geodesics from x
needed in the definition of g„'. Also, Bf f/d=O(1).

"B.S. De%itt and R. W. Brehme, Ann. Phys. (N. Y.) 9, 220
(1960).

~' J. L. Synge, Relativity, the General Theory (North-Holland
Publisbing Co., Amsterdam, 1960), p. 57.
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Since g„' depends on the background geometry, it
clearly changes only over a distance L, and Bg„~'

g„'/I =O(1).
The only rapidly varying element in the construction

is T„„sinceitT~T/) =O(e ').
I et us now ask what happens to tensors of the form

T„„=S„„&,, under averages In. serting this into (Ai), we
obtain

(Sor ip) go g" S& tt' so'fd +

Since the erst term may be converted to a surface
integral taken in the region where f +—0, we see that the
right side of (A2) contains no contributions of the form
f)S. Since we assume BS=O(e '), this implies

proving our earlier assertion that divergence may be
neglected in averages as e ~ 0.

As for justifying integration by parts, this is a trivial
corollary, since

[(ggSf) (r g—S'f) (gg;o
—Sf)

(gg—Sf )3&'*' (A2)

where

(h„"&1't,„.„)= —(1't,";,It,„)+(S„,';,),

S„,'= h,"&hp„.
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Search for Quarks in Cosmic Rays at Sea Level*

G. GAKMIBE, $ C. LEONG, AND B. V. SREEKANTANf

Laboratory for Nuclear Science, Physks Department, Massachusetts Institute of Technology,
Cambridge, Massachusetts

(Received 13 October 1967)

A search for quarks has been conducted at sea level. No events have been found with energy losses by
ionization in the range 0.06-0.165 and 0.25-0.65 that of singly charged minimum-ionizing particles. The
experiment sets an upper limit on the fluxes as 6.6)&10 "and 8.8)&10 "cm ' sr ' sec ' for —',e and -', e mini-
mum-ionizing quarks, respectively.

~ THEORETICAL concepts based on SU(3) sym-
metry have led to speculations concerning the

existence of fractionally charged (Arse and +-'se) par-
ticles, or quarks. "Prompted by the possibility that
such particles might have a suKciently small mass to
be produced in cosmic-ray interactions, a number of
groups have carried out experiments in search of
quarks. ' " An experiment has been running at the
Massachusetts Institute of Technology which provides
an upper limit to the flux of quarks at sea level of

&—e: 6.6X10 "cm ' sr ' sec ',
&3e: 8.8&(10 "cm ' sr ' sec '

*Work supported in part by the U. S, Atomic Energy Com-
mission under Contract No. AT(30-1)2098.

(On leave of absence at CaHfornia Institute of Technology,
Pasadena, Calif.
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with a 95% confidence. Although these limits are not
appreciably lower than those obtained from the other
experiments, " the conditions under which they are
obtained are considerably diGerent, and hence the
biases will be di6erent. A new signature technique
using proportional counters has been investigated that
shows promise of reducing background eGects by a
factor of ten for each counter in the detector array. "

The detector array and electronics block diagram are
shown in Fig. 1. The plastic scintillators are disks
40 in. in diameter and 6 in. thick inside a metal can
that provides a 6-in. air gap between the photomultiplier
photocathodes and the scintillator to improve uni-
formity. The liquid scintillator is identical except it is
50 in. in diameter to eliminate edge effects. Each
scintillator is viewed by four 5-in. photomultipliers
(Dumont 6364) providing a uniform response over the
entire sensitive area of each detector. The pulse-

"An additional signature can be obtained from the proportional
counters by using the rise-time characteristics of the output
pulses. In the proportional counters used here, the rise time for a
minimum-ionizing particle passing through the counter is between
1 and 2 psec. The pulse produced by a Compton-scattered electron
in the gas or counter wall corresponding to $ or 4/9 minimum
ionization is found to have a rise time of 0.2-0.5 @sec. By using
the rise-time signature a gain of about 10 in background suppres-
sion has been realized over simple pulse-height analysis, in a pilot
experiment using the detector array with a single proportional
counter and a short delay. It was not possible to use this technique
with both proportional counters, because of equipment limitations.
Instead, long delay lines had to be used, which lost the rise-time
character of the pulse.


