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Gravitational Radiation in the Limit of High Frequency.
I. The Linear Ayyroximation and Geometrical Oytics*
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(Received 14 July 1967)

A formalism is developed for obtaining approximate gravitational wave solutions to the vacuum Einstein
equations of general relativity in situations where the gravitational fields of interest are quite strong. To
accomplish this we assume the wave to be of high frequency and expand the vacuum fieM equations in
powers of the correspondingly small wavelength, getting an approximation scheme valid for all orders of
1/r, for arbitrary velocities up to that of light, and for all intensities of the gravitational field. To lowest
order in the wavelength, we obtain a gauge-invariant linearized equation for gravitational waves which is
just a covariant generalization of that for massless spin-2 fields in a Rat background space. This wave equa-
tion is solved in the WKB approximation to show that gravitational waves travel on null geodesics of the
curved background geometry with their amplitude, frequency, and polarization modified by the curvature
of space-time in exact analogy to light waves.

1. INTRODUCTION

~OBJECTS such as neutron stars, collapsing super-
novae, and quasars may endow regions of space

with gravatitional fields which seem enormous by
terrestrial standards and may provide us with natural
sources of intense gravitational radiation. In order to
describe mathematically the waves from such objects,
we must use the full apparatus of general relativity.
This, however, runs us up against the notorious com-

plexity of the nonlinear Einstein field equations. If we
do not wish to be limited to unphysically overspecialized
models with high symmetry, we must abandon any
practical hope of getting exact solutions to these equa-
tions, and must content ourselves with just finding

good approximations to the true radiative solutions.
Here other problems arise, for the conventional tech-
nique of obtaining approximate wave solutions via
linearization of the field equations' has its own draw-
backs. First of all, linearization is accomplished by
assuming that held strengths are weak and that space-
time is essentially Qat to lowest order. From the very
start, then, this procedure is manifestly inapplicable to
the really interesting strong-field problems, where
gravitational waves can be expected to impart huge
curvature to the fabric of space-time. Secondly,
linearization of the field equations inherently destroys
the possibility of describing the interaction of the
gravitational 6eld with itself. Therefore, within any
linear approximation, we cannot explore the resulting
secular changes in geometry as energy is transported
away from regions in space containing purely gravita-
tional fields. Finally, it is not at all clear that the
weak-field approximation procedure can be extended
beyond the linear first step to include the higher-order
nonlinear terms as corrections. ' 4 %e seem to be
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challenged to find a new method of obtaining approxi-
rnate solutions representing strong gravitational radia-
tion propagating through a highly curved space, and
capable of including at least some nonlinear features of
the theory as well.

Multipole-approximation procedures at null inanity
overcoming some of these limitations have already
been developed. ' ' These depend on using light cones
as coordinates and expanding the metric in powers of
the luminosity distance from an isolated source which
is embedded in an asymptotically Oat space and emit-
ting outgoing radiation. Even with these hypotheses,
much algebra must be done before basic results are
uncovered.

An entirely different method of approximation is
appropriate for gravitational fields of high frequency,
for in this interesting limit it is possible to see the local
distribution of gravitational energy. This is accom-
plished by rewriting the equations of general relativity
in such a way as to exhibit an effective contribution
to the total stress energy which comes from gravity
itself. From a mathematical viewpoint, this amounts
to the trivial shifting of terms from the left to the right
side of the field equations, but from a physical view-
point, it significantly contributes to our insight into
certain classes of geometries. These are geometries
which consist of a smoothly changing "background"
metric which has been altered by "perturbations" of
small amplitude but of high frequency. Wheeler' has
used this outlook in estimating the possible energy
density present in gravitational waves (perturbations)
moving through the large scale structure of the universe
(background). Energy was regarded as localized in the

3 A. Trautman, in Preceedings of the International Con-
ference on Relativistic Theories of Gravitation, London, 1965
(unpublished).
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high-frequency waves and, when averaged over many
wavelengths, served as a source for the curvature of the
cosmos. Brill and Hartle (BH)s'o published a study of
spherical gravitational geons in which they presented
the details of an exciting new approximation method
for treating high-frequency gravitational waves in a
strongly curved space and emphasized the reality of
the effective stress energy carried by such fields. Still
another example of the importance of high-frequency
fields was given by Misner, "who pointed out that the
Arnowitt-Deser-Misner" canonical decomposition of
the metric involves only purely local operations for the
case of high-frequency radiation.

In this and an accompanying paper, '3 we will study
the powerful BH approximation method for gravita-
tional waves in a self-consistent background Geld, but
with a more detailed discussion of the basis they gave,
paying attention to gauge (coordinate) invariance and
developing some new applications. The essential as-
sumption we will make is that the gravitational waves
are to have a high frequency, and our plan will be to
expand the Einstein equations in powers of their
wavelength, the small parameter this assumption
supplies. We Gnd an approximation scheme correct to
all orders of 1/r, all magnitudes of the field strength,
and valid for arbitrary velocities up to that of light.
To lowest order we will have a linear wave equation
for the high-frequency gravitational field which will

tell how the curvature of space interacts with and
modifies the wave. Later, we will incorporate higher-
order terms in the expansion to see how the wave reacts
back on the geometry of space in a nonlinear feedback
process. The higher-order nonlinearities will be left as
the subjects of a second paper, "while the present one
will treat the basic expansion procedure, its gauge
invariance, and the linear approximation in great detail.
We will analyze the linear equations in such a way that
the strong analogy between gravitation and electro-
magnetism in the geometrical-optics limit clearly
emerges.

What exactly do we mean when we say the wave is of
"high frequency, "and under what circumstances can we

expect such fields to be important' We will call the fre-

quency "high" whenever the wavelength of the gravita-
tional field is small compared to the radius of curvature
of the background geometry. This assumption is already
seen to hold in the conventional weak-Geld linearization,
where the background is Oat and thus has infinite radius
of curvature, and so all weak-Geld results will just be a
special case of our general theory. Besides the binary star
systems, Gssioning stars, oscillating and rotating spher-

9 D. grill and J. B. Hartle, Phys. Rev. 135, B271 (1964).
"D.R, Brill, Nuovo Cimento Suppl. II, No. 1 (1964).

%'. Misner, in Proceedings orl, Theory of Gravitation
(Gauthier-Villars, Paris, 1964).

» R. Arnowitt, S. Deser, and C. %. Misner, Phys. Rev. 121,
1556 (1961)."R. A. Isaacson, following paper, Phys. Rev. 166, 1272 (1968).

oids, and other conventional weak-Geld sources, ""
there exist sources of gravitational radiation at optical
frequencies which may be among the more important
sources which persist for long periods of time. For
example, the predominant source of gravitational waves
from the sun is in the thermal motion of matter causing
gravitational bremsstrahlung. "" Also, gravitational
waves of optical frequency should arise as photons are
converted into gravitons of the same frequency in the
presence of a constant electromagnetic field. '0 Moreover,
all gravitational radiation from isolated systems is of
high frequency when it gets far enough away from
its source, for, assuming that the wavelength P re-
mains approximately constant, as we increase the dis-
tance r from the source of mass m, the ratio of wave-
length to radius of curvature of space is of order
(X'm/r')'I', which becomes negligible for large r In f.act,
even wavelengths on the scale of galactic diameters or
intergalactic distances are seen to be short when com-
pared to the average background cosmological curva-
ture of the universe. These examples should give some
idea of the scope to which the high-frequency approxi-
mation can be applied.

While the hypothesis of high frequency will hold
throughout this paper, we will sometimes combine it
with an additional hypothesis. This will be to assume
the existence of a simple asymptotic expansion of the
exact solution, valid when the frequency becomes very
large and wavefront curvatures are negligible, in which
the leading term is locally a single plane wave. Asymp-
totic methods are often applied to physical problems
containing a parameter in order to give results where
exact solutions are dif6cult to obtain. Moreover, even
if such exact solutions are available, it is invariably
simpler to obtain the asymptotic expansion directly
than to Grst Gnd the exact solution and then to extract
its asymptotic behavior. We shall call the existence of
such an expansion the "%KB assumption, " after its
best-known application.

2. EXPANSION OF THE RICCI TENSOR

Let us agree at the start to use the name "gravita-
tional wave" to describe both radiation and induction
Gelds, while the term "gravitational radiation" will be
reserved for those Gelds which escape to null inGnity.
We picture a gravitational wave as a small ripple in
the geometry of space-time running through a highly
curved, slowly changing background. The frequency of
the ripple is high but its amplitude quite small, since

'4 C. V. Vishveshvmra, University of Maryland Technical
Report on Grant NSG-436, 1964 (unpublished).

's C. W. Chin, Phys. Rev. 139, B761 (1965).
'6 W'. Y. Chan, Astrophys. J. 147, 664 (1967).
r' V. N. Mironovskii, Zh. Eksperinr. i Teor. Pis. 48, 358 (1965)

LEnglish transl. : Soviet Phys. —JETP 21, 236 (1965)g.' S. steinberg, Phys. Rev. 140, $516 {1965).
' M. Carmeli, Phys. Rev. 158, 1243 (1967).
"M. E. Gertsenshtein, Zh. Eksperim. i Teor. Fiz. 41, ii3

(1961) )English transl. :Soviet Phys. —JETP 14, 84 (1962)g.
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we do not want pathological situations where physicists
struck by waves change size even faster than Alice in
Wonderland. However, this by no means implies that
the energy content of the wave is small. Quite the
contrary, the energy carried along by the gravitational
wave is pictured as a major (if not the only) cause for
the background geometry to curve up. We assume that
the total metric g„„takes the form postulated by BH,'

gpr='ypr+ e)rp»

where yp„represents the background metric which is
a slowly varying function of space-time, h„, is the high-
frequency ripple which changes singi6cantly over a
much smaller distance, and ~ is a smallness parameter
which insures that laboratory geometry has only micro-
scopic Quctuations.

We introduce estimates of how fast the metric com-
ponents vary by saying that typically their derivatives
are of order

By y/L, Bh h/'A „

where I. and X are characteristic lengths over which
the background and ripple change signi6cantly, and
where L is assumed very much larger than ). The
effective energy density contained in the wave is of
order (c4/G)(e/)&, )'r while the curvature of the back-
ground is of order L '. The Einstein equations then
tell us that the background curvature is equal to
G/c4 times the total energy density curving the back-
ground, or L '& (G/c4)(c4/G)(e/X)', i.e., e&X/L The
most interesting case occurs when no other sources of
energy besides gravitational waves are present, and the
two dimensionless numbers are equal, i.e., e=X/L(&1.
We will make this assumption in order to simplify
matters, and will only need to concern ourselves with
the one small parameter ~. Once this is done, the total
metric remains slowly changing on a macroscopic scale,
and the total curvature will be entirely due to the
microscopic wave. We are now in a position to formalize
our order-of-magnitude arguments and give an axio-
matic characterization to the types of metrics of interest.
All we need do is regard L as a constant (say, of order
unity) and )I, as a parameter which is to be replaced by

Xe/L, since 0(X)=0(e)." We then see that we are
studying the one-parameter class of geometries diBering
ininitesimally by a high-frequency 6eld which serves
as a source for the background metric common to all.
We will say that a metric contains a high-frequency
wave if and only if there exist a family of coordinate
systems (called steady coordinates), related by in-
Gnitesimal coordinate transformations, in which the
total metric takes the form

g„„(,)=~„„(&)+ex„„(~,.), (2.1)

q„„=o(i), h„.=O(1), (2 2)

sl py detinjtjon, f(g) =O(e ) means that there exists a constant~ such that f(z) &Me" as p approaches zero.

ALE I. Magnitude of terms in expansion of Ricci tensor.

Term

E p(0)

e~~p(g)
~g.t(g+)

Symbolic form

v '~'v
7 '8'(ph)
phy~p'(ph)
p'h'y '8'(ph)

Order of magnitude

L~= Ph~=O(1)
A~=0(p ')
PX~=O 1)
ePX~=O p)

yp„, =O(1), h „p,„=O( e'), — (2.3)

yp„,,p=O(1), hp„, p
——0(c '). (2.4)

It should be noted that (2.1)—(2.4) imply a highly
curved space, since in steady coordinates the Riemann
tensor is R p„s=O(e '). I.et R p(pwp„) denote the Ricci
tensor formed out of the metric t&s p (for sign conven-
tions, see Appendix A). We may expand the Ricci
tensor for the total metric in powers of e to obtain'

R p(y„„+ h„.)
Rp"&+—eR p&'&+e'R &'&+e'R &'+&, (2.5)

where

R p&s&=R p(yp, ), (2.6)

(2.7)

R(g) =g 'B'g

and the metric and its inverse are

g= y+ ek,

g '=y '+shy '+e'Ip'y '+ ~

Although y and )'r are the same order, by (2.3) and
(2.4) their derivatives are very different. Therefore,
when second derivatives are applied to y, the result is
very much smaller than when they are applied to h.
The results are summarized in Table I. %'e see that the
dominant term is eR p"'=0(e '). Smaller than this by
a factor e are both R p"& and e'R p&'&=0(1). Smallest
of all is the remainder term e'R ' p+=&0( )e, down by
e' from the dominant term.

3. EXPANSION OF THE RIEMANN TENSOR

Just as we did for the Ricci tensor, we may expand
the Riemann tensor R,p~s(gp„) in powers of e to obtain

R p»(vp. +@p.)
=R p»"+eRapvs'"+e'R-pcs'"+e'Rap»"+' i (3 1)

Rap YY (Irpr;ap+ hap;pr hra; pp Irrp;ap),

R p&'&= ——',Php', .ph„,
+h (Iirp;ap+~ap;rp hra;pp Irrp;ap)

+hp 'p(h„.,p
—hp, ,)

—(I",—-', h~ )(k...p+a, p,
—h.p. ,)j. (2.8)

Here the semicolons denote covariant differentiation
with respect to the background metric, which is also
used to raise or lower all indices. The remainder term
R p&'+& is now fully defined by (2.5)-(2.8). Even if we
allow for the manifest powers of e in (2.5), the quantities
defined by (2.6)-(2.8) are not intrinsically of the same
magnitude. Symbolically, the Ricci tensor is
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where

R.„P&=R.„h„), (3 2)

4. GAUGE TRANSFORMAYIONS AND
INVARIANCE

We now wish to study infinitesimal coordinate trans-
formations and the gauge transformations they induce,
jn order to establish the gauge invariance of individual
terms in the expansions of the total Riemann and
Ricci tensors.

Consider an infinitesimal coordinate transformation
from one steady coordinate system to another,

ga ~ ga =pa+ «p (4 1)

R-pvs'" = s (h v; ps+hp~;-v h—pv;. s h—-s; pv

+R,vs&a&h p Rp—.vs"&h ). (3.3)

As before, «R pvso& ——0(« ') is dominant in magnitude,
R pvsis& and «'R Pvs&'& =O(1) are smaller by a factor of
«, and «'R p»is+& =0(«) is smaller by «'.

The expressions defined in (2.7) and (3.3) will be
shown to be gauge invariant in the high-frequency
limit. Because of this, R p»(') will play a central role
in distinguishing the presence of coordinate waves from
true gravitational effects. In the absence of waves (i.e.,
h„„=0), the Riemann tensor reduces in value to
E. p~q('). However, if gravitational waves are present,
the total curvature of space-time grows enormously in
magnitude to the dominant ~E. p»('~ term. If space is

empty of waves, but a gauge transformation has mixed
in coordinate effects, the total curvature is still only
of order R p»(') and hence easy to distinguish.

R p»(') satisfies the same symmetries as the total
Riemann tensor R pvs(g„.), but the "Bianchi identities"
hold only in the limit of zero wavelength. That js,
we find

g (i) v (&) —P (&)

Ravnp;v +RIvvva;p +Ravpv;a

We have introduced a new symbol =', which can be
read "is down by a factor «' (from a priori expecta-
tions), " whose use and definition can be seen by the
following. The terms on the left side of the last equa-
tion each involve three derivatives of h. Thus, if we

multiply this side by successive powers of e, we would

expect that a factor of ~' is necessary to yield a finite
limit for the left side as ~ ~ 0. In reality, we find that the
last expression is of the form R»ap., v&'&+ =JR&'&c&h.

The right side is seen to remain finite if we multiply
through by a factor of ~, two orders less than we would

expect. This is the meaning of ='e'. In a general case,

f=' «" means that while f = 0(«") is expected by counting
the number of derivatives of h in f, actually, because
of some internal cancellation, f=o(«"+v') This new.
notation saves us from having to write confusing equa-
tions like « "f=o(«")

In the new coordinate system, we find, " neglecting
terms of order ~',

g p=v p+«(h p 4—;p b—; ) (4.2)

z.,() a.,()=z.,()-x,z.,(o),

Rapvs ~ Rapvs =Rapvs ~«Rapvs

where the Lie derivatives are explicitly given by

Z R +=R "&P+R '"$'. +R
~«Rnpvs Rapvs;v $ +Rvpvs 5;a+Ravvp $;p

+Rap vs V; v+Rapvv $; 8 ~

(4.4)

(4.5)

In (4.2), the additional terms «]&,p& can only be
regarded as resulting from an infinitesimal coordinate
transformation if they still allow us to call y p the
background metric unambiguously. This implies that
«ti„.p& is truly a small quantity compared to y p. If P is
to be the generator of an infinitesimal coordinate trans-
formation, it may be assumed to satisfy

P„=o(1), ~„.„=o(1),
a form sufficiently general to admit both high- and
low-frequency coordinate waves.

If we insert (4.6) and (2.1)—(2.4) into (4.4) and (4.5),
we then see that

R (')—8 (') =' e'

R (') —8 (') =' e'. (4.7)

In the high-frequency limit ~~0, we see that the
"perturbations" of the Riemann and Ricci tensors are
gauge invariant to an extreinely good approximation
and therefore meaningful entities, capable of physical
measurement. The basic reason behind this is that on
a scale of distance of order X, space appears locally
Rat, and curvature is locally gauge invariant as in
weak-field linear theory. As long as X((L, perturbations
do not have any long-wavelength components, and this
local behavior carries over to curved backgrounds to
give a global gauge invariance. The fact that our ex-
pansion is gauge invariant .is extremely important,
since any physically observable eGects cannot be co-

»J. Landau and E. Lifshitz, The Classica/ Theory of Fields
(Addison-Wesley Publishing Co., Inc. , Reading, Mass. , 1962),
Sec. 94.

Since eh p is defined as the diGerence between the back.-
ground and total perturbed metric, we have

h-p=h-p 4—:p b—;- (43)
for the perturbation in the new coordinate system.

YVe interpret this to mean that the infinitesimal
coordinate change induces a "gauge transformation"
similar to those found in Qat-space spin-1 and spin-2
fields. Under this change in gauge, quantities dependent
upon h„, also undergo transformations. Either by
direct calculation or from the definition of the Lie
derivative, we find that under a gauge transformation
the dominant parts of the Ricci and Riemann tensors
become
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ordinate-dependent. Finally, it should be emphasized
that our gauge invariance has resulted only from the
assumption of high frequency.

S. LINEAR APPROXIMATIOÃ

We have just found a remarkable degree of freedom
in the choice of a gauge, and so it is natural to exploit
this in order to either simplify the labor involved in
future calculation or exhibit interesting results most
eBectively. To decide on a convenient gauge, let us

briefly review the theory of massless spin-2 Gelds in
Rat space. It is we11 known23 that such a Geld may be
described by a real symmetric tensor Geld fo" satisfying

4""'t =p

pov =p

it' —=rio.4'""=p

(5.1a)

(5.1b)

(5.1c)

where rt„„=—diag(1, —1, —1, —1). The supplementary
conditions (5.1b) and (5.1c) insure that the 6eld energy
is positive definite and the Geld pure spin-2 without
spin-0 or spin-1 components. The number of degrees of
freedom of Po" is reduced from the 6ve implied by
(5.1) to just two because (5.1) is left unaltered by the
gauge transformation

pv ~ pv — gsv p, v (5.2)

where P is a vector 6eld satisfying

p, a —P

("..=p ~

(5.3a)

(5.3b)

The standard weak-Geld linearization of gravity can be
put into the form described in (5.1) by means of in-
finitesimal coordinate transformations, and it retains
this form under the class of coordinate transformations
x&~ z&=x&+P satisfying (5.3).' "

We are now in a position to proceed to examine the
strong-field case, using the "correspondence principle"
that the theory we derive must reduce back to Eqs.
(5.1) when Geld strengths become negligible. Applying
the decomposition of the Ricci tensor to the Einstein
equations its eacgo, we find to lowest order

and to the next order

R.,& &=0, (5.4)

R p 62R (2) (5.5)

The remainder of this paper will be devoted to the
analysis of the linear equation (5.4). This was derived
by Lanczos'5 and used by Regge and Wheeler" to
study the stability of Schwarzschild solution. The
nonlinear equation (5.5) (which we will treat in the

ss G. Wentzei, QNarttgrii Theory of Fields (Interscience Pub-
lishers, Inc., Near York, 1949), Sec. 22.

'~ W. Pauli, Theory of Relateosty (Pergamon Press, Inc., London,
1958), p. 173."C.Lanczos, Z. Physik 31, 112 (19251.

2' J. R,egge and J. A. %heeler, Phys. Rev. 108, 1063 (1957).

yv P

=0.
(5 8)

(5.9)

If we succumb to this temptation, we must, as usual,
pay a price. For the case of massless spin-1 or spin-2
fields in a Qat-background geometry, the dynamical
equations are rigorously gauge invariant and so allow
a convenient change of gauge to simplify computations.
This, most emphatically, is not the case for the approxi-
mate dynamical equations (5.7) which concern us.
From Eq. (4.4), we see that our wave equation changes
form under an arbitrary gauge transformation (except
in the important special case where the Ricci tensor
for the background vanishes). This violation of strict
gauge invariance should not be a cause for despair, since
the magnitude of the terms which destroy rigorous
invariance is extremely small. The linearized wave
equation (5.7) has terms present of order e

—', e
—', and

1. Consequently, it would be fortuitous if gauge invari-
ance could be extended below the dominant O(e ')
terms. It is therefore quite surprising that we can show
fusing Eq. (4.4)j that both the O(e ') and O(e-')
terms in the wave equation are left unaltered under a
gauge change, and so we should expect them to be of
fundamental physical importance. The remaining O(1)
terms are inextricably mixed in with the (coordinate-
dependent) Lie derivative terms which create a fog
obscuring any intrinsic signiGcance which might be
contained in these lowest-order components of the
curved-space wave equation.

We now investigate the possibility of choosing a
gauge in which the Geld satishes the conditions given
by Eqs. (5.8) and (5.9).We will always drop the negli-
gible Lie derivative terms which arise from gauge
changes, since they only generate higher-order cor-
rections to (5.7). We will, however, retain all terms in
this wave equation which have the form Z...&o&g ",
which are also quite small. This will allow our discus-
sion to apply rigorously to gauge transformations in
background geometries which have vanishing Ricci
tensor.

Under an inGnitesimal coordinate transformation

accompanying paper) was 6rst written by BH' to show
that gravitational waves can be thought to have an
effective stress energy which can produce the back-
ground curvature.

Let us define

It„,—$y„—„h, itr= y
—
iP tt, (5.6)

where h= y—&h tt W.e regard the ilr„„as our basic 6eld
quantities and rewrite (5.4) as

„iP e~y. „piP tt ijr. tt
—P „'ilr„.si—P +2@. e(0)pPo

+g (o)it „+g„(o)p —p (5 7)

When we compare this to the flat-space equations (5.1),
we have the strong temptation to impose as our choice
of gauge that
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However, 8 is not gauge invariant and contains ex-
plicit x& dependence. Therefore the canonical energy-
momentum tensor

x~ —+ x =x"+eP, we find that Pl'" —+ P&" and

lb,.' ~A -' =4,.' 4—';.+~.-"'P, (5 1o)

4 ~ &=4+2V;-. (5.11)
r p=sh p (t—)Z/Bh„s, p)h, s

If we choose P to be the solution to the inhomogeneous
system is neither symmetric, conserved, nor gauge invariant,

and to' is not necessarily positive definite. A much
better tensor than t & will be shown to describe the
energy content of our gravitational wave when
we consider the higher-order nonlinearities in the
approximation. "

we find that (5.8) and (5.9) hold in the new coordinate
system. (For simplicity, we now drop the bars over a,ll

symbols in the new gauge. ) We ignore the I.ie deriva-
tives introduced by this coordinate change and find
that (5.7) becomes

A4—'"=4.—.'P; p+2~...p"'4"+~.."V '.
+R„.&'&P'„=0. (5.12)

6. WEB ANALYSIS OF THE WAVE EQUATION

In the limit of fiat space, the wave equation reduces
to (5.1a), and it is sufEcient to consider only one
Fourier component of the solution, which may be
written as

lPs„=A sve (6.1)

where A„, and k„are constants, and the exponential is
a rapidly Quctuating function of position. %hen we
deal with a space containing gravitational fields, we
know that geometry may be considered locally Hat
over distances of order I (remember & p„s"& I- '), as
can be seen by introducing normal Riemannian co-
ordinates. On this scale of distance, (6.1) should remain
an approximate solution to the wave equation; how-
ever, because of the slowly varying geometry, the pre-
viously constant A„„and k„can be expected to slowly
change in value over a characteristic distance of order
I.. Thus we may expect to try for a solution to (5.12)
of the form

g„„=A„„e'e (6 2)

factually only the real part of (6.2) is to be usedj,
where A„, is a slowly changing real function of position,
and p is a real function with a large first derivative but
no larger derivatives beyond this to correspond to a
slowly changing k . Solutions of this form are fre-
quently assumed in mathematical physics for both
theoretical insight and computational ease. Perhaps
the most familiar example for modern physicists is the
WEB approximation for one-dimensional problems in
quantum mechanics where a solution in the form (6.2)
is sought for an ordinary differential equation. For
this reason we will call (6.2) the WEB approximation,
although its application to partial differential equations
predates quantum mechanics. ""This method was suc-
cessfully used by Sonunerfeld and Runge" to establish
the transition from Maxwell's equations to classical geo-
metrical optics as the wavelength of light approaches
zero. Since that time, the %KB approximation has
been used in many fields besides electromagnetism
and quantum mechanics, such as acoustics, plasma

ss J. Lionville, J. Math. (Paris) 2, 418 (1837).
30Lord Rayleigh, Proc. Roy. Soc. (London) A86, 207 (1912)."A. Sommerfeld and I. Runge, Ann. Physik 35, 277 (1911).

The operator 6 is precisely the generalization of the
Oat-space d'Alembertian which Lichnerowicz" intro-
duced for symmetric tensors following deRham's'
definition of a similar operator for symmetric ones. Ke
may contract (5.12) to see that f', =0, so that (5.9)
is consistent with (5.12). However, if we differentiate
Af„„and use (5.8), we find

( ~4.-): =—4.-"p+~.-"V' p

+4"'(2~""';p ~.p;"'.)=" (5 13)

which contradicts (5.12). Thus there is a (small)
inconsistency between the wave equation (5.12) and
the gauge condition (5.8). Once again, we disregard this
as being the inconsequential result of the higher-order
corrections to lb„„which are of no physical interest.
Moreover, there is no inconsistency at all for back-
ground metrics of constant curvature such as Schwarz-
schild's. This is an important advantage derived from
using the well-behaved wave equation AQ„„=O in-

stead of some other expression (such as P„„',. =0),
which differs from it by terms down by ~'.

In summary, then, high-frequency gravitational
waves are approximated to lowest order by the linear-
ized curved-space wave equation (5.12) subject to the
gauge conditions (5.8) and (5.9). These are left un-

changed by further gauge transformations generated
by P, satisfying

t"P=O P =0
This final gauge freedom can be pinned down, if de-
sired, by requiring additional conditions (for example,
4'~o= o).

The wave equation (5.7) without gauge specializa-
tion is derivable from a variational principle with
Lagrangian density;

g= —(c'/327rG)( ', h P''h p, ,'h ~h, ,-+h, h P,p-—.
—h p. h P'&)(—y)'~'. (5.14)

~'A. Lichnerowicz, in Relativity, Groups arid TopoLogy, edited
by C. De%itt and B. De%'itt (Gordon and Breach Science
Publishers, Inc. , New York, 1964), p. 827.

's G. de Rham, Varsetes Djgereatzables (Hermann et Cie. ,
Paris, 1955), p. 131.
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physics, elasticity, and hydrodynamics. 3' " In the
varied literature, this approximation is sometimes also
known as the eikonal approximation, or the method
of stationary phase; however, it is really just the first
term in an asymptotic expansion of the exact solution
in the limit of vanishing wavelength'4 "

Returning to (6.2), let us now introduce ray vectors
(normals to surfaces of constant phase i') by

k=—g, . (6.3)

We may estimate the order of various derivatives
needed in calculations as

R.p,sf'&=0(1), A"" =O(1)
k„=O(.-'), k„,,=O(e-'). (6.4)

Note that (6.2)—(6.4) are compatible with (2.1)—(2A).
Now substitute (6.2) into (5.8)-(5.9) to g«

~~"A„„=O,

ikpA P+A P,.p=0.

(6.5)

(6.6)

The terms in the first, second, and third brackets are
of order e ', e ', and 1, respectively. To lowest order,
(6.8) is

kpk&=0. (6.9)

This gives us the important result that gravitational-
wave rays are null vectors. Alternatively, we may
write (6.9) as an eikonal equation

In (6.6), the first term is of order e ', while the second
is of order unity and must be neglected for a consistent
approximation. This then gives

(6./)

Similarly substituting (6.2) into (5.12) and grouping
terms of the same size, we find

kpkPA s.j+—s52k pA ~~'P+kP; pA I:~
+[A„„p,p+2Z. ,»«&A p +Z„.&'&A .+&..&'»'.3=0.

(6.8)

A„;Pkp+-,'A„„kP., p
——0. (6.13)

It is convenient to separate the behavior of the ampli-
tude from that of the polarization of the gravitational
field. At each point in space where there are waves, we
define a polarization tensor field e„,proportional to A„„
and whose arbitrary magnitude is fixed by normalizing,
so that e»e""=1.This is given by e» ——(A&"A „)

—'/sA „.
As a shorthand, define the amplitude ~of the wave by
M= (A„„A&")"'.This is a real, positive scalar measure
of the intensity of the field, and vanishes only when no
waves are present. Now substitute A„„=~e„„into
(6.13) to obtain

(W,pkp+ ,'Wkp. ,p)s„„-+ms„„,pkp=0.

Multiplying by e„„,we have

(in'), pkP+-', kP,.p ——0.

(6.14)

(6.15a)

This is just an ordinary differential equation along the
null ray, and gives the amplitude once the geometry of
the ray congruence is known. This is easily seen if we
rewrite (6.15a) using (6.11) to get

(d/dl) in&= —-,'kp.,p, (6.15b)

showing how the field decreases as the rays diverge.
Now, from (6.14) and (6.15a), we see that

e„„,pkP= 8e„„/N=.0. (6.16)

This gives the important physical result that the
polarization tensor is parallel-transported along the
null geodesic x"(/). At a fixed point along x"(l), we may
impose the initial conditions

propagated tangentiaHy along null geodesics, just as are
the rays for electromagnetic waves. 33'6-'8

Consequently, high-frequency gravitational waves in
the %KB approximation are red-shifted and deQected
in direction exactly the same way as light when, for
example, passing through localized strong gravitational
fields or when traveling across the universe.

Now we may proceed to the second-order terms in
(6.8) which give us

(6.10)

We may introduce a congruence of curves with rays
as tangents by

e„,k"=0,

ypv —0

(6.1/a)

(6.1'/b)

dxs/dl =k~. (6.11)

The solution curves x&(l) are null geodesics, and / is a
preferred afline parameter, since by differentiating (6.9)
and remembering that k is a gradient, we get

O=k ,.pk =kg., k . (6.12)

Thus the rays of the gravitational Geld are parallel-

"See the bibliography in J. B. Keller, R. M. Lewis, and B.D.
Seckler, Commun. Pure Appl. Math. 9, 207 (1956)."See also Appendix B.

84 M. Kline, J. Rat. Mech. Anal. 3, 315 (1954)."R.M. Lewis, J. Math. Mech. 7, 593 (1958).

Since both t:„, and k„are parallel-transported, these
conditions consequently hold everywhere along xI (&),
guaranteeing consistency with (6.5) and (6.7).

We see the remarkable similarity between light and
gravitation, since the geometrical optics of light tells
us that its amplitude satisfies exactly the same trans-
port equation (6.15a), and its polarization is also

"J.Kristian and R. K. Sachs, Astrophys J. 143, 3/9. (1966)s' D. Zipoy, Phys. Rev. 142, 825 (1966).»P. Trautman, in Lectures in General Relativity, Brandeis
gummer Institute in Theoretical Physics, 1964, edited by S. Deser
and K. W. Ford (Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1965), Vol. &.
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parallel-propagated along the null geodesics with ray
vectors k„as tangents. """

We may rewrite (6.15a) in still another form,

(M'kP).,p= 0, (6.15c)

which may be interpreted as a conservation law for the
total number of gravitons present in our field, since, if
we let

k'M'( —y)'"d'x,

This shows that energy is transported with the rays
serving as guidelines.

We may also find the dominant part of the total
Riemann tensor using the WEB approximation. In-
serting (6.2) into (3.3), we find

R p~g&'& —2kt„hp) fyk$]

where square brackets denote the antisymmetric
part. Then. k'R p„s(g„„)= e. This tells us that the

ray vectors serve as principal null vectors of multi-

plicity four for the Riemann tensor of the total metric
(at least to order e), and in the high-frequency limit
the total metric is Petrov-type S to lowest order in

e. The invariant classification of our metric agrees
with the results of Sachs~ for radiation at large dis-

tances from bounded sources, and so this serves as
additional confirmation that our decomposition of
the metric into a background plus small high-fre-

quency WEB ripple does indeed correspond to the
presence of gravitational radiation for spaces which

asymptotically become Oat. It should be noted that the
high-frequency %KB assumption can also be applied
to spaces which are not asymptotically ffat, and so
suggests a limit in which it is possible to extend the
notion of radiation to more genera1 space-times.

'7. LIMITS OF VALIDITY

While we have seen some of the power of the WEB
and high-frequency approaches, they do have their
limitations. "these are essentially the same limits

where 5 is a spacelike hypersurface, x' is a timelike
coordinate, and (x', x', x') are three spacelike coordi-

nates, then S,o =0 for localized wave pulses. Alternately,
(6.15c) shows that M ' is a luminosity distance.

Additional insight into (6.15c) follows from work by
Kristian and Sachs' intended for light, but which

holds equally well for gravitational waves. They con-
sider two observers located at diferent points along a
given ray and moving in such a fashion that the fre-

quency ~ which they measure is the same. Each ob-
server measures intensity I=M'cv' and cross-sectional
area dA for the same bundle of rays. Then (6.15c)
implies that the measured energy Aux through dA is

the same for either observer,

l jdA g= I2dA2.

one finds in the geometrical-optics approach to light. "~
Thus we may show that if a beam of gravitational
waves is initially convergent, it will collapse, causing
the energy density to become infinite at a finite param-
eter distance along the ray. Before this singularity
arises, our WEB approximation must break down,
since the radius of curvature of wavefronts no longer is
large, and A„„becomes a rapidly varying function of
position. In general, whenever the ray congruence has
a caustic (i.e., a manifold of dimension equal to or less
than three, on which any neighborhood contains a
point with more than one ray of the congruence passing
through it), we expect this to happen.

APPENDIX A: NOTATION AND CONVENTIONS

We assume space-time to be described by a four-
dimensional normal-hyperbolic Riemannian manifold
with first fundamental form

g~ dip tv
and signature (+———). We denote the determinant
of g„„by g. Greek indices take on the values p, v, ~

=0, 1, 2, 3, Latin indices take the values i, j,
=1, 2, 3, and summation over repeated indices is
implied.

Partial derivatives are indicated by a comma, e.g. ,

f,„=8f/ax". —
Covariant derivatives with respect to the total metric
g„„are eever used; however, covariant derivatives with
respect to the background metric p„„will be indicated by
a semicolon (as in T„„,).

ChristoQel symbols for a metric m„„are defined by

;m"(m,—p,—,+ m„,p mp~„), — (A2)

and the Riemann tensor for this metric is given by

R, (m„,)—=
PV .s P~.v

r5 yP ry BP

The Ricci tensor is R„„(m p) = m "R,„.„(m p)

(A3)

~9 M. Kline and I. W. Kay, 8/ectromageetjc Theory meed Geo-
metrical Optics (Interscience Publishers, Inc. , New York, 1965),
p. 326.

4' M. Born and E. Wolf, PrilciPles of Optics (Perganmn Press,
Inc., New York, 1959), Sec. 3.2.3.
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Pairs of indices, respectively, symmetrized or anti- We de6ne
symmetrized are denoted as

and assume

c=X/L—, , k„—=g „,

The alternating symbol is defined by

&pro ~=

&[yves

v] y Epy23 = 1 .

Units are chosen so that the speed of light c and
the gravitational constant 6 both equal unity, and the
Qat-space metric assumes the Lorentzian form

R(')
p
——O(1), A&=O(1), A&, ,=O(1),

(85)
k„=O(~ ') k„,,=O(e ')

When these are substituted into (82), we find

k.k —A~j+i52k.A' +k.'A 3
+/A~. ,

' +R~.A j=0, (86a)
0 ik„A "+A",„=0. (86b)

.0
In (86a) the terms in the various brackets are of order
e
—', c ', and 1, respectively. When we set terms of the

same size equal to zero, to lowest order we have
APPENDIX 3: GEOMETRICAL-OPTICS

LIMIT FOR LIGHT
kpkj'= 0, (8&)

P '"=0

We may combine these and specialize
gauge, ~here

P;a +g (0)g,r 0

„=0.
Lcompare (5.S), (5.9), and (5.12)g.

In flat space, (82a) has solution

(8ia)

(a1b)

to the Lorentz

(82a)

(82b)

In this Appendix, we present a brief treatment of the
geometrical optics of light moving through a curved-
background geometry. The analysis is based upon class
lectures given by Professor C. W. Misner at the
University of Maryland in 1965. It should be read in
conjunction with Sec. 6, and so a similar notation has
been adapted to emphasize the close relation between
light and gravity.

In vacuum, the Maxwell equations have the form

k„3~=0, (as)
or that the vector potential ))t„ is orthogonal to the
direction of propagation of the wave.

The second-order terms in (86a) imply

A„,pks+ ',A„kp'&=0. - (89)
We may introduce an amplitude ~ and polarization
vector e„by the decomposition

A„=Me„,

where e„e&= 1,M= (A„A—&)ii'. Equation (89) may be
solved to give

e~.,&k~=0, (810a)

which implies the eikonal equation

v'4. -(t, t
=0,

and that k is tangent to null geodesics since k ., pk
=kp. k =0.

To lowest order, (86b) yields

=g e»a&~ (83) (W2k~), =0. (810b)

f„=A„e'&. (84)

where A„, k„are constants; however, in a curved space
this is no longer true. If we consider only high-frequency
light waves with wavelength X, and the geometry
varies over a characteristic distance L))X, then locally
the wave 6nds itself moving in an approximately Qat
domain. The Oat-space solution (83) should then be
good if A„and k are assumed to vary slowly over a
distance L. We may therefore assume a trial solution
of the WEB form (see Sec. 6)

Since the polarization is parallel-propagated along null
geodesics with k as tangent, we may impose k e =0
as an initial condition at one point, and it will be true
along the entire curve, guaranteeing consistency
with (BS).

Electromagnetic radiation in the geometrical-optics
limit travels along nuII geodesics, with its polarization
parallel-propagated and its amplitude satisfying (810b),
just as does gravitational radiation )see (6.9), (6.16),
and (6.15c)).


