
C4 jonrna! of experimental and theoretical physics established by K L 1Vichols in 1899

SEcoND SERIKs, VQL. 166, No. 5 25 FEBRUARY 1968

Variational Principles for Expectations

SANFORD ARANOFF

Physics Department, Rutgers University, Eearark, Sm Jersey

AND

JEROME K. PERCUS

Courant Institute of Mathematical Sciences, Rem York University, New York, Near York

(Received 23 August 1967)

Variational principles for expectation values of physical quantites other than the energy are derived.
The expressions implicitly require Green s-function estimations, and higher-order corrections are available.
One principle involves a subsidiary minimization, and the other involves the difference between two
quantities which are minimum at the stationary point; consequently, numerical computations can be
made with both of these principles. As a simple example, the mean-square radius of the hydrogen atom
for an incorrect wave function is corrected, with excellent results. Application is also made to the mean-
square radius of a model triton.

I. INTRODUCTION

~~NE can obtain an excellent approximation to the
ground-state energy of a quantum system, even if

the wave function cannot be determined, by construct-
ing a variational principle for the energy. This principle,
the Rayleigh-Ritz variational principle, consists of
selecting from a given class of functions that which
minimizes a certain expression, namely, the energy
expectation itself. The ground state at 6xed values of
constants of the motion is treated in precisely the same
way, so that many excited state energies are available
as well. A wave function which is good for the energy
may be poor for other quantities, ' but unfortunately
there is no analogous known method for approximating
the expectation of an arbitrary physical quantity by
seeking a wave function which minimizes an appropriate
expression for this expectation. Methods do exist, how-
ever, which permit the calculation of quantities which
are probably good approximations to the desired ex-
pectation. '—4 These methods require ending the sta-

* Supported in part by the U. S. Atomic Energy Commission,
Contract No. AT(30-1)-1480.' C. Ekart, Phys. Rev. 36, 878 (1930);W. Kauzman, Quantum
Chemistry (Academic Press Inc. , New York, 1957);P. O. Lowdin,
Ann. Rev. Phys. Chem. 11, 107 (1960);H. Preuss, Z. Naturforsch.
16a, 598 (1961).' M. Cohen and A. Dalgarno, Proc. Roy. Soc. (London) A280,
258 (1964). See this paper for references to previous work.' Y. Rasiel and D. R. Whitman, J.Chem. Phys. 42, 2124 (1965);
D. D. Cheng and Y. Rasiel, ibid. 44, 1819 (1966).' J. Musher, J. Chem. Phys. 46, 1 (1967).Here it is shown that
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tionary point of an expression rather than its Ininimum
and are called variational principles, in contrast to the
Rayleigh-Ritz principle, which is a minimum principle.
In both cases, if one makes a change of order c in the
wave function, the approximation will change by order
~'. Although the variational approach lacks rigor, in that
the approximation may actually be quite far from the
correct value and in an unknown direction, one can say
that it is very probable that an improved value results.
It is necessary to use variational principles, for there
may be no other means of finding an accurate value of
the desired expectation or of estimating the error ob-
tained by using a wave function determined by the
Raleigh-Ritz principle. There are methods of 6nding
upper bounds to errors in expectations, but these are
likely to be very conservative.

Variational principles for expectations have been dis-
cussed by many people. Biedenharn and Blatt' have
derived a variational principle which, however, requires
a complete set of trial wave functions. Frost et al.~ have
given a procedure for finding an approximate wave
function by minimizing the energy dispersion at a 6nite
set of points. Others who have derived variational

various perturbation methods for atoms and molecules correspond
to keeping leading terms of various Taylor-series expansions of an
inverse operator.' S. Aranofl and J. K. Percus, Nucl. Phys. A98, 263 (1967).

L. C. Biedenharn and J. M. Blatt, Phys. Rev. 93, 230 (1954).
7 A. A. Frost, R. E. Kellogg, B. M. Gimarc, and J. D. Scargle,

J. Chem. Phys. 35, 827 (1961).
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principles are Roberts, Vitchinkin, and Sandro and
Hirschfelder. '0 Delves" has obtained a variational
principle for the expectation values of arbitrary opera-
tors. His principle has the drawback that it involves a
saddle point, and so in general a computer cannot be
used to obtain numerical results. A computer can
reasonably be used only to find the minimum of an
expression, not a saddle point. Bazley and Fox" have
derived a variational principle which involves the inte-
gral of a Green's function. Such an integral can be
performed by a computer for a one-dimensional prob-
lem; it is not practical for a problem in three dimensions.

In this paper, a variational principle for arbitrary
physical quantities is developed which assumes the
form of quantities to be minimized and allows one to
use a computer to find the stationary point. In Sec. II,
Delves's variational principle is rederived. Possible
means of forming corrections to the wave function are
discussed in Sec. III. These corrections involve an
appropriate Green's function. In Sec. IV, a suitable
variational expression for this Green's function is
established. This is then used in Sec. V to find a varia-
tional expression for expectations, involving a sub-
sidiary minimization. The hydrogen atom is taken as a
simple test case in Sec. VI. In Sec. VII, the variational
principle is reduced, instead, to a pair of minimization
problems —rather than having a single subsidiary
minimum as in Sec. V—by exploiting an obvious
property of the saddle point. In Sec. VIII, the method
is tested with the hydrogen atom and compared with
the method of Sec. VI. Application to a model triton is
given in Sec. IX, and methods and conclusions are
summarized in Sec. X.

&Z)4—=&4 IZI&) (2.2)

denotes the expectation of Z in the true ground state of
B.Thus

8
&Z&p = Ep(H+)Z)—

N X=0
(2 3)

E. M. Roberts, Phys. Rev. 128, 138j. (1962).
s S. I. Vetchinkin, Dokl. Akad. Nank SSSR 147, 1328 (1962)

/English transl. : Soviet Phys. —Doklady 7, 1132 (1963)g.
"K.M. Sandro and J. O. Hirschfelder, Proc. Natl. Acad. Sci.

U. S. 52, 434 (1964).
» L. M. Delves, Nucl. Phys. 41, 497 (1963).
"N. W. Baziey and D. W. Fox, J. Math. Phys. 7, 415 (1966).

II. PROTOTYPE VARIATIONAL
EXPECTATION

The most straightforward approach to determining
a variational expression for an arbitrary expectation is
to relate it to an appropriate energy expectation. In-
deed, one knows from first-order perturbation theory
that as )t-+0, the ground-state energy of H+)Z
Lassuming nondegenerate Ep(H)) is given by

Ep(H+XZ) =Ep(H)+X&Z)4, (2.1)
where

Suppose that P is an approximate ground-state wave
function for the system Hamiltonian H; thus we must
of course use the ansatz P+)iX to represent the state of
H+) Z and vary X for a minimum. This clearly leads to
the approximation

a &y+) X~H+)iz~y+)tx)
g

a) Q+ ) x
~
y+) x)

(2.4)

or, since we may choose P as normalized and X orthogo-
nal to P,

&4 I4&=1, 8 IX)=O,

we have the result"

(2.5)

(Z y)P= (E H)]
Z= 8 I

Z Ilia&.

(2.7)

For solutions to exist, the Lagrange parameters E and

y become energy and (Z), respectively. More to the
point, if we expand about the stationary solutions

4 =4+~4,
x= (E—H) '(Z—&Z&)l(+hx,

(2.8)

we readily find

z—
&4

IZING)=

&sylz —&z) I sy)

+&~&l H EI ~x&+&»I—H EI 34», (2 9—)

second order in the pair bg, bX

The procedure then is to find functions P and x which
make (2.6) stationary. If (2.6) were a minimum

principle, this procedure would be straightforward. Un-

fortunately, it is a saddle point, and so although it is
certainly effective in analytic calculations, its form is not
at all appropriate to numerical work. There are a
number of powerful techniques using large-scale digital
computers for minimizing functions of many variables,
but the determination of a saddle point is beset by
obvious difFiculties. We shall return to the saddle-point
problem in Sec. VII, explicitly exhibiting the saddle-

point characteristic and giving methods for reducing it
to stationary forms more suitable for computer solution.
First, let us examine the general problem of the con-
struction of variational principles.

III. CORRECTION TO THE WAVE FUNCTION

By a variational principle for a quantity Q, we

generally mean an expression Qt x), in some independent
quantity x, which takes on the value Q at a special value

xo and converts a first-order error in xo to a second-order

Z= &4 I ZI4»+8 lH I
X)+&x lH I4&. (2.6)

The expression (2.6) is in fact variational with
respect to both P and X. Inserting (2.5) via Lagrange
parameters and varying with respect to X* and p*, the
stationary functions, say, $ and P, are given by
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error in Q:
Q[xp+ 8xj=Q+O((8a)') . (3 1)

Ggj=0 (3.3)

into a second-order error. Two approaches may be
distinguished. First, there is the Newton-Raphson"
iteration, more familiar in its application to algebraic
equations. To solve Gg]=0 when our guess is P, we
simply set P= @+8$and expand:

~G[ej
GL~j=GE~]+~~ +l~~~:

8$ 8$8$

~'G [43
+ (3 4)

where the notation has been tailored to G and P being
vectors; for functions, each derivative is a variational
derivative. Though second order, this yields at once for
the solution to (3.3) i'i/= —[ctG[qh]/rlgj 'G[gj, or

[~GE4 j/—~ej 'G[4j, (3 5)

and in fact the error can be made O((8p)') for any s by
including further terms from (3.4) before solving for 8P.

Returning to the problem at hand, the Schrodinger
equation can be written in nonlinear form without
specifying the energy:

An important consequence of this definition is that it
can be pyramided to an F depending on Q, since clearly

P[Q[*o+h lj=P[Q1+O(~*)'), (3 2)

as well. This means that the obvious way of obtaining a
variational principle for Q IZ!f&, where HP=EP, is to
construct a principle for f[p] which corrects any input
p to a solution to HP=Ef, and then substitute into

Q IZING&. We shall proceed in this direction.
Generalizing again, there are innumerable iterative

techniques for transforming a erst-order error in the
solution to

contact with common physical concepts. Our wave-
function guess g, instead of being regarded as approxi-
mately satisfying the exact Schrodinger equation, can
trivially be taken as exactly satisfying the modified
Schrodinger equation

where
ao=lI

for any perturbation H/ for which

Wg= (H 8)p.—

(3.10)

(3.11)

decomposed according to P plus the complementary
space to Q, then

(Hpp 0 )
(0 H„)

Hence
H p= PHP+ (1 P)H (1 P)—
W =PH (1 P)+ (1 P)HP—, —

and (3.12) reduces a bit to

(3.13)

In this form, the determination of f to any order
follows from any perturbation method which adds S'
to the "unperturbed" II—t/I/". For example, Rayleigh-
Schrodinger perturbation theory'4 then yields at once

P=y —[1/(Hp —S)j(1—P)Wy, (3.12)

with a second-order error in 5g. An obvious form for H p

is that part of H which does not connect p to its
orthogonal complement, i.e., if

Hpp Hpi)

Hip Hll/

and we find

0=G[4 j=H4'—
(4 I&&

&~IHI~& l~&(~IH

(3.6)
P=@—(Hp —h) 'WP. (3.14)

We will employ the perturbational form (3.14),
although many others exist, among them an expression
based upon the resolvent-operator technique, which
gives rise precisely to (3.9).

+ -l~&(~l. (37)
&elHI 4&

(~l~&'

Thus, if p is normalized, (p I
H

I rts&= P, and we define the-
projection onto $

P= l~&&~l, (3.8)

(3.5) becomes f=P [H PH (1—P)—gj '(—H —g—)re,
or just

(1 P)[HI(H -&)-3~. (-39)

A second approach is less rigid and maintains closer

"H. Margenau and G. M. Murphy, Mathematics of Physics assd
Chemistry (D. Van Nostrand Co., Inc. , New York, j.956), p. 492..

IV. EVALUATION OF THE CORRECTION

Under a number of circumstances, (3.14) can be
evaluated in relatively explicit form. For example, if
p is an independent-particle state of many-fermion
system,

~=K(—1) II .'('),

where P refers to an index permutation, then a solution
can be found in terms of a system of separable two-body
equations. In fact, for determining expectations of one-

' Cf. K. Beckenbach, Modern Mathematics (McGraw-Hill.
Book. Co., New York, 1956), p. 396,
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body sums, a system of one-body equations su%ces.
For further details, see Appendix A.

In general, however, for initial wave functions which
are not mixed configurations of type (4.1) but are of
more involved intrinsic structure, a solution to (3.14)
of the above-mentioned form is unavailable. In such a
case, one may carry the variational process one step
further back and introduce a variational expression for
the Green's function

matrix elements. Hence (4.4) is to be applied in the form

&X~ I
G

I
Xp&= 2&X~I G

I
Xp&—&X~ I G(Hp —8)G

I
Xp& (5 4)

This equation must be used with discretion, because of
the fact that one is really only varying the vectors
&~

——GX~ and $p
——GXp in it. The most direct use of this

equation consists of writing

&x& I
G

I
xp& = &k~ I

x2&+ &xi I b&—&b IHp —8I b&, (5 5)

Go=(Ho —8) '. (4.2) where

This is most easily obtained by guessing a result G,
noting then that Ho —b is close to G ', and hence
writing Gp = LG '+ (Hp —8—G ')j ', which becomes an
expansion

Gp G ——G(H—p 8——G ')G

+G(Hp —8—G ')G(Ho —8—G ')G+. . . (4.3)

If Hp —8 is non-negative (its lowest eigenvalue will

usually be precisely zero), (4.3) in fact supplies an upper
bound to the operator Go when truncated at any even
order.

In particular, a second-order variational principle
results from truncation at second order, which yields

6= 2G G(Hp 8)—G. — (4.4)

The minimum character of this principle is directly
evident from the relation

(Ho —8) '—2G+G(Ho —8)G
= LG(Hp —8)—1j(Ho —8) 'I G(Ho —8)—17 (4 5)

More generally, the upper-bound assertion for even-
order truncation is a consequence of the identity

2s—1

(A+8) '= P (—1)&(A 'B)&A

+(4 'Il)'(A+&) '(IlA ')' (46)

V. SUBSIDIARY MINIMUM PRINCIPLE

(] Ix,)=(x
I ( ) x —= (z—&z&)y, x,—= (H —(H))

and varying with respect to f& and Pp I the subsidiary
condition in (5.5) need not be specifically imposed; it is
a consequence of the variationj. However, (5.5) has the
unsatisfactory saddle-point character of (2.6); we shall
return to it in Sec. VII.

As an effective alternative approach, we may deter-
mine, say, (p by a separate variational —even minimum—principle, and then substitute into the desired matrix
element. In other words, we observe that &p~lHp —8I $p)

Q] I
xp) —&x& I $p& is stationary with respect to variation

of $q at fp= (Hp —b) 'X2, and that &x& I
6

I Xp& of (5.5) has
the value (Xz

I $p) at this point. But the stationary point
$p can also be found by locating the minimum with
respect to (, of

~= &~.IH.—8I~.&-&"l~.&
—«. I "&, (56)

after which we set

&X~ I@IXp&= &Xrlb). (5.6')

Equations (5.6) and (5,6') constitute an apparently
practical computational technique.

The subsidiary variational principle (5.6) of course
has its dual,

(5 7)

Ho —
8IP &

—&x lg &
—

&P lx,

corresponding to b= (Hp —8) 'Xq, but the usefulness of
(5.6) and (5.7) is surprisingly nonsymmetric. This is a
consequence of the situation that often in practice the
wave functions available for variation are in some pre-
scribed linear class. Suppose that (5.3) is to be evaluated

by use of (5.6). We are thus called upon to minimize

Let us now proceed to variational expressions for
expectations. We seek the correction term

Az=&plzly& —8 IZING&. (5.1)

Inserting (3.14) and retaining only first order, we have

Az = —2 Re(zp I (Hp —8) '
I WP), (5.2) m= &g IH, —8

I P&
—

&p IH
—8

I 4&
—

&4 I
H —8

I P&, (5.8)
and to avoid the possibility of confusion we can subtract
the P component of ZP without changing the value of
the expression. We thus have

Bz= —2 Re((Z —(Z))pl (Hp —8) 'I (H —(H))Q), (53)

where unspecified expectations hereafter refer to the
initial state $.

Now we are interested, not in the full Green's-
function matrix (Hp —8) ' itself, but rather in specific

or, using (3.13) to express Hp in terms of H and the
projection P= Ig&(gl, we find

~= &~-~l H 8I ~-~& —&~IH 8—1~&—
—&tie&(4IH(1 —P) I S&

—
9 I (1—P)H&&&&I k& (5 9)

Now the minimization of (5.9) can be carried out under
the condition &P I $&

=0, but if P—$ varies over the same
linear class as does P, the absolute minimum of
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$I—H Bl—qh
—

f& is zero at ]=0. Thus no improve-
ment is obtained.

On the other hand, the dual principle (5.7) involves
&q= (Z—(Z&)$, and so we minimize

(p IHo —h
I p&

—
&@ I

z—&z
—(PI z—(z&14». (s.10)

A trivial calculation thus establishes that

~'=(( IH —hl ~&
—(&I"I ~&

—(~ I"I &&

=A'(k'/2m) (-',—~pa)+48A,

with a minimum at

A=

(6 6)

(6.7)

We conclude that

($ I
H

I y&= ', A (—1 n—) (5'/2m)
= —12(1—n)/(-',——,'n), (6.8)

hz= —2 «g IH —Bl && (5 1 ) sotha

at the minimum of

The optimal form for $=(Hp —h) '(Z —(Z))@ then
gives a nontrivial result. Coupling (5.3), (5.10), and
(5.11) and inserting the explicit form (3.13) for Hp, we
conclude that

m'= (p IH —h
I p&

—9 I
z—(z

—(~lz —(z&lq&yx, (5.»b)
where either

&= —(i I

H —&
I &&(& I &&

—
&& I &&(& I

H—~
I &&

or %=0 and M' is evaluated subject to

(5.11c')

with (5.11c) or (5.11c') used as convenient. Equations
(5.11) are the major results of this section.

VI. ANALYSIS OF A TEST CASE

= 24(1—~)/(-' —p~) (6.9)

A. /( )= —o.o86.

Now with the ansatz (6.5), here reading

(6.10)

which is in fact the exact result through 6rst order in
(1—rx). The very crude form (6.5), coupled with the
variational principle, is in this case entirely effective.

The above comparison is only through first-order
perturbation. As a further check, we may consider a
full numerical comparison. Suppose that we choose the
approximation Ce " to the hydrogen atom, where
a=1.8A '. The fractional error in mean-square radius
is found to be

To get a feeling as to how effective the variational
technique (5.11) will be, we shall set up a simple,
extremely solvable model —the hydrogen atom. Thus, in
suitable notation,

t=A (3—2ar)y,

~r'/(r2& = —0.0942

(6.11)

(6.12)

O' A' nB=— V'—
2m 2m r (6 1)

which is indeed quite close. Since the effectiveness of the
simple (6.11) may appear to be accidental, we can
generalize (6.11) to

iP =Ke ~"" E = —(b'/8nz)n' g= A I 3 2(1+b—)ar+ha'r'5P (6.13)

y= e-"~'/v2. (6.2)

Finally, for the observable Z, we select the square radius
r', so that

As our approximate wave function, we choose, adopting
units such that n= 1 and eliminating the angular
coordinates,

and we now find

~r'/(r2&= —0.092 (6.14)

which is even closer. The optimal parameter is now
b = —1.825, so that (6.11) and (6.13) are quite different
but nonetheless nearly equivalent insofar as Ar' is
concerned.

or
g Ir'IP&=12/n' (r'&=12, (6.3)

VII. SADDLE-POINT REDUCTION

AZ= 24(1—n)+
The task of the variational principle is essentially to
compute f= (Hp —8) '(r' —12)g, and by the method of
Appendix A, Eq. (A19), this indeed has the exact value

$= (2nz/h') (-',r'+2r' —44)y (6.4)

Now for $ we choose instead only a linear function of
r multiplying p, and orthogonality to p hence requires

A saddle-point variational method is amenable to
standard numerical procedures if it can be reduced to a
pair of minimization problems. In principle, this can
always be done. In practice, let us examine the principle
(5.5), dropping the unnecessary subsidiary restriction:

AZ= stationary value of

2 «L&grlHp —hlh& —(k~lx2& —(X~l t2&5 (7 1)
where

~=A (3—r)y. (6.5) = (z—(z&)4» = (H—&H&)4
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To convert (7.1) to the desired form, we set

b——(1/c) (A+B), t,=c(A —B),
A=!L b+(1/)b), B=ll l-(1l )b),

(7.2)

for some constant c, so that we must consider (real part
understood)

I &A IHo—@
I
A &

—(1/c) &A I xs&—c&X

—L&BIHo—hl B&+(1/c)&BIxs&—c&xiIB&) (7 3)

Now (7.3) will clearly be stationary where each member
is minimum. Hence we ask instead for the minimum of

L(A IHo —

GAIA&

—(I/c)&A I&s&—t'(xi~A&)

+DBIHo—hl B&+(1/c)&BI»—~&Xi
I B&) (7 4)

Substituting back from (7.2), we now have the sub-
sidiary minimum principle

A~= 2 «I &kilHo —bib& —
&~i I Xs&—&Xil le&)

Ar'/&r'& —0.050

is only slightly worse.

(86)

precisely the approximate result of (6.9), correct
through first order as (1—u), which is all that can be
expected.

Again, it is informative to test (7.5) for the full
numerical error. %e choose once more the hydrogen
atom, with approximation and error given by (6.10).
If the form (6.13) is assumed for each of $i and b, but
with arbitrary linear terms as well, and if the subsidiary
condition of (5.5) is imposed via a Lagrange parameter,
we find

d,r'/&r'& = —0.053, (8.5)

an undercorrection rather than the overcorection of
(6.14). If the sibsidiary condition is not imposed, i.e.,
(7.5) is used unchanged, then the computation is
simpler, and

&—="L(hilHo —6
I 6)—2 «bi I 4))
+ (1/c') L&b IHo —h lb& —2 «&ks I xs&)

is minimum. Again, if we restrict ( by &)lg&=0, then
by virtue of (3.13) we can replace Ho by H. Now we
have two separate minimizations, each one a replica of
one of our previous subsidiary minimizations (5.6) and
(5.7). But (7.5) and (5.7) are not independent, for if we
restrict $s by &bl&&=0 and $s is expanded in the same
linear set as g, then b ——0 necessarily results, in fact
converting (7.5) to the demonstrably useful (5.7) and
(5.11).On the other hand, if b covers a larger set, e.g. ,
if nonlinear parameters are involved, then (7.5) may
be more likely to strike a balance between optimization
of $i and b. We shall consider two examples of such a
situation.

VIII. FURTHER ANALYSIS OF A TEST CASE

If the conditions &)il&&=&big&=0 are imposed, Hs
may be replaced by H in (7.5). Let us return to the
hydrogen atom of Sec. VI and observe that, by restrict-
ing g to (6.2) but allowing (6.5) for $r, we are indeed
allowing a larger class for the latter. In the present case,
we need b as well, and accordingly set Dollowing the
notation of (6.1))

b=B(3—r)4. (8.1)

B= (1—u)/(5 —3u).
Hence

~~= 2(&hlH —@
I b&—(b IH I e&

—(elr'Ib&)
=AB (As/2rrt) (5—3u) —A (A.s/2srt) (1—u)+48B

=24(1—u)/(g —su),

(8.3)

(8.4)

Consequently,

(blH-&I b& &blH- ~l~& Q-IH hl~.&--
=Bs(its/2rrt) (-',—asu) —B(tits/2rtt) (1—u), (8.2)

yielding

IX. TEST CASE WITH NONLINEAR
PARAMETERS

When the variational functions available contain non-
linear parameters, the technique (7.5) has more to
recommend it. Indeed, the 6rst-order wave-function
correction ]s is a byproduct of the computation. The
method has been applied to a model triton, a nucleus of
three particles bound by the potential

V= —Vo g s-o'"

For this system, a polarized Gaussian wave function

y=Sym P c; exp[—-'(y/f, )

X (ris'+tt;(rs —-', r,——,'rs)')) (9.1)

has been found' "to be a very good approximation. For
Laskar's potential "Vp= 37.40 MeV, p, =0.2699 F the
results obtained were &PI H

I P&= —8.50 MeV, &Pl r'I p&"'
= j..65 F, where r is the radius from the center of mass;
the optimizing polarization parameters were u~=0.337,
us ——2.096. Since the asymptotic form of (9.1) cannot be
correct, it is important to determine the correction
to (r').

To apply (7.5) in this case, the correction functions
$; were chosen to be of the same form as p:

P, =Syin d; P c, emP k(v/fs,)—
X (ris'+tt;;(rs —-', ri—-', rs)')). (9.2)

On numerical minimization, the stationary values of P;
were in fact found to represent highly polarized com-

i' R. C. Herndon and Y. C. Yang, in Methods of Cotrtptttatsortat
Physics, edited by B. Alder, S. I'ernbach, and M. Rotenberg
(Academic Press Inc. , New York, 1966), Vol. VI, pp. 133—234,

'e W. Laskar, Ann. Phys. (N. Y.) 17, 436 (1962).
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pressed states, because of the large values of the a;, :
egg ——7.245, egg ——9.087, egg=3.086, a22 ——2.255. (9.3)

Using the corresponding $;, the mean-square error
correction became the very small hr'/(r')=0. 0157,
which is a further indication of the excellence of the
polarized Gaussian wave function p.

pendent-particle state of a many-fermion system

where p refers to an index permutation, then we may
choose the one-body sum

X. CONCLUSIONS Ho=& h(i), (A5)

A class of variational principles for expectation values
of arbitrary physical operators has been derived which
permits the stationary point to be found with a
computer. Each involves the subsidiary minimization of
one or more expressions. The simplest principles require
only a single minimization, but their utility depends
very much on the precise nature of the class of varia-
tional functions. One principle which does not appear
restricted in this fashion has been applied to the simple
case of the mean-square radius of the hydrogen atom
with excellent results. A second principle was deter-
mined by a general method of converting stationary
saddle to pairs of minima. This is especially suitable for
nonlinear parameters in variational functions. We have
tested it on the above hydrogen-atom problem and
applied it to a model triton. In spite of the fact that a
variational principle gives only a probable improve-
ment, not a rigorous improvement, results suggest the
use of the minimum-type principles to find improved
values of expectations of physical quantities.
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APPENDIX A: ANALYTIC EVALUATION
OF THE CORRECTIONS

For the purpose of developing corrections to expecta-
tions, it is sufhcient to find the first-order wave-function
correction

where

&(i)ui(i) =~~ui(i)

U=g U(i), (A6)

and define the projections on and oG the Fermi sea

(A7)

Then

where

l, tn+S

y;„=By/B u(i)

s the mi cofactor of p. But

Q;u&(i)y; =8& y

and P(u&
~
U

~
u~&= (Q U(i)), and so we conclude that

Z U()4=2 Z()U()4+(Z U()&4 (A1o)

In particular, if U= Z—(Z), so that (U) =0, then only
the desired Q(i) U(i) is present.

For a two-body sum

and (A1) and (A3) can be evaluated in relatively
explicit form.

Since (Z—(Z))p has no p component, there can be no
trouble with resonance denominators in (A3) or (A1).
In fact, this statement holds for each particle: For any
s-body operator U(1, ,s) present in Z—(Z), we can
assume that particles 1, ~, s have no components io.
the Fermi sea S of N~, ~, N~. Let us show this ex-
plicitly. Consider 6rst a one-body sum

b=4 —4

=(Hp —8) 'Wp, (A1)
l =Z' l'(i j) (A11)

where Ho is the "unperturbed" Hamiltonian of which P
is an eigenfunction, Hg= hg, and W the perturbation

W =H Ho (H Ho&. — — —(A2)

Alternatively, for 6rst-order corrections, one can instead
determine

& = (Ho- ~)-'(Z-(Z&)~, (A3)

which may be simpler. In any event, if p is an inde-

one proceeds similarly. Now

2 l'(i j)4=2 Z(i)Z(j)l'(i j)4
+2' Z(i)(«(y) I

l'(i y) I u-(») &u~(j)4»-
+2' Z(j)(u (~) I

l'(~ j) Iu-(*))u (i)4
+2' (u~(~)u (X) I ~(~,y) I u-(~)u-(y) &

X«(j)ua(i)y; „,
where P;,; is the (E—2)&&(X—2) cofactor. Hence,
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using (A9) and its (E—2))& (1V—2) analog, we obtain

2' I'(', i)~=K' Z()Z(i) V(',i)~
+2 2 Z(i)(~)(y)I I'(i 3')I N)(r))4
—2 2 Z(i)(~ (x) I

I'(i,y) IN-(y))~ (i)4'-
+2(Z' I'(i,j))4. (»2)

Again, if (V)=0, the Fermi-sea components of each
operator are missing. One can readily extend (A10) and
(A12) to s-body operators.

Now, if we fix a permutation p and a tenn 2 (1, ,s)
in Z, our problem is to solve

h' o)'

+~(~))e( ) ='e(~),
2m a ' (A17)

then it is easy to see that

A2 82 |8 8 1
+ ()—=---- —~()'—,(«&)

2m Br' 2m 4) (r) Br Br p(r)

so that, if f(r) is orthogonal to P(r),

then the one-body singular Green's function correspond-
ing to an s state can be written down at once, i.e., if

(IIs—h) &= Z(1, ,s)g u, .;(i),

where Z(l, ,s)gq' u~. , (i) has no components in the
Fermi sea. Since b= P e„.;, we have at once"

9))(r') f (r')dr'dr". (A19)
~'( ") ~

(A14)
[(A19) may have an irrelevant @ component. $

Another way of expressing (A19) is to observe" that
if (A16) holds and we define

where
S S

P [h(i) —e„.,]P,=Z(1, ,s)g m„.;(i).
1 1

S

k. (1, ,~) =f'.(1,. ,~)II ~..'(i),
1

(A20)

The problem thus reduces to that of the s-body Green's
function on the space above the Fermi sea for the
separable operator Pr' [h(i) e„,]—In .ge.neral, one can
solve numerically or by a complete expansion in orbitals:

&.=2(» (1) .».(~) IZ(1, ,~) ls~'r(1). ~'.(~))

then on commuting g [h(i) —e„.;] through, and using
[h(i)—e~;] I„.; (i) =0, (A14) becomes simply

Q(V 8+V, lnu~. ,"V,F)
2mS

&&II;()I(";—"') (»5) S S

= [II~"(')]-'Z(1, ,~)II s~"('), (A»)
1 1

In special cases, however, closed-form results are avail-
able. Thus, if the one-body Hamiltonian h has the which, e.g., for s=]. and radial N„.~ is immediately
standard form solvable.

h =p'/2nz+ r) (r), (A16)

"O. Sinanog1n, Proc. Roy. Soc. (London) A260, 379 (1961).

"S.Borowitz and M. O. Vassell, J. Quant. Spectr. Radiative
Transfer 4, 663 (1964).


