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the same range of excitation and for the same optical
potential, however, the (p, t) cross sections are found to
be only in marginally better agreement with experi-
ment. The agreement in these (p, 'He) cross sections is
certainly acceptable the present theory predicting
fairly well those states which are strongly or weakly
excited.

It would appear from the above results that a com-
parison of experimental relutiw cross sections with
theory in a (p,'He) )or ('He, p)$ reaction on a T=
target does not clarify the discussion presented earlier~'
which indicated (1) a necessity for some spin-dependent
nucleon-nucleon interaction in the two-nucleon transfer
theory, and (2) the probable necessity for including
spin-orbit coupling in the optical potential. DWBA
calculations that reliably predicted ubsotlte cross
sections for these two-nucleon transfer reactions and
could incorporate these efFects would certainly resolve
the problem. Insofar as the 6rst efFect is considered, a
comparison of experimental and theoretical relative
cross sections for (p, 'He) for ('He, p)j transitions on
T=O targets would be expected to be much more

sensitive to the presence of a spin-dependent nucleon-
nuc1eon force, since here the neutron-proton pair is
transferred in unique '5, . T=O or 'S, T= j states.
Calculations by Hardy and Towner" of the states
populated both in the "C('He,p)"N reaction at 20 MeV'
and the "O(p, He) "N reaction at 40 MeV' show that a
spin dependence, consistent with that used in theoretical
calculation and compatible with that used previously
by us," is required in order to account for the experi-
ITIental cross sections. %e will further discuss the
necessity for including a spin dependence in the two-
nucleon DKBA calculation in a forthcoming report on
the "O(p,'He)'4N and "O(p t)'40 reactions.
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Cross sections for (d,p) reactions calculated in the physical region are extrapolated to the Butler pole in
order to investigate the possibility of extracting reduced widths. The cross sections are calculated by dis-
torted-wave Born approximation (DWBA), using a method of evaluation yielding cross sections with the
correct analytic behavior near the pole. The cross sections in the unphysical region between the pole and the
start of the physical region are calculated and compared with the extrapolation of cross sections from the
physical region. Detailed calculations are made for two reactions in which the neutron is captured into an s
state: Si"(d,p)Si" to the ground state, and C"(d,p) C" (3.09 MeV). It is found that an effect of the Cou-
lomb interaction prevents accurate extrapolation to the pole for heavy nuclei or low energies. The method
of evaluating the DWBA cross section has an advantage over the usual method in that fewer partial waves
need be summed.

I. INTRODUCTION

'HE amplitude for the stripping reaction A+a ~
8+p for fixed deuteron energy Za is a function

of the variable

P= Lka —(srt~/rltr)k, l', (1.1)

with a pole ' ' the Butler pole, at Q'= —x„s. ka and k„
are the deuteron and proton momenta in the c.m.
system, and

x '= 2rrt. gB/Pt', — (1.2)

where 8 is the binding energy of the captured neutron.

' R. D. Amado, Phys. Rev. Letters 2, 399 (1939).' H. J. Schnitzer, Rev. Mod. Phys. 3'T, 666 (196Q.

The notation

is used for reduced masses. The residue at the Butler
pole is proportional to the reduced width for the reaction
A+n-+ B. Amado' pointed out the possibility of ob-
taining this reduced width by extrapolating the stripping
cross section to the pole.

Very accurate experimental results are required for
this extrapolation, and the reliability of the reduced
widths obtained cannot be checked. It thus seems
desirable to perform the extrapolation when the reduced
width is already known in order to check the reliability
of the extrapolation. A way of doing this is by means of
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a computer experiment. ' ' Cross sections are calculated
in the physical region and then extrapolated to the pole
to yield a reduced width which is then compared with
the known reduced width of the calculation. This paper
describes such a computer experiment.

A difhculty with these computer experiments is that
the stripping cross section cannot be calculated exactly,
but some approximation must be used. The results of
this paper show that the approximation must be chosen
with some care.

Extensive computer experiments on stripping re-
actions have been performed by Dullemond and
Schnitzer. ' They concluded that cross sections cal-
culated by the distorted-wave Born approximation
(DWBA) cannot be extrapolated reliably to the Butler
pole. However, in the DWBA method, the partial-wave
expansion of the initial and 6nal wave functions is used,
and in the DWBA calculation used in DS (and in most,
if not all, other DWBA calculations) only a finite
number of partial waves are summed, so that the ampli-
tudes obtained are polynomials in cosa and do not have
poles. Thus a sufficiently accurate extrapolation of such
a DWBA cross section should yield zero for the reduced
width, and it is interesting to note that this result was
obtained for one case in DS.

Because in the usual calculations, the DWBA ampli-
tude does not have a pole, the problem of extrapolating
stripping cross sections to the Butler pole cannot be
investigated reliably by examining the extrapolations
of these D%BA cross sections.

This paper describes a computer experiment similar
to that in DS. However, the cross sections are obtained
from a DWBA calculation which was modi6ed to
include the summation over all the high partial waves

by using a closed form for this in6nite sum. The ampli-
tudes obtained from this calculation have the correct
analytic behavior in a neighborhood of the Sutler pole.
The effect of the Coulomb interaction between the in-

coming deuteron and the target nucleus and between
the outgoing proton and the residual nucleus is con-
sidered. As well as adding a cut from the Butler pole
to Q'= —co, the Coulomb field also modifies the relation
between the reduced width and the residue at the pole.
This latter eGect of the Coulomb 6eld was neglected
in DS.

With the modi6ed DWBA, cross sections are also
calculated in the unphysical region between the Butler
pole and the start of the physical region, and compared
with those obtained by extrapolation from the physical
region. It can then be seen that the effects of the
Coulomb interactions make the extrapolation of strip-

ping cross sections to the Butler pole almost impossible
in some cases.

' C. Dullemond and H. J. Schnitzer, Phys. Rev. 129, 821 {1963),
hereafter referred to as DS.

4 N, K. Glendenning, Ann. Rev. Nucl. Sci. 13, 191 (1963).

mggm~g k~
o.(8)= (2.»

(2x I't ')' ke 3(2Jg+1) sr~o.
MB@,y

If the neutron is captured into a state of definite angular
momenta j„and l„, then

Ioptesoeseg= Q (&~&~~&js,~s~ Ja&~s)
~nms

X (i»&m»& a&tt&& ~ J»&~&&)(s&ttp&s &is» ~ 1&ts&t)~j»t„&&& ~ (2 2)

Since the singularities introduced by the short-range
nuclear potentials between the deuteron and the target
nucleus and between the proton and the residual nucleus
do not coincide with the Butler pole, ' the DWBA ampli-
tude in a neighborhood of the pole is given correctly by
the Coulomb-wave Born approximation. It has been
shown' that, in a neighborhood of the Butler pole, the
zero-range approximation can be used for the neutron-
proton force and the bound-state radial wave function
ut(r) of the captured neutron can be replaced by its
asymptotic form

ut(r) =Etr ' exp( —lr„r). (2 3)

E~ can be related to the usual reduced width. However,
DS have suggested E~ as a de6nition of the reduced
width because it is a model-independent quantity. The
DWBA amplitude in a neighborhood of the Butler pole
is then given by (2.2), with M;„t„„replaced by

M;„t„„' Xt„Ke——i &»+»&F(1+irtt)I'(1+irts)

(e """/r)1't. *(rir)e"'F (1)F(2)«, (2.4)

with
F(1)=Ft

—irtr, 1; i(ktr —kt. r)],
F(2)=FL—irts, 1;i(ksr+ks-r)],

K= (tts/2m„p) (8x-xe), xe'= —(2m„p/Its)Be,

where B~ is the binding energy of the deuteron.

'gt=Ze /tet&eg
&

gs=Ze /Avps &

where ed~ and m~~ are the velocities of d relative to 3
and of p relative to B, respectively, and Z is the charge
of the target nucleus,

kt ——ke, ks ——(mg/mtt)k„,
and

Q=k, —k, .
For the case where l„=0, the integral in (2.4) can be

s W. Tobocman, Theory of Direct Xttclear Reactiorts (Oxford
University Press, London, 1961), Chap. 1.

» M. Andrews, W. K. Bertram, and L. l'. Tassie (to be
published).

II. IN A NEIGHBORHOOD OF THE POLE

The differential cross section for the stripping reaction
A+d-+B+p can be written4'



166 POLOLOGY AN D (d, p) REACTIONS

evaluated, yielding '

Miss' 4r——rlVsKe 1 l»+»&I'(1+irir)I" (1+ir&2)

(K„—skt)'+k22 '» (K„s—ks)'+kts d»

X
Qs+K 2 Q2+K 2 Q2+K 2

&(2F2 i—r&t,
—i»2, 1; 1—

Q2+K 2

(2 5)
K„'+ (kl —ks)'

Writing the differential cross section as.(Q) =(Q+ .)-P(Q),
the residue of o (Q') at the Butler pole is

lim P(Q') =P'( K„'), —
g2 ~a~2

(2 6)

(2 "i)

where P' is evaluated using M;„l„„„'in Eqs. (2.1), (2.2),
and (2.6). For /„=0, using (2.5) in this way, we obtain

2J~+1 mddmpe k„P'(—K ')= —agXO'
2Je+1 m„„' kd

III. CALCULATION OF CROSS SECTIONS

In order to investigate the extrapolation to the Butler
pole we have used cross sections obtained by the DWSA
with the zero-range approximation for the neutron-
proton force, using the method of evaluation outlined
below, which yields amplitudes with the correct analytic
behavior in the neighborhood of the pole.

The diGerential cross section for the stripping reaction
is then given by Eqs. (2.1) and (2.2), with

m~
M;„l„„=K lt„& &'i r ip„*(r)gd'+'(r)dr, (3.1)

Em, )
where pp& & and fd&+& are the elastic-scattering wave
functions of the proton and the deuteron in the exit and
incident channels, respectively, and P„(r) is the bound-
state wave function of the captured neutron.

Substituting (3.1) and (2.2), and using the partial-
wave expansion of the deuteron and proton wave func-
tions, yields

I„pMepdMd =K Q X(LdJdL„JpM p) ld pM&&IddMdl)
X,~&jul&

LdJd,

where

22r(»2+2&2) expL22r(r&t+»2)]

expL22r (2& 2+2&2)$—1

Xexpf —2(q&4 +r&y )],

tang& ——2K„kt/(kt' —k2' —K„'), 0(pl&2r
tangs ——2K„k2/(ks' —kp —K„'), 0()4~2r.

+ YLpMp(kp) YLdMd (kd)RLd jdLp jpj l & (3.2)

where X(LdJdLpJ~p; &d~z&iddMd) is a factor which

(2 g) contains all the relevant coupling coeflicientss and

RLd jdL j j l xpE (~L j +~Ld jd+rrL +rrL )j
yL„j, '(ksr)N, „,„(r—)PL,j, + (ktr)r'dr. (3.3)

When Coulomb interactions are neglected, the ampli-
tude in a neighborhood of the pole is given by the plane-
wave Born approximation using the asymptotic form
(2.3) of the neutron bound-state wave function. Then

M;„l„~„p~=42rIlt&„K(Q2+Kps) ',
and the residue at the pole is

(2 9)

2Jg+1 mdgm„&2 k„P'"(—K„')= — —
Kd ) 1Vl„~ '. (2.10)

2J&&+1 (m„,)' kd

Comparing Eqs. (2.8) and (2.10) it is seen that the
Coulomb interaction aGects the relation between the
residue at the Butler pole and E~„.

The ratio of the non-Coulomb to the Coulomb wave
residues at the pole R is a function of the bombarding
energy of the incoming deuteron Ed.'

Pppr( K 2) e2p('ll+»l

R(Ed) =
P (-K. ) 22r(ri. +2&2)

X expL —22&t(2r —yt) —2»2(2r —$2)). (2.11}

K. A. Ter-Martirosian, Zh. Eksperim. i Teor. Fiz. 29, '713
(1956) LKnglish transl. : Soviet Phys. —JETP 2, 620 (1956)7.' F. B. Morinigo, Nucl. Phys. 50, 136 (1964).

QLd jd'+'(krr), QL„j„' (ksr), and u;„l„(r) are the radia
wave functions of the deuteron, proton, and the neutron;
6 and 0 are the nuclear and Coulomb phase shifts. .

In a neigh' orhood of the Sutler pole, I„,M»„M„ is
given by I„„M»„M„',which is obtained from Eq. (2.2) by
replacing M;„l„~„byM;„l„~„'given by Eq. (2.4) or, for
l„=0, by Eq. (2.5). Alternatively, I„M»„M„'can be ob-
tained from (3.2) by rePlacing Rz,,j,z,„j„„l„by

N)„
RLd jdL j =RLd jdL j,s e pL~(&Ld++L )5

hyke

r 'e """FLd(r&t,ktr)FL„(2&2,ksr)dr, (3.4)

where Fl(r&,r) are the regular Coulomb wave functions.
The DWBA amplitude (3.2) can now be rewritten as

IPyM gP pe = II4~MgII, pe
+ Q X(LdJdL+pMp; ypM&dlddM~)

LgLy JgJg)My

&& YLd Md*(kd) Yz,„M,(k„)

X (Rz, d jdLp jp RLd jdLp jp ) ~ (3 5)

' D. Robson, Nucl. Phys. 22, 34 (1961).
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In a neighborhood of the Butler pole, I„,sr», sr„—I„„~»„~„'is 6nite, so that I„,~»„~„as calculated
from Eq. (3.5) has the correct analytic behavior.
I"urthermore, m

~Lg JgL~Jy ~ ~LrJLg JyJy

rapidly, as I.„and Ld increase, so that the summation
over L~ and Le in Eq. (3.5) converges very much faster
than the one in (3.2). When Coulomb interactions are
neglected, then in Eq. (3.5) I„„sr»,sz„' and Rz,q, z,,~,'
are replaced by I»~»„~~"' and RLgJ'gLyJp ) where

I.,~p..~~"'=Z(I~ IrI~ p, f .I J~,~e)(s,l y, k,u'I ~,z e)

XkrK¹(Q'+s ') ' (3 6)

Rz&z&z, zp"'=Np r 'e """jzs(ktr)j z„(ksr)r'dr. (3.7)

orbit coupling

't) (r) = PV+i W+ V,K'kr '(d/dr) j
&&Eexp((r—R)/d)+&3 ' (3 g)

and F' are eigenvalues of the operator s L. The
Coulomb interactions are of the form

C(r)=g(3 —r'/rp')/rp, r(rp
2q/r, r~rp.

The neutron is captured into a state with wave function
corresponding to a potential

'U (r )=I Le p((r —R )/d. )+~j" (39)

where V„ is adjusted during the calculation to yield the
required binding energy of the neutron. The parameters
used in these potentials are listed in Table I.

Calculations have been performed on an IBM-360
computer for stripping reactions in which the neutron is
captured into an s state (l =0). The program was
written by modifying a conventional DWBA program
of Robson" to include the calculation of I„,~»„~~' and
Rz,,z,z„q„' and the summation of Eq. (3.5), and to
extend the calculation of the amplitude to the un-
physical region for real Q' between the Butler pole and
the beginning of the physical region. The cross sections
for the case with no Coulomb interactions were calcu-
lated by using small values of g~ and g2 rather than
writing a separate program. using (3.6) and (3.7).

The deuteron and proton are scattered by optical-
model potentials of the Woods-Saxon type with spin-

IV. EXTRAPOLATION TO THE POLE

The method used for extrapolating cross sections to
the pole was essentially the same as that described by
DS. Polynomials of degree M were fitted to P(Q'),
defined in (2.6), in the physical regiol using a standard
curve-6tting program on a CDC-3600 computer. This
extrapolation procedure was Grst cheeked to be satisfac-
tory in extrapolating P(Q') as calculated by the plane-
wave Butler theory. "

Calculations have been performed for Si '(d,p)Si" to
the ground state (Q value=6. 25 MeV), the same
reaction used by DS. Cross sections were calculated for
cases with Coulomb interactions (WC) and without
Coulomb interactions (NC). Cross sections calculated

TAnLE I. Values of the parameters of the optical-model potentials used in the DWBA calculation for the reactions Si"(d,p)Si" (de-
noted by Si") and C"(d,p)Cn~ (3.09 MeV) (denoted by C"). The strengths of potentials, V, W, and V, are in units of MeV and the
radius and diGuseness parameters in fermis. The parameters used in the potential of the captured neutron are R„=4F and d„=0.6 F.

Case
Deuteron parameters

V, R fp
Proton parameters

V~ R fp

Si"

2
3

5
6

C~
1
2
3

5
6
7sL

—80—40—80—80—80—80

—55—70—30—55—55—55

—15—7—15—15—15—15

—10—10—10—10—10—10

0
0

+10—10
0
0

4.56
4.56
4.56
4.56
8.0
2.0

3.66
3.66
3.66
5.0
1.5
3.66

0.6
0.6
0.6
0.6
0.6
0.6

0.5
0.5
0.5
0.5
0.5
1.0

3.95
3.95
3.95
3.95
6.0
1.0

2.7
2.7
2.7
4.8
1.5
2.7

—42—20—42—42—42—42

—45—60—20—45—45
45

—8

—8—8—8—8

—10—10—10—10—10—10

0
0

+5—5
0
0

4.0
4.0
4.0
4.0
6.0
1.0

2.76
2.76
2.76
45
1.0
2.76

0.6
0.6
0.6
0.6
0.6
0.6

0.5
0.5
0.5
0.5
0.5
1.0

4,0
4.0
4.0
4.0
6.0
1.0

2.76
2.76
2.76
45
1.0
2.76

a Deuteron and proton optical-model potentials as in t » (1) but with R» =2.5 F and d& =0.8 F.

I C. F. Clement, Nucl. Phys. 66, 241 (1965)."B.Robson, Australian National University Report, 1965 (unpublished)."S.T. Butler, Proc Roy. Soc. (Lo.ndon) A208, 559 (1951).
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TgsLE II. Res '. Results of extrapolations for Si~ ~d 'Si~
the reduced width used in the DWSA o-A calculations is go =10.16.

&033

Type

DWBA calculation
Eg

Case (MeV) E(—s')
Extrapolation

M P(—s') ,o

NC Wp

2
3

5
6

7
12
15
30
15
15
15
15
15

7
12
15
30

3.77
13.9
22.5
70.9
22.5
22.5
22.5
22.5
22.5

322
290
280
260

13
12
14
15
12
14
14
24
14

13
14
14
15

42.3
127
155
95.3

163
155
155
15.0
55.0

326
284
239
86.7

34.1
31.0
26.8
11.8
27.5
26.8
26.8
8.3

15.9

10.3
10.1
9.4
5.9

10

10

using Eq. (3.5), and thus having a pole at Q'=—
designated b VrP ~

y V," . For comparison cross sections were
also calculated using Eq. (3 2) dan are designated b
NP because they have no pol Tho es. e results of extra ola-
tion are summarized in Table II. The W~

ns in the physical region for Ed=7 MeU are
s

' ' . . '
i d erencebetweenthes own in Fig. 1. There is little

an P angular distributions.

trib
As well as in the hp ysical region, the angular dis-

ri utions were also calculated in the
for real &' betw

in e unphysical region
etween the pole and the start of the physical

region. In Figs. 2(a) and 2(b), E(Q') calculated from

e o «&~''jin the physical region.
E(Q') calculated from (3.2) (i.e. Np) f

e an the case without Coulomb 6eld

10

-2
10

-3
10
-0.4

10

Q (F2

(a)

l

0.4

10—

W. P.

10

E

-2
10

10-0.4 q tF 2j

A

l
I

I

0,4

~ 1-
0 30' 60

I I

e (c.m)60 5 0 120

FIG. 1. Com ss sections for the reactionparison of differential cross s
or Eg=7 MeV, calculated using

~ . ou omh inferactior~ are included,

(b)

Fio. 2. The functions P(Q') f $'s d
d tofh hii,Ip u e p y~sx~ region or (a) Es=/MeV and

y
'

ect calculation using

from the physical region of E (Q')
direct calculation using DWBA Wp

boundary of (he physical region js denot d b
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10 -t-

10

10

10
-0.4 g (F ')

WC.

I

0.4

with the correct value. However, at the higher energies
the difference between the extrapolated and the true
values of Eo become larger. A simple explanation for this
can be given. Whereas the position of the pole at
Q'= —«„s is independent of the energy Ez of the incident
deuteron, the forward boundary of the physical region
moves away from the pole as E& is increased. As a
result, at high energies, the extrapolation, which must be
made over a larger distance, has less chance of succeed-
ing than for the lower energies.

From Table II it is seen that when the Coulomb Geld
is included in the calculations, the extrapolation fails to
yield the correct value of 1V0. The reason for this failure
is seen by comparing the polynomial used for extrapola-
tion with the correct P(Q') in the unphysical region
near the pole, as shown for Es 7, 30 M——eV in Figs. 2 (a)
and 2(b). P(Q') has a turning point fairly close to the
pole, and it is too dif5cult to Gt the polynomial to
P(Q') in the physical region with su6icient accuracy to
reproduce this turning point. Near the pole, there is a

I'zo. 3. The functions Pwo(Q') and PNo(Q') for Si"(d,p)Si",
Eg=7 MeV, calculated in both the physical region and the un-
physical region using DWBA NP. "A" marks the boundary of the
physical region.

TAnLa III. Results of extrapolation for Cn(d, p) Cn* (3.09 MeV).
The reduced width used in the DWBA calculations is So=2.08
for cases 1-6 and S0=1.90 for case 7.

are shown in Fig. 3 for Ed,= 7 MeV. These are the func-
tions which DS were attempting to extrapolate. Al-

though there is good agreement in the physical region
between the angular distributions calculated from (3.2)
(NP) and from (3.5) (WP) as shown in Fig. 1, compari-
son of Fig. 3 with Fig. 2 shows that there is a large differ-
ence between the two calculations near the pole.
Because of this large difference, the extrapolation cannot
be satisfactorily investigated using NP cross sections.

The results in Table II show that, at low energies
without Coulomb interactions, the values of the reduced
width obtained by extrapolation are in good agreement

Type

WC WP

DWBA calculation
Ea

Case (MeV) P(—«~')

1 7 2.44
15 5.28

2 15 5.28
3 15 5.28
4 15 5.28
5 15 5.28
6 15 5.28
7 7 2.04

12 3.72
15 4.40

14 4.4)
15 8.43
15 8.26
14 7.95
14 8.60
14 7.09
14 9.17
13 4.04
14 6.43
15 7.13

2.80
2.63
2.60
2.55
2.66
2.41
2.74
2.68
2.50
2.42

Extrapolation
M P(—« ') Ea

60

40

I
X

s
R
Ul

20

0
2

l

z 8
I'

14

Fro. 4. The dependence of Z(R=2) on the charge of the target
nucleus when the Q value of the reaction is (a) Q =6, (b) Q =3, and
(c) Q = —1 MeV. For incident deuteron energies below the curvf s.

extrapolations canno& be performed rt;liably.

tendency for the extrapolation polynomial to follow

PNo(Q'), which does not have a turning point, and so
the value of P (—«„') obtained by extrapolation then lies
somewhere between PNc( —«„') and Pwo( —«„'). This
suggests that for suKciently high energy Ed, such that
R(Es)(e, e being some prescribed axed constant greater
than unity, it should be possible to obtain So' to within
a factor e. For instance, choosing &=2, Fig. 4 shows
E(R= 2), the value of Es for which R= 2, as a function
of Z for various Q values. Then, for Es(E(R=2),
extrapolation to the pole will not be reliable.

For the Si"(d,p)Si" (Q value=6. 25 MeV) reaction,
E(R=2) is about 60 MeV. But for Es=60 MeV the
boundary of the physical region will be too far removed
from the pole to make extrapolation feasible.

We therefore look for a reaction for which E(R= 2) is

lower, so that the physical region is closer to the pole.
From Fig. 4 we see that we require a light target nucleus,
a suitable nucleus being C" for which E(R=2)=15
MeV. Calculations have been carried out for C"(d,p)C"
(3.09 MeV) (Q value= —(),38 MeV), at Es= 7, 12, and
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15 MeV, and the results are summarized in Table III.
Angular distributions in the physical region are shown
in Fig. 5 for 7 MeV. The extrapolation polynomial and
P (Q') are compared in Fig. 6. Examination of Table III
shows that the values of P (—Ir„') obtained by extrapola-
tion are correct to within a factor of 2, i.e., the reduced
widths are correct to within a factor v2. Changes in the
parameters of the optical-model potentials do not aGect
the results for reduced widths.

As shown in Fig. 5, there is an appreciable diGerence
between the angular distribution calculated using Eq.
(3.5) (WP) and that calculated using Eq. (3.2) (NP).
This suggests that %P angular distributions are
niore reliable unless an extremely large number of
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Fro. 6. The function Pwo(Q') for C"(d,p)C'I~ (3.09 MeV).
Pwo(QI) obtained by direct calculation using DWBA WP for
(a) Es =7 and (b) Ez = 15 MeV. Extrapolation from the physical
region of Pwo(Q') for (c) Es=7 and (d) Es =15 MeV.
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FIG. 5. Comparison of differential cross sections calculated by
DWBA WP and NP for the reaction C"(d,p)Cu* (3.09 MeV) at
Eg=7 MeV.

partial waves are used in calculating the Np angular
distributions.

V. CONCLUSIONS AND DISCUSSION

The extraction of reduced widths by extrapolating
P(Q') to the Butler pole fails for heavy nuclei or low
energies because of Coulomb e6ects, an estimate of the
energy below which the extrapolation is unreliable being
given by E(2=2) as shown in Fig. 4. At high energies,
the extrapolation is unreliable because the physical
region is too far removed from the pole. Thus the
extrapolation can only be done, if at all, for a rather
narrow range of incident energies.

Because of the high degree of polynomials required,

the application of this method to the analysis of experi-
mental results does not seem feasible even in the most
favorable cases, since the accuracy of the experimental
results would need to be very high. For instance, for
C's(d, P)Crs* (3.09 MeV) the experimental cross sections
should be accurate to better than 0.1%.

For heavy nuclei for incident energies below the
Coulomb barrier, the turning point in P(Q') occurs in
the physical region (or beyond the physical region)
yielding the backward-peaked angular distributions
typical of stripping below the Coulomb barrier. It may
then be possible to extrapolate o (Q')/o'(Q') to the pole,
where o'(Q') is the cross section using M;„~„„'.While
this possibility is worth investigating further, there is
the serious diKculty that the cross section in the forward
direction is very small and thus de.cult to measure
accurately.

In conclusion, the calculation of stripping cross
sections for cases where the pole is near the physical
region may be greatly facilitated by using the summa-
tion method of Eq. (3.5). In this way, one can expect
to obtain an accurate description of the forward peak,
which can only be obtained using the conventional
summation method of Eq. (3.2) by including an
inordinately large number of partial waves.
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