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Dynamic Polarizability of Helium*
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A variational method is constructed to calculate the dynamic polarizability of the ground state of helium.
A 2 P-type trial function is used for the first-order wave function in computation. The results of the present
work agree excellently with the best previous calculations and with experiments in the long-wavelength
limit. Furthermore, the present method gives 581 A for the first transition wavelength as compared with the
experimental value 584 A, while the best previous calculation gives 573 A.

I. INTRODUCTION

ECENTLY, the interaction between radiation
and atomic systems has been investigated exten-

sively using a semiclassical approach. ' ' The dynamic
dipole polarizability of the ground state of helium has
been calculated by various methods. The helium system
is especially interesting because of its simple structure
and because it serves as an excellent test for theories
of many-electron atomic systems. Both coupled and
uncoupled' Hartree-Fock approximations have been
used and the results are in good agreement with
experiment.

To obtain more accuracy in the theoretical computa-
tion, Chan and Dalgarno' performed their calculation
using a Hylleraas-type zero-order wave function and a
product-type first-order wave function. However, the
1'S—+ 2'I' transition wavelength in these calculations
always occurs at a wavelength considerably shorter than
the true transition wavelength. For example, Chan and
Dalgarno's best calculation yields 573 A, compared to
the experimental value 584 A. The above authors also
pointed out that increasing the number of parameters
in their trial function does not improve this value
significantly. It therefore appears that a more suitable
form of first-order wave function is required to obtain
better agreement between theoretical calculations and
experiment.
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Accordingly, Chung and Hurst' have used a 2'I'-
type first-order wave function to calculate the static
polarizability of the ground state of helium. With this
form of first-order wave function, the convergence as
well as the accuracy are both satisfactory. Therefore,
one is led to the supposition that this form of first-
order wave function might also yield a more accurate
transition wavelength.

In the present work, a variational method is devised
to calculate the dynamic polarizability of the ground
state of helium. This method will eliminate the necessity
of computing the zero- and first-order wave functions
in the intermediate steps. In Sec. II, the formulations
are derived. In Sec. III, the results of the present work
are given and a comparison is made with other
calculations.

II. THEORY

If the electric field of radiation is polarized in the
s direction, we have'

h(t) =2h, cosset= 8,(e'"t+e '"').

Thus, the perturbation potential for a helium atom can
be written as

Because H' has odd parity, the first-order perturbation
equation can be written as7

(EP E')e'(r, t) = &'(r)t)P(r—)+t'&+'(rst)/&t—
y (3)

where

~ Kwong T. Chung and R. P. Hurst, Phys. Rev. 152, 35 (1966).
~ Kwong T. Chung, Phys. Rev. 163, 1343 (1967).
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TABLE I.The dynamic polarizability of helium' (10~' cm'). The first-order wave functions /+i are approximated by
minimizing the functionals L~. The dynamic polariz-
ability is then given by

0.00
0.050
0.100
0.150
0.200
0.250
0.300
0350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850

9112
4556
3037
2278
1822
1519
1302
1139
1012
911
828
759
701
651
607
570
536

a Equations (15) are used.
b $~1 contain 32 terms each.' P~~ contain 48 terms each.

0.2046
0.2052
0.2069
0.2099
0.2142
0.2201
0.2278
0.2379
0.2509
0.2679
0.2907
0.3200
0.3659
0.4393
0.5779
0.9527
8.2046—0.7059

0.2047
0.2053
0.2070
0.2100
0.2144
0.2203
0,2280
0.2381
0.2511
0.2682
0.2910
0.3226
0.3688
0.4429
0.5825
0.9800

—0.5672

(-)=&~.'I»+" l~'&+8-'I»+" l~'&. (~)

The usual procedure is erst to solve for the zero-
order wave function $0, then to solve for f+', and finally
to perform the integration indicated by Kq. (7) to
obtain the dynamic polarizability. However, a different
approach is recommended here.

Consider the functional'

L= O'I&' —KIP&+h'L2&PI»+s2I~I+')
+2&PI»+»If '&++ 'Io' E'+(oliP—')

+9-'l~'-~--l~-'&3
If one minimizes L with respect to P, f ', and f+',
one obtains

and 0 ' is the first-order wave function to be determined.
The solution of 0" in which we are interested is the

steady-state solution, i.e., the perturbation has been
turned on for a su%.ciently long time and the initial
conditions are assumed to be damped out. We thus
assume

+'(r ) =0 '(r) '"'+0 '(r)s '"'. -
Substituting Kq. (4) into (3), one readily obtains

(&'—~)4 '= —(si+s2)P~ ~I+' (5)

For the ground state, P is real, so that there is no
loss of generality in assuming P~' to be real. The follow-

ing functionals may be constructed from Eq. (5):
L+= O'+'ILE' —E'+~IS+'&+29+'I»+s2IP& (6)

8L 0 2 goL-(Ho E)yo+ h 2(s +s )

+ g '(si+s2)f '$dr+2g 2 g 'L(HO —~+ id)II i

+(»+s2)$0]dr+2b g' [(B E'—
+ (si+s2)go]dr. (9)

Hence, the solutions for f+' in Eq. (9) are identical to
those of Eq. (5). Since 8P is arbitrary, we have

(&'—&)8=—&.'L(z+s)4 '+(»+s)f 'j, (10)

where9
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Multiplying Eq. (10) by P and integrating over all
space, one obtains immediately

—~K/&*'= &8I»+s2I~I+'&
+ &8 I »+s.Ik '&=o(~), (12)-

where Eq. (7) is used. In other words, one can obtain
o, from the solution of the "secular equation" indicated
by Eq (8).

By the same reasoning, one can also construct two
independent functionals from Eq. (8), so that the com-
putations can be performed using independent linear
parameters in P+' and iP ', i.e.,

L+= &8 I
&'—&'IP&+ 6'9 O'I »+s2 I ~I+'&

+Q.'I~'-~~ l~.'&j (»)
and

n (co) = (2P' E+ E-)//8. '. — —

Flc. 1. The dynamic polarizability of the ground state of helium.

8 p, is introduced only for computational convenience.
'Here AE does not have its usual meaning of perturbation

energy.
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P=Q c,e '~'s'*n"*'

The P~' both take the form

y& —Q d, (s ~s )e
—~/2s4Nm~(es (15b)

s=fr+s's, , N=t'gg~ f=fy t'2. —(15c)

Here, the ei are chosen such that the spatial wave
function is always symmetric. To increase. the Qexibility
of the variational function a scaling factor is also used. '

In the first calculation, we used a 16-term zero-order
wave function, while g+' each contained 32 terms.
Although this computation yielded an accurate polariz-
ability in the long-wavelength region, the transition
wavelength of 1'5 —+ 2'P is off by 3.7%. Next, we ex-
tended the zero-order wave function to 24 terms and
1t+' to 48 terms each. The transition frequency was then
off by 2.47%. This improvement was small, and the
rate of convergence is not quite satisfactory. The results
of these two computations are given in Table I.

To improve the rate of convergence, another form of
trial wave function" was employed, namely,

$0—Q c e &al2s4~~~(ni. —
i=l

sinhg $

)
cosh-, k

(16a)

P'= Q d'e -~'(sgas2)s"I, ~t"~
sinhg $

cosh~~t
(16b)

Here the coeS.cients c are determined' by minimizing
E', and the exponents ei are chosen so that the spatial
wave function is symmetric. Computations have been
performed for P with 32 terms and P+' with 64 terms.
The transition wavelength is 581.2 A. Compared to the
experimental value of 584 A, this is an error of approxi-

"This tt is certainly not the best choice; instead, it is chosen for
computational convenience. In the present calculation, it gives
E'= 2.903717 atomic units (a.u.), as compared arith E'= 2.903724
a.u. of Pekeris.

III. METHOD OF COMPUTATION AND
RESULTS

In computing the dynamic polarizability of helium,
one uses as the trial function the Hylleraas-type wave
function

TABLE II. Calculations of the dynamic polarizability
of helium (10~' cm').

a](a.u.)
0.00
0.05
0.10
0.15
0.20
0.25
030
035
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.77
0.78
0.782
0.784
0.79
0.80

Coupled
HF~

0.196
0.196
0.198
0.201
0.205
0.210
0.217
0.226
0.237
0.252
0.272
0.299
0.337

Chan and
Dalgarnob

0.204
0.205
0.207
0.210
0.214
0.220
0.227
0.237
0.250
0.267
0.289
0.320
0.366

Present
vrork'

0.2051
0.2055
0.2073
0.2103
0.2146
0.2206
0.2283
0.2385
0.2516
0.2689
0.2920
0.3241
0.3718
0.4502
0.6091
1.1808
2.4994
83127

17.2570—143.5672—4.5561—1.5306

a A. Dalgarno and G, A. Victor, Proc. Roy. Soc. (London) A291, 291
(1966).

b Y. M. Chan and A. Dalgarno, Proc. Phys. Soc. (London) 85, 22'g
{1965).

e @0contains 32 terms; i/~~ contain 64 terms each ", Eqs. (16) are used.

mately 0.5%. Experiments by Cuthbertson and
Cuthbertson" (1932) measured the refractive index of
helium over the range 2753 to 5462 A. Their results
exceeded the results of the calculations of Chan and
Dalgarno by approximately 0.5%. This discrepancy is
signi6cantly improved in the present work. A cornpari-
son of the present work with the experiment is shown
in Fig. 1.The average deviation is approximately 0.05%.
Table II shows a comparison of the present calculations
with those of Dalgarno and Victor and Chan and
Dalgarno. It seems the calculations performed using
the method described herein yield the best results
obtained to date.
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