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Tash, E III. The observed sideband peaks in the R2 transition
in KF are listed according to wavelength and also according to the
distance in energy from the zero-phonon line. The number of F
modes involved in each peak are also shown. The energies are in
approximate agreement with the calculations of Karo and Hardy. '

Wavelength
(L)

5870
5861
5841
5832
5820

Distance from zero-
phonon line (eV)

0.007
0.011
0.020
0.022
0.026

Number of
F- modes

odd
even
Qdd
even
Qdd

a A. M. Karo and J.R. Hardy, Phys. Rev. 129, 2024 (1963).

to below 5700 A. There is thus no true broad-band
dichroism. The decrease is due to the competition
between the signals derived from peaks having even
and odd numbers of E-symmetry phonons. In the
higher-energy part of the band there are many phonons
involved and the signals cancel.

V. SUMMARY

Magnetic circular dichroism has been observed with
relatively low magnetic fields of about 8 kG in the
zero-phonon line and sidebands of the E2 transition in
KC1 and KF. The zero-phonon-line data were analyzed
by a method of moments. The transition probabilities
for circularly polarized light were calculated using
vibronic ground-state wave functions appropriate to

an E state that is distorted by the Jahn-Teller effect.
The first-moment data provided a measure of the
reduced orbital angular momentum and hence a
measure of the Jahn-Teller coupling strength. The
reduced spin-orbit interaction is also determined and
is found to be negative in both crystals. The zeroth
moment of the zero-phonon line was found to be
sensitive to applied stress. The data, taken as a func-
tion of applied stress, are interpreted assuming that
the interaction of the center with the magnetic field
can be treated as a perturbation on the stress inter-
action. The splitting of the ground state in the internal
crystal strain field is estimated. The sideband dichroism
yields information about the symmetry of the phonons
involved in the sideband peaks. All the experimental
results agree well with the theoretical predictions which
are based on the Van Doom model with an E ground
state distorted by a dynamic Jahn-Teller interaction.
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Motion of the Piezoelectric Polaron at Zero Temyerature

GEORGE WHITPIEID AND J. GERSTNER

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania

AND

K. THARMALINGAM

School of Fngineering and Applied Science, Princeton University, Princeton, Eem Jersey
(Received 12 May 1967)

We analyze a series of theories which are used to obtain the energy-momentum relation for the piezo-
electric polaron. Perturbation theory cannot be trusted, because there is a degeneracy in the unperturbed
energy levels. The Tamm-Dancoff one-quantum cutoff in this case diagonalizes the degenerate states exactly,
but has other shortcomings. The intermediate coupling theory gives what we believe is a reasonable energy-
momentum relation, which starts out quadratically and becomes approximately linear as the velocity ap-
proaches the speed of sound.

I. INTRODUCTION
' 'NTEREST in the polaron problem has been main-
~ - tained for many years because it is a simple example
of a particle interacting with a field, as well as an
integral part of the understanding of electronic motion
in ionic crystals. ' It has recently become clear that the

*Present address: Department of Mathematics, Westfleld
College, London, England.' A recent review of work on the polaron is contained in Polarons
and Bxcitons, edited by C. G. Kuper and G. D. Whitfield (Plenum
Press, Inc., New York, 1963).

problem of electrons interacting with acoustic phonons
in a piezoelectric crystal can be approximated by a
Hamiltonian2 which has the same form as the original
polaron problem, and hence it serves as another interest-
ing example of a particle-field interaction.

Whereas the original polaron problem (which we will
refer to as the optical polaron) was analogous to a
proton interacting with chargeless, spinless mesons, the
piezoelectric polaron problem is analogous to quantum
electrodynamics.

~ A. R. Hutson, J. Appl. Phys. 32, 2287 (1961).
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Relative to the transport of electrons in a piezo-
electric crystal, there are several difhculties: The
lifetime that appears in perturbation theory and
Tamm-Dancoff has an infrared divergence at finite
temperature, and the polaron energy-momentum re-
lations that have been reported are peculiar and quite
varied. ' 4

All of the above call for a careful investigation of the
piezoelectric polaron problem. We hope to begin this
in the present paper by considering only the zero-
temperature case, weak coupling, and by focusing our
attention on the energy-momentum relation, where we
believe much of the confusion lies. Another reason for
our interest in the energy-momentum relation is that
this work is a direct extension of what we have recently
done on the optical polaron. ' With regard to restricting
our considerations in this paper to zero temperature,
a few comments should be made. First, unfortunately,
one cannot assume in the case of the piezoelectric
polaron (as one can for the optical polaron) that the
zero-temperature properties serve as a good approxi-
mation for the behavior of the polarons in some accessi-
ble low-temperature range. This is partly due to the
fact that the interesting structure takes place for
polarons traveling at about the speed of sound, and
unless one has heavy band masses, this requires thermal
electrons at less than 1'K. The other reason for this
difficulty is that there is no separation between the
ground state and the excited states with the same
momentum. We nevertheless feel justi6ed in considering
the zero-temperature case, partly as a 6rst step in
understanding the more complicated finite-temperature
problem, and also because the zero-temperature problem
is the interesting particle-field problem. Some of the
results obtained we believe are useful in understanding
the finite-temperature problem.

The Hamiltonian we will use in this paper is

=p'
H = +P(aqta, +—-,')q

2 q

+ P (a,+a",)e&'.
P q ql/2

The unit of energy is ms', and the unit of length is h/ms,
where s is the speed of sound. The operators a~~ and a~

create and annihilate phonons of one mode which

replaces the three acoustic modes, and p and r are
the electron momentum and position.

The coupling constant n can be written

h/ms (e',;(,)
A=

h,'h/me' bC

'Two previous theories that are done at Qnite temperature
neglecting the zero-temperature contribution are G. D. Mahan
and J. J. IHopGeld, Phys. Rev. Letters 12, 241 (j.964); Yukio
Osaka, J. Phys. Soc. Japan 19, 2347 (1964).

4 A calculation of the self-energy in a degenerate semiconductor
by G. D. Mahan and C. B. Duke LPhys. Rev. 149, 705 (1966)j

where (e'oA, ) is an average' of the piezoelectric tensor
components, h is the dielectric constant, and C is an
average elastic constant. The term (e',,),)/8C is the
square of what is called the electromechanical coupling
constant, and which is referred to as cx in some previous
works. ' The first term in the definition of u is the ratio
of the unit of length to the Bohr radius in the medium.

Another way of writing the coupling constant which
emphasizes the analogy to electromagnetic theory is

n= e*'/hs,

where the effective charge is

c*'=c2((" ~)/@'C)-'.

In order to see this analogy most clearly, we perform
a similarity transformation on H.

Q'= g
—~Hg8

where

4xn '"
S=g (a —a t)e'&'

q q3/2

1 2 4m'
H=~ p —VS cqQq p q

z P'q2

(1.2)

The last term in (1.2) is a constant and plays no role
in the calculation of transition rates, etc.

The first two terms are just the same as the non-
relativistic Hamiltonian for an electron interacting with
photons: if one replaces n ~n = e'/hc and (1/i) VS —+ A,
the vector potential in the Coulomb gauge, except
that'A is transverse and V'S is longitudinal.

P (2) (p) = )- p2+.gg(2) (p)

4vrn) 1
gp~(2) —Q

yq) g(0) (p) —g(0) (p—
q) q

qs)s +X

() ), (~~q+1 px)

Q q-+2(1—p)=—(q„+2) In
mp ~ q„+2(1+p)

1—p-
+2p ln —2ln

~ (q +2)'—4p2~ 1+p

(2.1)

(2.2)

(2 3)

(2.4)

neglects the contribution that remains when there is only one
electron present.' George Whit6eld and Robert Puff, Phys. Rev. 139, A338
(&965).

II. PERTURBATION THEORY

The first approach to finding the properties of the
Hamiltonian (1.1) in the case where n is small is to
apply perturbation theory to the uncoupled electron
states, whose energies are E(0) (p) = —,'p'. The first
correction to this comes from second-order pertur-
bation theory, which gives
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The maximum wave vector is q, which is about 300
in these units. Note that in the limit q

—&Do the second
term in (2.4) diverges logarithmically. This is a slower
divergence than in quantum electrodynamics because
the nonrelativistic E+l(p) ~ p' rather than p, and the
integrals are cut off faster at large q.

Although there is no actual difhculty with ultra-
violet divergences here, we like to work with the
approximation q = ao whenever we can because any
quantity which depends on q has been very poorly
calculated by the type of theory that we are doing
here. The reasons for this are that the Hamiltonian
applies best for small q and we have not taken the
shape of the Brillouin zone boundaries into account in
the integrals of q.

Note that the integral in (2.3) is proper when p(1.
In the region p) 1, we have given the principal value
of the integral. Therefore, below p=1 we are calcu-
lating the properties of an eigenstate of IJ, but above
p=1 we are discussing a quasiparticle which has a
finite width F.

(2 5)

For small values of p

E&"(p) E(0)+P'/2m*,

E(0)= —(4n/s) 1n(-,'q„+1),
(2 6)

It is interesting to note that although E(0) diverges
in the limit q

—+~, the effective mass does not. In
fact, the cutoG dependent term in ns* is negligible for
any reasonable a and q .

We note further that at u 3 the eGective mass
becomes negative. A clear view of the situation is
obtained from Fig. 1, where we plot E&'&(p) for two
values of n. Note the peculiar structure around p=1,
where the velocity first becomes zero, then negative,
then —~, and a new minimum occurs away from P=O.
A similar sort of structure is obtained from pertur-
bation theory for the optical polaron, ' and we identi6ed
it there as being due to a degeneracy in the unperturbed
energy levels, which leads to a distortion when treated
by nondegenerate perturbation theory. By investigating
the structure of unperturbed energy levels, we were
able to get some insight into what the correct energy-
momentum relations should be, and we will follow the
same approach in Sec. III. It is also clear from Fig. 1
that the negative mass at p=0 is associated with the
effects of this degeneracy extending back to p=0.

-IO--

-20--

FIG. 1. Energy versus momentum according to the second
perturbation theory. At 2=1, the slope is —~.

III. ENERGY CROSSING AND THE@TAMM-
DANCOFF APPROXIMATION

Using the same type of argument' that we applied to
the optical-polaron problem, ' we consider the exact
eigenvalues P(I') of the noninteracting Hamiltonian
Lthe first two terms in (1.1)]. Here P is the total
momentum of the state. In Fig. 2(a), we plot the energy
of these states as functions of I'. The curve srP' repre-
sents the no-phonon states. To obtain the one-phonon
states, we start at any point on —',p' and draw a straight
line with slope +1 (the speed of sound in these units).
The resulting curves represent the one-phonon states,
and a moment's reQection shows that they represent
the multiphonon states as well. We see then that for
I'(1 the lowest state is the no-phonon state rsP' and
for P&1 the lowest state contains phonons and has the
energy P——,'. Above this lowest state, we have a
continuum. For P&1, the no-phonon state lies on the
bottom of the continuum, but at 8=1 (when the
electron has the speed of sound), it crosses into the
continuum.

Now let us consider what happens when we include
the interaction term as a perturbation. Since the
interaction is translationally invariant, it connects only
those unperturbed states which have the same total
momentum. In Fig. 2(b), we redraw a few of the states
in Fig. 2(a). We include the no-phonon states and the
states which include an electron with momentum p'
and any phonon. LNote: Although many phonon states
also lie along this line, they are not coupled to the
no-phonon state directly by the Hamiltonian (1.1).j
We see that somewhat above P=1 the two sets of
energy levels cross and at the point of crossing the
matrix element connecting the two degenerate states
is not zero. We know that we must diagonalize these
two degenerate states exactly, and that when we do
the energy levels no longer cross and the curves should

6 This type of energy crossing argument was first used by T. D.
Schultz, Solid State and Molecular Theory Group, MIT Technical
Report No. 9, 1956 (unpublished).
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representing the Hamiltonian (1.1) in the unperturbed
eigenstates, we note that the submatrix which involves
only the zero- and one-phonon states can be diagonal-
ized exactly. (In doing this we must hold the volume
finite so that the matrix will be discrete. ) The lowest
eigenvalue is given by

(3.1)

(3.2)

(c)

CONTt NUUM

FIG. 2. {a) The energy of the exact eigenstates of the un-
perturbed Hamiltonian go{8) versus the total momentum of the
state I'; {b) free-electron energies crossing a set of one-phonon
states; (c) level crossing is eliminated by a perturbation which
couples the thoro degenerate states; (d) expected form for the
polaron energy-momentum relation. The bottom curve asymp-
totes to the speed of sound. The dashed curve indicates a quasi-
particle crossing into the continuum.

look something like those shown in Fig. 2(c). If we
add more of the one-phonon states and repeat the
above argument, we expect the final curve 8(I') to look
like that shown in Fig. 2{d).Note that this curve has
been shifted at I'=0 to account for the polaron self-
energy. Ke expect a continuum of states to lie im-
mediately above this curve composed of polaron and
phonon states. (We do not expect the inclusion of one
electron in the crystal to shift the phonon energies
appreciably. ) It is important in carrying out this argu-
ment to remember that whenever the polaron has
velocity &1 it lies on the bottom of the continuum, but
if its velocity is &1 then it is in the continuum. Thus
the energy-crossing argument leads to a curve like

8(&), where 88(P)/8I'(1 and approaches unity as P
increases. Our previous experience suggests that at
some 6nite E a quasiparticle wiB cross into the con-
tinuum and subsequently approach the free-electron
curve. This is indicated by a dashed line in Fig. 2(d).
We should note that in Fig. 2{b) there is actually
another point of degeneracy where the electrons have
momentum I'~ involving a zero-momentum phonon.
But owing to the density of such states, this degeneracy
does not lead to an inanity of the integrand. in Eq.
(2.3), whereas the degeneracy that sets in at I' = 1 does.

Energy-crossing arguments usually involve only two
states, whereas here we are concerned about degeneracy
between one set of states and a continuum. This difB-

culty, as we have seen in the case of the optical polaron, ~

can be resolved by using the Tamm-Dancof one-

quantum cutoB. If we consider the matrix obtained by

The integral in (3.2) is given in Appendix A, and the
function Er(I') is plotted in Fig. 3 for several values of
n. Equations (3.1) and (3.2) are called the Tamm-
DancoG one-quantum cutoff approximation. Remember
that in the energy-crossing argument we had to consider
a degeneracy involving only the zero- and one-phonon
states and this is just the part of the Hamiltonian which
is exactly diagonalized in the Tamm-Dance. Hence
the Tamm-DancoG should handle the effects of this
degeneracy correctly. We note that there is a place
where the energy-momentum relations bend over and
become tangent to the line E—~. After they reach this
line, the integral in {3.2) is no longer proper and the
polaron becomes a quasiparticle with Rnite lifetime
and energy given by the real part of (3.1). This part
of the curve is indicated by a dotted line in Fig. 3. The
over-all shape of' the curve is, however, very diferent
from the one that the energy-crossing argument led us
to expect /Fig. 2(d)j. This situation is again similar
to that ia. the optical polaron, 5 where we realized
that although the Tamm-DancoG analyzed the de-
generacy exactly the theory puts the continuum at the
wrong place and in this sense gives wrong results. This
is easily understood when we recall that the continuum
should be composed of a polaron and some free phonons,
but since the polaron contains some phonons, the
expected value of the phonon number in a continuum
state must be greater than one, and hence these states

I
/

I p I p

-20-"

Fyo. 3. Polaron energy versus momentum according to the
Tamm-Dancoff one-quantum cuto6.
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cannot occur in the Tamm-Dance. The only continuum
states which can occur are the free electron and phonons
(i.e., the unperturbed continuum). We see then that
the Tamm-Danco6 gives a solution which tends to
stay below this incorrectly placed continuum. In order
for the polaron energy-momentum relation to stay
below the correct continuum, we require only that its
velocity stay below unity. Hence we return to the
conclusion that we expect the correct energy-momentum
relation to be like that in Fig. 2(d).

Er, (P) = -',P' —-', LP—v(P)]'

(4' a 1
(4 1)

& &Vg q
—q v(P)+-', g'

where v(P) is determined by the transcendental
equation

(4wn
v(P) =P—P~' (Vv)(c'v(P) *9' v)

(4.2)

The results of these integrations are recorded in
Appendix 3. It follows directly from (4.1) and (4.2)
that v(P) = BEr,/BP, and hence is the polaron velocity.

Er, (P) can be determined numerically and is plotted
in Fig. 4. We see that the result is very close to vrhat
the energy-crossing arguments predicted, but there is
no indication of a quasiparticle crossing into the con-
tinuum. In fact, we can see from Eq. (4.2) that as
@~1, p~m. The fact that Er,(P) is an upper bound
to the ground state of B with momentum P does not
necessarily mean that the polaron must stay below

EI,(P) for all P. Remember that in both perturbation
theory and the Tamm-Dancoff the polaron was de-
scribed by an eigenstate of B for momenta below
a certain P= j, and above this momentum the polaron
was a quasiparticle which had no simple relation to the
eigenstates of H. The low eigenstates for large P
could easily be composed of a polaron of P=1 plus a
free phonon of large momentum. Therefore, an energy-
momentum relation like that shown in Fig. 2(d) is
quite compatible with the predictions of the LLPG
theory.

~ T. D. Lee, I . Low, and D. Pines, Phys. Rev. 90, 297 (1953};
M. Gurari, Phil. Mag. 44, 329 (1953).

Iv. INTERMEDIATE COUPLIKG THEORY

The next we11-known polaron theory which applies
in the weak-coupling region was devised by Lee, Low,
and Pines and also by Gurari~ (LLPG), and is often
called the intermediate coupling theory. This theory,
which is"'an upper bound to the ground state with
momentum P because it can be formulated variation-
ally, gives

FIG. 4. Polaron energy versus momentum according to
intermediate coupling theory.

In order to understand why the LLPG theory gives
essentially the result predicted by the energy-crossing
arguments, we note that the Tamm-DancoR, Eqs.
(3.1) and (3.2), is essentially the same as perturbation
theory, Kqs. (2.1) and (2.2), except that one of the
unperturbed energies in the energy denominator is
replaced by a corrected energy which is then solved for
self-consistently. Now Eq. (4.2) is essentially the
derivative of these equations, but here a corrected
velocity is put in the energy denominator and solved
for self-consistently. Since, as we have pointed out
many times, it is the polaro» velocity and not the
energy which is the important function near the point
of degeneracy, this result is not surprising.

We should comment that the LLPG theory gives a
linear energy momentum relation at high P even for the
optical polaron. This fact does not a6ect our conclusions
here. We believe that for the piezoelectric polaron the
LLPG theory gives a good energy-momentum relation
because it agrees with the energy-crossing arguments.
For the optical polaron, it does not agree with the
energy-crossing arguments; therefore, we think it is a
poor approximation in this case.

V. DISCUSSION

It is clear from the considerations above that the
energy-momentum relation given by perturbation
theory and the Tamm-Danco6 theory are qualitatively
incorrect. For the same reasons that these theories
are wrong at zero temperature, ' they are also wrong at
6nite temperature. ' At zero temperature, the energy-
momentum relation should look like Fig. 2(d), with

Fig. 4 giving a good quantitative version of it up to the

8 At Gnite temperature, the self-energy for these two theories
is the sum of two terms. One is the one we have considered above,
and the second is a term which disappears when T=O. This
second term involves the same energy denominator as the erst
and, like the Grst, structure in the Gnite-temperature term occurs
when this denominator is zero.



momentum where it no longer describes the polaron.
We cannot be sure that such a break will occur, but the
fact that it does in the Tamm-Dancoff we regard as a
strong argument for it.

In order to determine the limits of the LLPG theory
we should develop a theory which explicitly allows for

a complex self-energy. The most natural way that we
know to do this is to start with the Green's-function
formulation, and look for an approximation which
gives the LLPG- theory. However, attempts to derive
the LI.PG theory from Green's functions have been
largely unsuccessful in the past. "

APPENDIX A

(1—P)'+ (2P—2(o —1)

(q„+P+1)' (1+2—P+ 2co)—(1+P) 1n +J.
(1+P)' —(1+2P+2~)

n P (q„—P+1)'+ (2P 2(o —1)— (q P+1—)'+ (2P—2a) —1)
P (P,a&) =q„ in +(1—P) 1n

n (q +P+1)' (2P+—2a)+1),

If u& —
~
—I',

q„+1—P
J=2(2P 2co —1)'"—tan '

(2P—2ur —1)'~'
—tan '

(2P—2(u —1)'i'

If —
2
—P &co( ,'+P, ——

—2(—(1+2P+2co))"' tan ' (q-+1+P)

(—(1+2P+ 2co) )'"

q +1—k
J=2(2P—2~—1)'" tall ' —tall '

(2P—2'—1)'~' (2P—2a —1)'i'

If a» 2+P, —

Lq +1+P+(1+2P+2Q))'~'7I ]+P—(1+2P+ 2~)~~27—(1+2P+2(o)'~' 1n
I Lq +1+P—(1+2P+2(a)'"7t 1+P+ (1—2P+2(o)'~27i

[q +1 P+(1—2P+2 )—'"7L1—P—(1—2P+2 )"~'7
J= (1 2P+2co)—'~' 1n

i I q +1—P—(1—2P+2cu)'~'7L1 —P+ (1—2P+2co)'~'71

1+q„/$1+P+ (1+2P+ 2(v) U27
—(1+2P+2co) 'i' 1n,

I 1+q /D+P (1+2P+2(o)'—i'7

After integration, Eqs. (4.1) and (4.2) become

APPENDIX 8

2u — 1+v (1+-',q —v

P w= 1n —+ (1+-',q„) 1nI
m' 1—v (1+-,'q +w

n -q +2(1—v)-
El.(P) =-,'P' —-,'(P—v)'+ —(q, +2) In —2v 1nL(q +2)'—4v'7 —2 in +2m 1nL4(1 —v')7

mt q„+2(1+v) 1+'v

G. Whit6eld and R. Pu8, in Polarons amd Excitons, edited by C. G. Kuper and G. D. Whit6eld (Plenum Press, Inc., New
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~OD. Pines, in Eolarols end Excitons, edited by C. G. Kuper and G. D. %hit6eld (Plenum Press, Inc. , New York, 1963),
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