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Properties of Crystalline Argon and Neon in the Self-Consistent
Phonon Approximation

¹ S. Go.r.IS* AND N. R. %'ERTHAMER

jjel/ Telephone I,cborutories, MNrruy IIil/, Nne Jersey

T. R. KOEHLER
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(Received 7 August 1967)

The self-consistent phonon theory of anharmonic lattice dynamics, devised independently by several
authors using varying techniques and implemented computationally by Koehler, is here applied to the
crystals of neon and argon. A Lennard-Jones 6-12 interatomic potential is assumed. The quantities cal-
culated are the phonon spectrum and the bulk thermodynamic properties of thermal expansion, com-
pressibility, and speci6c heat, all as a function of temperature at zero pressure. Although the computations
are intended primarily to explore in detail the content of the self-consistent phonon approximation prepara-
tory to incorporating the more elaborate expressions of the next higher approximation, comparison is made
vrith the existing experimental data.

consistently. Both schemes Rre Rppl oxlmatlons eRch
with its own strong and weak points, and in a sense the
two pictures are complementary rather than contra-
dictory. But irrespective of conceptual validity, the
latter scheme has the derided practical advantage of
being more easily adapted to numerical evaluation and
hence to a confrontation with experiment. In the present
paper, we report on the first application of the self-
consistent phonon scheme to the computation of various
6nite temperature properties, in this case of crystalhne
argon and neon.

The particular choice of argon and neon for this
initial trial is dictated for several reasons. First, the
appropriate fcc crystal structure is an especially simple
one for computation. Also, the interatomic potential is
generally felt to be better known for the rare gases than
for any other substance, thus making theoretical pre-
dictions less ambiguous. Furthermore, out of the set
of rare-gas crystals (excluding helium) argon and
especially neon have a large zero-point motion and thus
are a more severe test of the present theory in contrast
to the traditional weak anharmonirity approach. For
the same reason, these crystals have also received
greater experimental attention, and a fair body of
data concerning them is now availaMe. Helium is ruled
out here because its very large zero-point amplitude
necessitates the additional complication of short-
range correlation functions. ' Besides, helium melts at
such a low fraction of its Debye temperature that it
is not a useful system for testing the temperature de-
pendence of a theory.

Kc review in Sec. II the derivation of the self-con-
sistent phonon theory, casting it into the form most
suitable for numerical evaluation. Section III presents
the results of the computation, in the particular forms
of thermal expansion, compressibility, sound velorities,

I. INTRODUCTION

'N the past several years, the theory of the lattice
dynamics of lnsulatIDg crystRls has uDdergone sub"

stantial revision, a development which seems all the
more radical since the approach initiated by Born and
von Karman' had continued to be the traditional
standard' for such a long period of time. Finally,
however, the failure of the traditional approach when

applied to the case of crystalline helium' forced theorists
to turn to the new techniques of many-body theory for
an adequately generalized viewpoint.

Two distinct schemes have emerged, dif'fering from
each other in the basic picture of the crystal adopted as
the zeroth approximation. Both schemes, however,
contrast with the traditional theory by making no
initial hypothesis of smallness for the amplitude of
atomic vibrations, and hence no truncated Taylor-
series expansion of the interatomic potential energy.
One of thc schemes4' emphasizes the single-particle
aspect of a crystal, focusing at 6rst on the motion of an
individual atom in the potential due to the self-con-
sistent action of RH. the others. A lattice vibration, or
phonon, is then found as a collective mode of response of
the interacting array of atoms to a disturbance. The
other scheme concentrates immediately on the collective
aspects of the crystal, by regarding the equilibrium state
as describable entirely in terms of phonons, or equiv-
alently in terms of a 6ctitious set of harmonic oscil-
lators, whose frequencies are to be determined self-

~ Present address: Sandia Laboratory, Albuquerque, N. M.
x M. Born and T. von K6,re,n, Phys. Z. 13, 297 (191,2); 14, 1S

(1913).
2 See, e.g., M. Born and K. Huang, Dynmnica/ Theory of Cryskd

I.aNices (Oxford University Press, London, 19M).' P. W. de bette and B. R. A. Nijboer, Phys. Letters 18, 19
(196S).

'

4 D. R. Fredkin and ¹ R. Werthamer, Phys. Rev. 138, A1527
(19|5).

I N. S. Gillis and N. R. %erthamer, Phys. Rev. (to be
bshed).

pub- 6 L. H. Nosanom, Phys. Rev. 146, 120 (1966);J. H. Hethering-
ton, W. J. MnHin, and L. H. Nosanow, ibid 154, 1 /5 (1N'I). .

I6$ 95k



GILLIS, WERTHAMER, AND KOEHLER

Rnd speci6c heat, and compares with the existing ex-
perimental data. A critical evaluation is given in Sec.
IV of the agreement between the coIDputations and
obscI'VRtlon, Rnd thc posslblc souI'ccs foI' Rnd lQlpli-

cations of the residual discrepancies are discussed.

The self-consistent phonon theory has been derived

by several diferent authors using various techniques.
The earliest appearance in the pubhshed literature is
due to Boccara Rnd Sarma, ~ who used a variational
approach. $E0te added 55s proof. We have since found an
even earlier derivation: D. J. Hooton, PhiL Mag.
3, 49 (1958).g They proposed to approximate the true
Hamiltonian by an c6cctive trial Hamiltonian of the
harmonic-oscillator form, in which the entire sct of
spring constants linking the 6ctitious atoms are vari-
ational parameters to be determined by minimizing the
trial free energy. This technique is a particularly elegant
one, but is dBFicult to generalize. A derivation published

by Ranninger, ' but attributed by him to Choquard,
adopts the more fundamental approach of diagrammatic
perturbation theory-. Although the interatomic po-
tential is expanded in Taylor series about the equilib-

rium atomic positions, resulting in a well-known

diagrammatic development, " a simple selection of

graphs involving all orders of derivatives of the po-
tential can be resummed into closed form yielding
equations equivalent to those of Boccara and Sarma.
This theory has already been extended by Ranninger
Rnd Choquard to take account of R IIlorc coIQplicatcd

set of graphs, which result in expressions for the phonon

lifetime, but we have not implemented these more
elaborate formulas in the present work.

A, deI'lvatlon close ln splI'lt to thRt of BOCCRI'R Rnd

Sarma has been given independently by Koehler. "
YVorking exclusively at zero temperature, he adopted a
trial ground-state wave function of the correlated
GRusslRQ forIQ with correlation mRtI'lx to bc dctcrGlined

vanationally. Since aNy suitable such wave function is

the true ground state of some 6ctitious harmonic

Hamiltonian, Koehler's approach gives identically the
7=0 llmlt of Boccara Rnd Sarma.

Recent work of Horner" interconnects the varia-

tional and. the diagrammatic perturbation techniques,

by appealing to the sophisticated renormalization

theorems of de Dominicis and Martin. "Horner shows

~ N. Boccara and G. Sarma, Physics 1, 219 (1965).
8 J. Ranninger, Phys. Rev. 140, A203I (j.965).
sP. Choquard, Eggibbrilm Theory of Aehurmonk Crystals

(W. A. Benjamin, Inc., New cwork, to be published).
xo L Van Hove, N. M. Hugenholtz, and L.P. Howland, Progems

irI, QNwstlm X'heory of 3furiy-Particle Systems (W. A. Benjamin,
Inc., New York, 1961).

» T. R. Koehler, Phys. Rev. Letters 17, 89 (I966).
» H. Irorner, dissertation, Technischen Hochschule MQnchen,

1966 (unoubhshed); Z. Physi 205, 'I2 (1967).
» C. 5e Dominicis and P. C. Martin, J. Math. Phys. $, 3j.

(1964).

that if the interatomic potential is Taylor series ex-
panded to RB orders, then thc full vertex function re-
normalization Inerely replaces the various derivatives
of tlM potcntlRl by new coc@cients. RcnorIBallzation
of the second-order (harmonic) vertex and truncation
of the potential energy at that point yields just the
CQcctivc harmonic Hamiltonian of the self-consistent
phonon approximation. However, since the self-con-
sistent phonon diagrams are topologically of the Har tree
type, their equivalence to a variational approach occurs
in just the manner well known in other standard many-
body systems, such as the BCS superconductivity
theory and the random-phase-approximation (RPA)
theory of the electron gas.

In rcvlewlng the self-consistent phonon approxi-
mation, wc give essentially the Boccara-Sarma deri-
vation, but with some elaborations and extensions to
adapt it for implementation on the computer. Ke begin
by assuming that the true Hamiltonian of the crystal
ls of thc folm

j.
&=2 —— — &;5+-', P s(R "+u—u)

2M

where R;; are the vectors joining the mean positions
of the atoms in the lattice, and g; are thc dynamical
displacement VRI'1Rblcs. As Rn approxlmatloni wc Rdopt
a trial harmonic Hamiltonian of the form

Xs——g — V'+-' g -'(u —u ) 515;"(u,—u ) (2)
235

where the +;,'s are to be determined variationally.
From KI„we construct a trial harmonic density matrix

ps= exp( —i32C.)/»{exp( —P&s)) (3)

The resulting trial free energy is

F5„.,)=Tr{ps(X+P ' Inps)
—= (3'.+P-' inps). (4)

Using the notation

for the free energy corresponding to the harmonic
HRKQltonlan and

D —= ((a—u)(a —a))
for thc displaccnlcnt-displacement correlation function,

Can 1C%'rltC Fggjgl Rs .

F„;,)——Fg,+-', g (s(R;;+a;—u, ))—-', Q -',D;;:e;;. {7)
2 5g

(s(R;;+u;—u;))= (exp{a;—u;) V'))s(R;;)
= exp(-,'D;5.. VV)s(R;5), (8)

using Taylor's theorem and a, well-known property of
harmonic osciORtors.



Now Ft,„,1 can be regarded as a functional of both
4 and D, which are to be varied separately. Since F~
is a functional of W only, we obtain the pair of van-
ational equations

0= oFg,i,i/b4@= SF'/8+s ',D—s-,

0=BFi„,i/bD;;=-', (VVe(R;;+«;—«;))—-',e;;.
Equation (9) expresses D in terms of N; Eq. (10) gives
the result that the variationally optimum choice of
+ is given by the Ihernsol OMrage of the second deriv-
ative of the potential.

Ke can go beyond the Boccara-Sarma dexlvatlon to
obtain even more explicit formulas. Ke introduce a
Fourier representation for C,

e;;=X-'g (1-exp(ik R;,)j@i„

noting that 4;;=0, and diagonalize +q to give the
harmonic phonon eigenvalues and eigenvectors,

polarization vectors thy satisfy the coupled set of Kqs.
(13), (15), and {16),which together provide a definition
of the self-consistent phonon approximation. Once
these equations are satished, the minimum value of the
f1cc cneI'gy bccoolcs

F; QLp—lil(2 slnh28oigg) —going coth~p&ogi 1

+-'Z (~(R*~+«*—«;)), (1&)

while the internal energy, from which we obtain the
spcc16c hcatq ls

U=P —,'oui„cothpPoii, i+-; g (w(R;;+«;—«,)). (18)

Having exhibited Eq. (8) shows immediately that our
formulas for the self-consistent phonons are equivalent
to those of Ranningers and Choquard. 9 Our formulas
are also identical to those obtained by Horner. "

Altcl'nRtlvcly thc eigenvalue cquRtlon CRn bc %'rittcn
in the more usual form,

oii, i, 'ei, ), {MÃ——)-' Q t 1—exp( —ik R;.)j
X (VVo(R;~+«;—«;)) ei,g. (13)

Then the harmonic free energy can be expressed simply
in the phonon representation as

Fg= p p lil(2 sinh~pÃgg)

and hence Eq. (9) demonstrates that the displacement-
displacement correlation is

D;;=X ' P [1—exp(ik R ~)1

X4~4) {iaaf'oil x)
' coth2Poi~i (15)

Furthermore, we can employ Eq. (8) to show that

(o(R; +«;—«))= d~N v(R;;+«) d'q(2m') ~

Xexp(—iq «—-'q D -q)

=
I (2~)' detD "j '" d'»(R;;+«)

X«p( —k«D'; '«), (16)

thc inverse of 0 being with respect to the 3&3 vector
SPRCC.

This is the most practical form from which to develop
a computational scheme. The frequencies ~I,q and

The numerical evaluation of thc self-consistent
phonon approximation Eqs. (13), {15), and (16) has
been carrlcd out using R computer program devclopcd
by one of us (T. R. K.).The program iterates the three
equations in the order listed, beginning with an input
for the tensors 4;; in Eq. (13), and proceeding until
elements of the +;; tensor between nearest neighbors
are consistent from one iteration to the next to within
one part in 10 . This is achieved typically in four iter-
ations. Phonon frequencies and polarization vectors were
calculated at 259 points in ~~8 of the 6rst Brillouin zone.
A mesh with this number of points proved to be of
sufBcient accuracy for evaluating the k-space sum in
Eq. (15}.The coordinate space sum in Eq. {13)was
carried out over the 50 inequivalent shells of atoms
nearest to the central atom. For the potential-energy
contribution in Eqs. (17) and (18), on the other hand,
sums of the nearest 96 inequivalent shells were used.
The « integration of Eq. (16) was evaluated using a
numerical procedure described elsewhere. '4

A. Argon

The interatomic potential we have chosen for both
argon and neon is the Lennard-Jones 6-12 potential,

w{R)=4eL(o/R)" —(o/R)'j. (19)
Thc best method fol detclIQlnlng tlM pRrRDMtcx's e Rnd a'

ls still RIl open qucstlon, but in thc CRsc of RI'gon wc arc
fortunate that thexe is not serious disagreement among
values obtained from 6tting to a wide variety of gas,
liquid, and crystal data. %C have chosen the values
determined by %bailey and Schneidex" from gas data,

~4 g. R. Koehtex' (to be pQbHshed).» E. %halley and %'. G. Schneider, J. Chem. Phys. 23, 1644
(j.955).
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However, this may be an unfair method of comparison,
since the erst one or two significant 6gures in the
nearest-neighbor dlstaIlcc alc a conscqucncc Qlcrcly of
the static lattice energy and would be given correctly by
any theory. More signi6cant, then, is the fact that the
theoretical expansion between T=O K and the triple
point is 84% of the experimental expansion.

Also from our calculations of free energy versus
lattice spacing we have determined the compressi-
bility. At zero temperature and pressure we 6nd

(compressibility) „,r,= (3.79+0.04) X10 "' cm'/dyn.
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9.300
0
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I I I J J I
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FIG. j.. Nearest-neighbor distance in units of 0 for argon at
zero pressure versus temperature. Experimental curve is from
Ref. 16. -3.0—

TmLE I:. Sound velocities in argon at T=0.

100
110
lii
Polycrystal

Longitudinal
(m/sec)

1528
1779
1855
1730

Transverse
(m/sec)

1154
709, 1154
883

1000

16O. G. Peterson, D. N. Batchelder, and R. O. Simmons,
Phys. Rev. 150, 703 {1966).

e/k~ ——119.5'K and a =3.407 A. The mass density of the
Ar4' nucleus we take to be 1.65934X10 "g/nucleon.

The thermal expansion at zero pressure was de-
terrnined by minimizing the free energy as a function of
lattice spacing for 6xed temperature. The results for
the nearest-neighbor distance are shown as a function
of temperature in Fig. 1.The zero-temperature value is

(nearest-neighbor distance)„, r 0=1.10373~=3.'!604 A.

Also shown in Fig. 1 are the experimental data of
Peterson, Batchelder, and Simmons" determined from
x-ray di8raction measurements. They fInd

(nearest-neighbor distance) „,r 0
——3.7561 A.

We have ignored any correction due to the measure-
ments being made at saturated vapor pressure rather
than zero pressure; this correction has been estimated to
be less than one part in 10'. Theory and experiment
differ in nearest-neighbor distance by only 0.14% at
T=O and by 0.32% at the triple point (T=84'K).

0 I I I

0 0.4 0.2 0.3 0.4 0.5 0.6 0.7
l I I I l I I I

0 S2'K 24oK 36 K 4S K 60 K f2 K 84K

I"ro. 2. Percentage change in sound velocities for argon along
a fear simple symmetry directions versus temperature. The
symbols L and T refer to longitudinal and transverse branches,
respectively.

This is to be compared with the experimental value" of

(compresslblllty) r 4.g5'K

= (3.'15&0.05)X10 "cm'/dyn.

Although our calculations have produced phonon
frequencies at 259 points in ~—,of the 6rst Brillouin zone,
we do not display the full results here. This is pri-
marily because inelastic neutron-scattering measure-
ments have never been carried out on argon and conse-
quently no complete experimental data are available for
comparison. We merely note that the dispersion curves
are unexceptional in shape, looking much like those
typical of fcc crystals. However, we do list in Table I
values for acoustic sound velocities at T=O in three
primary symmetry directions and for a polycrystalline
sample. Furthermore, Fig. 2 shows the percentage de-
creases in these velocities as a function of temperature,
computed along the zero pressure line given by our
theoretical thermal-expansion results.

The experimental situation in regard to sound
velocities is somewhat confused. Several conRicting
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measurements have been reported from various labora-
tories using different techniques and differing amounts
of indirect inference. Jones and Sparkes, 'r using a torsion
measurement on a suspended crystal, report s&=917
m/sec at zero temperature. Lawrence and. Nealeis
report sr, ——(1630&50) m/sec at zero temperature via
measurement of the diffraction of light by an ultra-
sonic wave. With this datum, together with experi-
mental specific-heat data, they infer s&=(940~20)
m/sec. The reliability of this number can be judged
by comparing their further inference, compressibility
= (3.84&0.2) &(10 cm /dyn, with the presumably
more reliable value obtained by Peterson et al."The
latter authors use similar arguments to obtain from
their lattice constant measurements the values sl, = 1640
m/sec, sr=944 m/sec. These measurements are pre-
sumably to be compared with polycrystal theoretical
values which are higher by about 6%. Ultrasonic
measurements by Moeller and Squire' along an un-
known direction of a single crystal yield an extrapo-

single crystal give s»O1, =1446+7 m/sec at T=4'I&,
differing from our computed value by about 20%.

The temperature dependence of the sound velocities
is similarly unsettled. Moeller and Squire" extrapolate
their high-temperature measurements down to T=O'K,
and obtain a percentage change 1—Ls(T=0 K)/
s(T=84 K)J equal to19%(1.), 44%(T1), and 48%(T2)
They follow the temperature dependence found by
Jones and Sparkes" for transverse velocities. On the
other hand, Gsanger et at 20 re. port only an 11% drop
in s~~ol, from T=4.2 K to T=76.8 K. Both of these
conflicting results are in sharp contrast to our calcu-
lated percentage change with temperature of approxi-
mately 2—3%.Although this latter figure would increase
if our calculated thermal expansion were closer to the
observed value, the percentage change would still not
be more than about 5%. Phonon frequencies at the
zone boundary are somewhat more sensitive to tempera-
ture, but we do not 6nd them to vary by more than 6%.

The specihc heat was evaluated by plotting the
internal energy versus temperature, and graphically
differentiating the curve. This technique was necessi-
tated because of the comparatively few temperature
points (8) at which we performed the computation. Our
mesh in temperature was too coarse to make more
sophisticated numerical

differentiation

techniques
worthwhile. Thus our C„values are much less accurate
(+5%) than any other quantity we report. For this
reason, we do not convert our specific heats into an
equivalent Debye temperature, which would magnify
the uncertainty.

4.200

l.9 90—

2

4.4 80—

0
0
i

0
0.1 0.2

I I

l2OK 24oK

0.3 0.4 0.5 0.6 0.7
I I I I I

36K 48K 60K 72K 84K

4.170—

4.160-

NEAREST NEIGHBOR OISTANCE
AT ZERO PRESSURE VS

TEMPERATURE
NEON 20

FIG. 3. Specific heat of argon at zero pressure in cal/mole 'I versus
temperature. Experimental curve is from Ref. 21.

lation to T=0 of sr, ——1555 m/sec, ski = 1000 m/sec, and
sr& ——835 m/sec. Moeller and Squire guess the direction
of propagation to be 110. In contrast, ultrasonic mea-
surements by Gsanger et ul." on a neutron-oriented

"G. O. Jones and A. R. Sparkes, Phil. Mag. 10, 1053 (1964).
' D. J. Lawrence and F. E. Neale, Proc. Phys. Soc. (London)

SS, 1250 (1965).
"H. R. Moeller and C. F. Squire, Phys. Rev. 151, 689 (1966).
20 M. Gsanger, H. Egger, and E. Luscher, Phys. Letters 24A,

135 (1967).

4.4 50-

$840-

l.4 30 I I I I I 1

0 .1 .2 .3 .4 .5 .6
l t I I

P 4 K 8 K 52 K 36'K 20'K 24 K

FIG. 4. Nearest-neighbor distance in units of 0 for &e20 at zero
pressure versus temperature, using potential parameters pf Ref
22. Experimental curve is from Ref. 23,
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The results for C~(T) of argon are shown in Fig. 3,
together with the observations of Flubacher et cl."
There is reasonable agreement for temperatures below
about 36'K, but the experimental curve rises rapidly
in a mysterious way above about 48'K. While there is
considerable doubt as to the exact causes for the rise,
it is likely to be associated with crystal imperfection.

B. Neon 20

The calculations presented above for argon have been
repeated for neon. In this case there is considerable
ambiguity in the choice of potential parameters, and so
our results must be regarded as less dednite than for
argon.

2 priori, the most reasonable choice of parameters
would seem to be those of Boato and Casanova. "
These authors assume "the validity of a universal
two-body law of interaction and therefore the appli-
cability of the quantum theory of corresponding
states, " an assumption which certainly must be ap-
propriate if the Lennard-Jones potential is to be at all

sensible. They obtain potential parameters for all the
rare gases by requiring that a variety of vapor data fall
on universal corresponding states curves, and by
further assuming that the Whalley-Schneider potential
parameters for argon are correct. Considerable use is
made of vapor data on isotopic shifts between Ne" and

1.166

I3.5-

13.0-
COMPRESSIBILITY

IN IO"II CM2/DYNE

VS TEMPERATURE

l2.5-

l2.0-

Ne". For neon, they find the parameters e/k&=37. 1'K
and o =2.67 A.

We initially adopted these parameters. Taking the
mass density of the Ne" nucleus to be 1.66126X10 "
g/nucleon, we obtained the nearest-neighbor distance
at zero pressure shown in Fig. 4. The experimental
curve is the work of Bolz and Mauer" using x-ray
di6raction. It seemed to us that the difference in
nearest-neighbor distance between theory and experi-
ment was unacceptably large, and that further compu-
tation should be carried out only for a set of potential
parameters which gave promise of better agreement,
even if with less fundamental justification.

For this reason, we turned to the parameters e/ks
=36.2 K, a.=2.74 A, which were originally chosen by
Bernardes'4 and which have since been used by several
others" "in computations on neon. These parameters
are also much closer to those obtained from second virial
coef6cient data by de Boer."Since this value for cr is

I.I62—
DI ST X 11.5-

1.158-
I I.O-

1.154-
10.5-

1.150—
IQ.O-

1.146-

1.142-

I

0 Ol 02 03 0.6
I l I t I

0 4K 8K 12K 16K 20'K 24K

0.50.4

Fzo. 6. Compressibility of Ne'0 versus temperature. The
single experimental point is from Ref. 27.

1.138-

1.134
0

I

0

I

.2 .5
I

.6
I I I f

8 K 12 K 16oK 20oK 24oK

"P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Proc.
Phys. Soc. (London) 78, 1449 (1961).

22 G, Boato and G. Casanova, Physica 27, 571 (1961).

Fn. 5. Nearest-neighbor distance in units of a for Ne'Il at zero
pressure versus temperature, but using potential parameters
of Ref. 24.

larger than the Boato-Casanova value, the experimental
and theoretical nearest-neighbor distances should be
moved closer to each other. This expectation is borne
out in Fig. 5, which is similar to Fig. 4 but with the
Bernardes potential parameters instead. The percentage
difference between theory and experiment is reduced

'3 L. H. Bolz and F. A. Mauer, in Afgeances in X-Ray Analysis,
edited by W. M. Mueller and M. Fay (Plenum Press, Inc. , New
York, 1963).

'4 N. Bernardes, Phys. Rev. 112, 1534 (1958).
2' W. J. Mullin, Phys. Rev. 134, A1249 (1964)."J.de Boer and B. S. Blaisse, Physica 14, 139 (1948).
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by a factor of 3, and is everywhere less than 1.8%.
However, this is still not nearly as good as our results
for argon. Furthermore, the theoretical expansion from
T=O'K up to the triple point is only 64%%uo of the ob-
served expansion, again inferior to the agreement for
argon.

The remainder of this section is devoted to further
results with the Bernardes parameters applied exclu-
sively to Ne'0, which is also very close to natural neon.

-9%

202

2.1-

GR

Fo

".84/o-
2.0—

-7%-
~ 19-

—.6%-
1.8—

—.5%-

-.4%-
1.6-

I

.2
I

.5
I

.6

-3%-

2%-

1 I 1 l I I

0 4K SK 12 K 16K 20K 24'K

Fxo. 8. Gruneisen parameters for sound velocities in Nemo

versus temperature. The symbols L and T refer to longitudinal
and transverse branches, respectively; T& and Tm refer to the taro
nondegenerate transverse branches.

—.1%-

0 .I
I I I I I I 1

0 4K SK 12 K 16K 20K 24H

FIG. 7. Percentage change in the isotropic sound velocities
of polycrystalline Ne'o versus temperature.

The next section discusses isotopic di6erences between
Ne'0 and Ne". We erst present, in Fig. 6, the compres-
sibility as a function of temperature. The single experi-
mental point with the large error bar is the measurement
of Stewart. '~ Although the compressibility of neon has
not yet been measured over a wide temperature interval,
it has been estimated" for argon and is qualitatively
similar to our neon calculations. [Note added ie proof
The compressibility for neon has now been estimated
from lattice constant measurements, in the same way
as for argon, by D. N. Batchelder, D. L. Losee, and
R. O. Simmons, Phys. Rev. 162, 767 (1967).The com-
pressibility is observed to double upon increasing the
temperature from zero to melting, in contrast to our
calculation of an increase of roughly 25%.1

Sound velocities in a few simple symmetry directions
at T=O K are listed in Table II, along with the iso-

"J.W. Stewart, Phys. Rev. 97, 578 (1955).

TABLE II. Sound velocities in neon at T=O.

100
110
111
Polycrystal

Longitudinal
(m/sec)

1152
1338
1394
1303

Transverse
(m/sec)

867
538, 867
666
753

tropic velocities appropriate to a polycrystalline sample.
We are not aware of any direct measurement of these
quantities in neon. [Note added in proof. Inelastic neu-
tron-scattering determinations of phonon frequencies
in single-crystal neon are now becoming available, and
preliminary measurements have been reported by
W. B. Daniels et al. , Bull. Am. Phys. Soc. 12, 1063
(1967). Their results are consistent with our calcula-
tions, if allowance is made for the fact that our calcu-
lated pressure-volume phase diagram is not in close
agreement with observation. jThe percentage change in
the polycrystalline sound velocities with temperature is
plotted in Fig. 7. It is interesting that this change is
much less than in argon, even over the same reduced
temperature interval. The probable cause is that the
thermal expansion over the same reduced temperature
interval is 2.5 times larger for argon than for neon.
Furthermore, the dominant mechanism for the tempera-
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(and which we have smoothed out in drawing Fig. 8),
but this is not suKciently large to account for the
disagreement.
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Computation has also been carried out for the
isotope Ne" using the Bernardes parameters. The results
are not presented in detail here since little experimental
information is yet available on crystals of this isotope.
We note merely that the percentage change in lattice
parameter from Ne to Ne" at zero pressure and tem-
perature is computed to be —0.21%. This is to be
compared with the experimental determination of
—(0.19&0.01)% by Hatchelder et aL" via x-ray
diGraction.
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FIG. 9. Speci6c heat of Ne" at zero pressure in cal/mole 'K, versus
temperature. Experimental curve is from Ref. 30.

and illustrated as a function of temperature in Fig. 8.
The y(k) are by no means independent of k as is assumed
in deriving the Gruneisen equation of state. Further-
more, they do depend somewhat on temperature. While
again no direct measurements exist for neon, the situ-
ation is indicative" of a behavior qualitatively similar

to that illustrated here.
Finally, the speci6c heat C„ is shown in Fig. 9, to-

gether with the observations of Fenichel and Serin. '
Agreement between the two curves is not satisfactory,
with discrepancies exceeding 15% in the temperature
region around 15 K. We improved the accuracy of our
computation of C~ over that for argon by halving the
mesh of temperature points and cross checking several
diferent numerical diBerentiation techniques. We
believe the accuracy of the theoretical C„ to be better
than &2% in this case. The measurements of Fenichel
and Serin do contain a ripple in Cr (T) which they con-
ceed is an artifact probably ascribable to crystal defects

28 G. L. Pollack, Rev. Mod. Phys. 36, 748 (1964).
P' H. Fenichel and B. Serin, Phys. Rev. 142, 490 (1966).

ture dependence of the phonon frequencies is the change
in lattice constant due to thermal expansion, rather than
the explicit temperature factor entering into Eq. (15).

The change in sound velocities with volume at 6xed

temperature have been converted into Gruneisen
parameters,

y(k) —=—d lns(k)/d lnV,

IV. DISCUSSION

The results presented above of the self-consistent
phonon calculations and the comparison with experi-
mental observations on argon and neon have certain
limited implications for our understanding of lattice
dynamics in these crystals. In the 6rst place, we must
emphasize that we by no means regard the self-consist-
ent phonon equations implemented here as the ultimate
in the theory of lattice dynamics. While a significant
portion of the total anharmonicity of the crystal is
indeed included, with an attendant improvement" over
the quasiharmonic approximation in predictions of
crystal properties, we have ignored in our programming
other contributions which have already been formally
written down, ""in particular the contribution of the
odd derivatives of the potential. These will certainly
not be negligible. We rather regard the present work as
a preliminary step toward programming the more
complete theory, and as an exploration of the detailed
numerical content of the self-consistent phonon equa-
tions as they stand.

Nonetheless, in spite of the incompleteness of our
theoretical treatment of anharmonicity, it is tempting
to use the present comparison between theory and ex-

periment as a reAection on the adequacy of the input
Lennard- Jones potential. We certainly share with

many other workers the prevailing dissatisfaction with
the E "form of the repulsive part of the potential, but
we are unable to make any constructive criticism at this
time. Of more significance, we feel, is the close agree-
ment in the case of argon of the potential parameters
determined from a variety of gas, liquid, and crystal
data and the rather good agreement of our calculations
with measured thermodynamic properties, in. contrast
to the case of neon. As we have noted, there are sub-

stantial variations in the parameters for neon depend-

ing on the method of determination, and the most

'0D. N. Batchelder, D. L. Losee, and R. 0. Simmons, in
Proceedings of the International Conference on Crystal Grouch,
Boston, 1966 (Pergamon Press, Inc., New York, 1967), p. 843."F. W. de Wette (private communication).
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justihable set of parameters from vapor data gives the
worst account of the crystal. Furthermore, agreement of
our calculations with observation is not nearly as good
for neon as for argon. Of course, the odd-derivative
anharmonic effects that we have omitted may be much
more significant for the lighter element, but this is not
likely to account fully for the apparent relative inade-
quacy of the Lennard-Jones form in the case of neon.
%C also feel that a good case can be made, both by
inference from the work presented here and from hrst-
pl lnclplcs considerations, that thc potential parameters
change on going from the gas phase to the crystal. This
point of view is an alternative in that it mould then have
to regard the fairly satisfactory consistency in the case

of argon as partially accidental. The possibility of
shifts in the Lennard-Jones potential between phases is
not entirely the same thing as the possibility of "three-
body forces, ""although there certainly are aspects of
similarity, because three-body forces in the usual sense
imply a noncentral e6ective interaction between atom
pairs. Strictly speaking, of course, a local, instantaneous,
central potential can only be an approximation to the
true forces between atomic nuclei, which are given at
the most fundamental level by the Coulomb potential
shlcldcd by thc full DonlocRl retarded clcctroDlc
dielectric function.

"L, Jansen, Phys. Rev. 135, A1292 (1964).

P H YSICAI. REV I EW VOLUME 165, NUMBER 3 i5 JANUARV 1968

Temperature and Pressure Dependence of the Dielectric Constants
of the Thallous Halides*
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The effects of temperature (76-400'K) and hydrostatic pressure (up to 20 kbar) on the static dielectric
constants of single crystal TICl and TlBr and polycrystalline TlI were investigated. T1Cl and T13r have the
CsCl structure, whereas TlI transforms from an orthorhombic structure to the CsCl structure at 4.8 kbar
and 300'K. In all cases, the dielectric constant e decreases with both increasing temperature (at low tempera-
tures) and increasing pressure. At 1 bar and 293'K, (B ln ~/BT) I and (8 ln ~/BI') p (in units of 10 4'K ~ and
10 s kbar ~) are —3.94 and —1.81, —3.'IO and —1.'l'I, —0.68 and —0.63 for TlCl, T1Br, and TH (ortho-
rhombic), respectively. For TlI (cubic) the corresponding values at 3 kbar and 293'K are —4.04 and —1.47.
At the orthorhombic ~ cubic transition, ~ of TII increases by 35 jf), but this change is found to be entirely
due to the change in volume, the total polarizability per molecule being independent of crystal structure.
The temperature dependence of e is separated into volume-dependent and volume-independent contribu-
tions. For the thallous halides the latter contribution, which is determined by anharmonic lattice effects, is
large and determines the sign of (B ln e/BT) p. On the basis of Szigeti's theory and the assumption that the
optical dielectric constant e,p is a unique function of volume, it is found that anharmonicities in the potential
energy and nonlinearities in the dipole moment account for 30%0% of the lattice contribution to e of the
thallous halides. The effective charge ratio e*/e at room temperature is 0.96 for TlCl and 0.95 for Tlgr. At,
low temperatures, s oi TlCl and T18r obeys a Curie-Weiss law e=s/(T —Ts) with Ts negative. At high
temperatures (&300'K) the dielectric constant and dielectric loss are predominantly determined by the
formation and transport of lattice defects. The activation energies calculated from the results agree well
with values obtained from ionic-conductivity measurements.

r. DTYRODUn'rom

HIS paper deals with the effects of temperature
(76 to 400'K) and hydrostatic pressure (up to

20 kbar) on the static dielectric constants of the three
thallous halides TlC1, TlBr, and TlI. A knowledge of the
dielectric constants of ionic crystals and their tempera-
ture and volume (or pressure) dependences is of con-
siderable interest because the dielectric constant enters
into the theoretical treatment of various physical
properties, e.g., the theories of electron-phonon inter-
actions and infrared dispersion and effective held con-

*This work was supported by the U. S. Atomic Energy
Commission.

siderations. In addition, the temperature and pressure
dependences of the dielectric constant combined with a
knowledge of the thermal expansion coeKcient and
compressibility make it possible to separate the tem-
perature dependence of the dielectric constant at con-
stant pressure into its volume-dependent and volume-
independent contributions. As will be discussed later,
the latter contributions are determined completely by
anharmonic lattice CBects.

The thaHous halides are a particularly interesting
group of compounds to study. Unlike most ionic crystals
which exhibit an increase of dielectric constant with in-
creasing temperature at low temperatures, the dielectric
constants of the thallous halides decrease with in-


